MATH 3083 Linear Algebra (Luecking)
Third Exam (solutions)
NAME:
(Please print clearly)
April 24, 2024

Note: while numeric expressions are not required to be simplified, vector and matrix expressions must be. Thus $(1 / 4)\left(\begin{array}{llll}2 & 2 & 2 & 2\end{array}\right)$ is incomplete, but ($2 / 4 \quad 2 / 4 \quad 2 / 4 \quad 2 / 4$) is fine.

1. (a) Let $A=\left(\begin{array}{rr}1 & 2 \\ -1 & -1 \\ 0 & 2 \\ -1 & 0\end{array}\right)$. Find a basis for $\mathcal{R}(A)^{\perp} .(\mathcal{R}(A)$ is the column space of $A)$.

Ans: Find $\mathcal{N}\left(A^{T}\right)$:

$$
\left(\begin{array}{rrrr|r}
1 & -1 & 0 & -1 & 0 \\
2 & -1 & 2 & 0 & 0
\end{array}\right) \xrightarrow{3 \text { EROs }}\left(\begin{array}{llll|l}
1 & 0 & 2 & 1 & 0 \\
0 & 1 & 2 & 2 & 0
\end{array}\right)
$$

then, from $x_{1}=-2 x_{3}-x_{4}$ and $x_{2}=-2 x_{3}-2 x_{4}$ we get

$$
\left(x_{3}=1, x_{4}=0\right):\left(\begin{array}{r}
-2 \\
-2 \\
1 \\
0
\end{array}\right) \quad \text { and }\left(x_{3}=0, x_{4}=0\right):\left(\begin{array}{r}
-1 \\
-2 \\
0 \\
1
\end{array}\right)
$$

(b) Let $\mathbf{b}=\left(\begin{array}{r}1 \\ 1 \\ 2 \\ -1\end{array}\right)$. Find the least squares solution $\hat{\mathbf{x}}$ of $A \mathbf{x}=\mathbf{b}$.

Ans: Solve $A^{\mathrm{T}} A \mathbf{x}=A^{\mathrm{T}} \mathbf{b}$. That is

$$
\left(\begin{array}{ll}
3 & 3 \\
3 & 9
\end{array}\right) \mathbf{x}=\binom{1}{5}
$$

This gives $\hat{\mathbf{x}}=\binom{-1 / 3}{2 / 3}$.
2. For the vectors $\mathbf{x}=\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)$ and $\mathbf{y}=\left(\begin{array}{r}3 \\ -1 \\ 1\end{array}\right)$ in \mathbb{R}^{3}, do the following:
(a) Find the scalar product of \mathbf{x} and \mathbf{y}. Ans: $\quad \mathbf{x}^{\mathrm{T}} \mathbf{y}=6-2+1=5$
(b) Find $\|\mathbf{x}\|$ and $\|\mathbf{y}\|$.

Ans: $\|x\|=\sqrt{4+4+1}=\sqrt{9}=3 .\|y\|=\sqrt{9+1+1}=\sqrt{11}$
(c) Find $\cos \theta$, where θ is the angle between \mathbf{x} and \mathbf{y}. Do not find θ itself.

Ans: $\cos \theta=\frac{\mathbf{x}^{\mathrm{T}} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}=\frac{5}{3 \sqrt{11}}$.
(d) Find a unit vector in \mathbb{R}^{3} that is orthogonal to both \mathbf{x} and \mathbf{y}.

Ans: Solve the system: $\mathbf{x}^{T} \mathbf{z}=0$ and $\mathbf{y}^{\mathrm{T}} \mathbf{z}=0$ for \mathbf{z} :

$$
\left(\begin{array}{rrr|r}
2 & 2 & 1 & 0 \\
3 & -1 & 1 & 0
\end{array}\right) \xrightarrow{4 \text { EROs }}\left(\begin{array}{lll|l}
1 & 0 & 3 / 8 & 0 \\
0 & 1 & 1 / 8 & 0
\end{array}\right)
$$

If we set $z_{3}=8$ we get $\left(\begin{array}{lll}-3 & -1 & 8\end{array}\right)^{T}$ Divide this by its norm to get the unit vector

$$
\left(\begin{array}{c}
-3 / \sqrt{74} \\
-1 / \sqrt{74} \\
8 / \sqrt{74}
\end{array}\right)
$$

3. Using the scalar product on \mathbb{R}^{4} and the two vectors $\mathbf{x}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right) \quad$ and $\mathbf{y}=\left(\begin{array}{r}-1 \\ 1 \\ 1 \\ -1\end{array}\right)$ answer the following.
(a) Is the set $\{\mathbf{x}, \mathbf{y}\}$ orthogonal? Yes $(\mathbf{x} \perp \mathbf{y})$

Is the set $\{\mathbf{x}, \mathbf{y}\}$ orthonormal? No $(\|\mathbf{x}\| \neq 1)$
(b) Find the projection of $\mathbf{z}=\left(\begin{array}{l}0 \\ 1 \\ 2 \\ 1\end{array}\right)$ onto $\operatorname{Span}(\mathbf{x}, \mathbf{y})$.

