MATH 3083 Linear Algebra (Luecking)

NAME: (Please print clearly)

Third Exam (solutions)

April 24, 2024

Note: while numeric expressions are not required to be simplified, vector and matrix expressions must be. Thus $(1/4)(2 \ 2 \ 2 \ 2)$ is incomplete, but $(2/4 \ 2/4 \ 2/4 \ 2/4)$ is fine.

1. (a) Let
$$A = \begin{pmatrix} 1 & 2 \\ -1 & -1 \\ 0 & 2 \\ -1 & 0 \end{pmatrix}$$
. Find a basis for $\mathcal{R}(A)^{\perp}$. ($\mathcal{R}(A)$ is the column space of A).

Ans: Find $\mathcal{N}(A^T)$:

$$\begin{pmatrix} 1 & -1 & 0 & -1 & | & 0 \\ 2 & -1 & 2 & 0 & | & 0 \end{pmatrix} \xrightarrow{3 \text{ EROs}} \begin{pmatrix} 1 & 0 & 2 & 1 & | & 0 \\ 0 & 1 & 2 & 2 & | & 0 \end{pmatrix}$$

then, from $x_1 = -2x_3 - x_4$ and $x_2 = -2x_3 - 2x_4$ we get

$$(x_3 = 1, x_4 = 0):$$
 $\begin{pmatrix} -2\\ -2\\ 1\\ 0 \end{pmatrix}$ and $(x_3 = 0, x_4 = 0):$ $\begin{pmatrix} -1\\ -2\\ 0\\ 1 \end{pmatrix}$

(b) Let
$$\mathbf{b} = \begin{pmatrix} 1\\1\\2\\-1 \end{pmatrix}$$
. Find the least squares solution $\hat{\mathbf{x}}$ of $A\mathbf{x} = \mathbf{b}$.

Ans: Solve $A^{\mathrm{T}}A\mathbf{x} = A^{\mathrm{T}}\mathbf{b}$. That is

$$\begin{pmatrix} 3 & 3 \\ 3 & 9 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$

This gives $\hat{\mathbf{x}} = \begin{pmatrix} -1/3 \\ 2/3 \end{pmatrix}$.

Don't write in this box 2. For the vectors $\mathbf{x} = \begin{pmatrix} 2\\ 2\\ 1 \end{pmatrix}$ and $\mathbf{y} = \begin{pmatrix} 3\\ -1\\ 1 \end{pmatrix}$ in \mathbb{R}^3 , do the following:

(a) Find the scalar product of \mathbf{x} and \mathbf{y} . Ans: $\mathbf{x}^{\mathrm{T}}\mathbf{y} = 6 - 2 + 1 = 5$

(b) Find $\|\mathbf{x}\|$ and $\|\mathbf{y}\|$.

Ans: $||x|| = \sqrt{4+4+1} = \sqrt{9} = 3$. $||y|| = \sqrt{9+1+1} = \sqrt{11}$

(c) Find $\cos \theta$, where θ is the angle between **x** and **y**. Do not find θ itself.

Ans:
$$\cos \theta = \frac{\mathbf{x}^{\mathrm{T}} \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = \frac{5}{3\sqrt{11}}.$$

(d) Find a **unit vector** in \mathbb{R}^3 that is orthogonal to both \mathbf{x} and \mathbf{y} .

Ans: Solve the system: $\mathbf{x}^{\mathrm{T}}\mathbf{z} = 0$ and $\mathbf{y}^{\mathrm{T}}\mathbf{z} = 0$ for \mathbf{z} :

$$\begin{pmatrix} 2 & 2 & 1 & | & 0 \\ 3 & -1 & 1 & | & 0 \end{pmatrix} \xrightarrow{\text{4 EROs}} \begin{pmatrix} 1 & 0 & 3/8 & | & 0 \\ 0 & 1 & 1/8 & | & 0 \end{pmatrix}$$

If we set $z_3 = 8$ we get $\begin{pmatrix} -3 & -1 & 8 \end{pmatrix}^T$ Divide this by its norm to get the unit vector $\begin{pmatrix} -3/\sqrt{74} \\ -1/\sqrt{74} \\ 8/\sqrt{74} \end{pmatrix}$

- 3. Using the scalar product on \mathbb{R}^4 and the two vectors $\mathbf{x} = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$ and $\mathbf{y} = \begin{pmatrix} -1\\1\\1\\-1 \end{pmatrix}$
 - answer the following.
 - (a) Is the set $\{\mathbf{x}, \mathbf{y}\}$ orthogonal? <u>Yes</u> $(\mathbf{x} \perp \mathbf{y})$ Is the set $\{\mathbf{x}, \mathbf{y}\}$ orthonormal? <u>No</u> $(||\mathbf{x}|| \neq 1)$

(b) Find the projection of
$$\mathbf{z} = \begin{pmatrix} 0\\1\\2\\1 \end{pmatrix}$$
 onto $\operatorname{Span}(\mathbf{x}, \mathbf{y})$.

Ans: We can add the projections of \mathbf{z} onto each of \mathbf{x} and \mathbf{y} because they are orthogonal:

$$\frac{\mathbf{z}^{\mathrm{T}}\mathbf{x}}{\mathbf{x}^{\mathrm{T}}\mathbf{x}}\mathbf{x} + \frac{\mathbf{z}^{\mathrm{T}}\mathbf{y}}{\mathbf{y}^{\mathrm{T}}\mathbf{y}}\mathbf{y} = \frac{4}{4} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} + \frac{2}{4} \begin{pmatrix} -1\\1\\1\\-1 \end{pmatrix} = \begin{pmatrix} 1/2\\3/2\\3/2\\1/2 \end{pmatrix}$$

Don't write in this box 4. Apply the Gram-Schmidt process to $\mathbf{x}_1 = \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$, $\mathbf{x}_2 = \begin{pmatrix} 1\\-1\\0\\1 \end{pmatrix}$, $\mathbf{x}_3 = \begin{pmatrix} 1\\0\\1\\2 \end{pmatrix}$ (in that

order) to obtain an orthonormal set $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ with the same span as $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$.

Ans:
$$\mathbf{v}_1 = \mathbf{x}_1 = \begin{pmatrix} 1\\ 1\\ 0\\ 1 \end{pmatrix}, \quad \mathbf{x}_2 - \frac{\mathbf{x}_2^T \mathbf{v}_1}{\mathbf{v}_1^T \mathbf{v}_1} \mathbf{v}_1 = \begin{pmatrix} 1\\ -1\\ 0\\ 1 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} 1\\ 1\\ 0\\ 1 \end{pmatrix} = \begin{pmatrix} 2/3\\ -4/3\\ 0\\ 2/3 \end{pmatrix}.$$

Multiply by 3/2 and set $\mathbf{v}_2 = \begin{pmatrix} 1\\ -2\\ 0\\ 1 \end{pmatrix}.$
 $\mathbf{x}_3 - \frac{\mathbf{x}_3^T \mathbf{v}_1}{\mathbf{v}_1^T \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_3^T \mathbf{v}_2}{\mathbf{v}_2^T \mathbf{v}_2} \