Ans: We can add the projections of \mathbf{z} onto each of \mathbf{x} and \mathbf{y} because they are orthogonal:

$$
\frac{\mathbf{z}^{\mathrm{T}} \mathbf{x}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}} \mathbf{x}+\frac{\mathbf{z}^{\mathrm{T}} \mathbf{y}}{\mathbf{y}^{\mathrm{T}} \mathbf{y}} \mathbf{y}=\frac{4}{4}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)+\frac{2}{4}\left(\begin{array}{r}
-1 \\
1 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{l}
1 / 2 \\
3 / 2 \\
3 / 2 \\
1 / 2
\end{array}\right)
$$

4. Apply the Gram-Schmidt process to $\mathbf{x}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right), \mathbf{x}_{2}=\left(\begin{array}{r}1 \\ -1 \\ 0 \\ 1\end{array}\right), \mathbf{x}_{3}=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 2\end{array}\right)$ (in that order) to obtain an orthonormal set $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ with the same span as $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$.

Ans: $\mathbf{v}_{1}=\mathbf{x}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right), \quad \mathbf{x}_{2}-\frac{\mathbf{x}_{2}^{\mathrm{T}} \mathbf{v}_{1}}{\mathbf{v}_{1}^{\mathrm{T}} \mathbf{v}_{1}} \mathbf{v}_{1}=\left(\begin{array}{r}1 \\ -1 \\ 0 \\ 1\end{array}\right)-\frac{1}{3}\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{r}2 / 3 \\ -4 / 3 \\ 0 \\ 2 / 3\end{array}\right)$.
Multiply by $3 / 2$ and set $\mathbf{v}_{2}=\left(\begin{array}{r}1 \\ -2 \\ 0 \\ 1\end{array}\right)$.
$\mathbf{x}_{3}-\frac{\mathbf{x}_{3}^{\mathrm{T}} \mathbf{v}_{1}}{\mathbf{v}_{1}^{\mathrm{T}} \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{3}^{\mathrm{T}} \mathbf{v}_{2}}{\mathbf{v}_{2}^{\mathrm{T}} \mathbf{v}_{2}} \mathbf{v}_{2}=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 2\end{array}\right)-\frac{3}{3}\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right)-\frac{3}{6}\left(\begin{array}{r}1 \\ -2 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{r}-1 / 2 \\ 0 \\ 1 \\ 1 / 2\end{array}\right)$.
Multiply by 2 and set $\mathbf{v}_{3}=\left(\begin{array}{r}-1 \\ 0 \\ 2 \\ 1\end{array}\right)$. Then obtain orthonormal vectors by $\mathbf{u}_{j}=$ $\frac{1}{\left\|\mathbf{v}_{j}\right\|} \mathbf{v}_{j}$. This produces

$$
\mathbf{u}_{1}=\left(\begin{array}{c}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
0 \\
1 / \sqrt{3}
\end{array}\right), \mathbf{u}_{2}=\left(\begin{array}{c}
1 / \sqrt{6} \\
-2 / \sqrt{6} \\
0 \\
1 / \sqrt{6}
\end{array}\right), \mathbf{u}_{3}=\left(\begin{array}{c}
-1 / \sqrt{6} \\
0 \\
2 / \sqrt{6} \\
1 / \sqrt{6}
\end{array}\right) .
$$

5. Find all eigenvalues of the following matrices. (Do not find any eigenvectors nor any eigenspaces.)
(a) $A=\left(\begin{array}{ll}1 & 4 \\ 1 & 1\end{array}\right) . \quad$ Ans: $\quad|A-\lambda I|=(1-\lambda)^{2}-4=\lambda^{2}-2 \lambda-3$ so $\lambda=-1,3$
(b) $B=\left(\begin{array}{lll}3 & 1 & 1 \\ 0 & 2 & 4 \\ 0 & 1 & 2\end{array}\right)$.

Ans: $\left|\begin{array}{ccc}3-\lambda & 1 & 1 \\ 0 & 2-\lambda & 4 \\ 0 & 1 & 2-\lambda\end{array}\right|=(3-\lambda)\left|\begin{array}{cc}2-\lambda & 4 \\ 1 & 2-\lambda\end{array}\right|=(3-\lambda)\left[(2-\lambda)^{2}-4\right]$
This simplifies to $(3-\lambda)\left(\lambda^{2}-4 \lambda\right)=0$, giving $\lambda=3,0,4$.
6. The matrix $A=\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$ satisfies $\operatorname{det}(A-\lambda I)=(4-\lambda)(\lambda-1)^{2}$.
(a) Find all the eigenvalues of A and the eigenspace of each eigenvalue.
(b) Answer the following questions: Is A diagonalizable? Why or why not?

Ans: (a) $(4-\lambda)(\lambda-1)^{2}=0$ gives eigenvalues $\lambda=4,1,1$.
$\lambda=4$: the matrix $A-4 I=\left(\begin{array}{rrr}-2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2\end{array}\right) \xrightarrow{6 \text { EROs }}\left(\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right)$.
So, $x_{1}=x_{3}, x_{2}=x_{3}$ and the eigenspace consists of all $\left(\begin{array}{l}\alpha \\ \alpha \\ \alpha\end{array}\right), \alpha \in \mathbb{R}$.
$\lambda=1$: the matrix $A-1 I=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right) \xrightarrow{2 \mathrm{EROs}}\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.
So, $x_{1}=-x_{2}-x_{3}$ and the eigenspace consists of all $\left(\begin{array}{c}-\alpha-\beta \\ \alpha \\ \beta\end{array}\right), \alpha, \beta \in \mathbb{R}$.
(b) A is diagonalizable because the dimensions of the eigenspaces add up to 3. Another valid reason: because A is symmetric. The third possible reason is to construct S out of eigenvectors, find S^{-1}, and then verify that $S^{-1} A S$ is diagonal. Obviously, we avoid doing that unless we actually need all that info.

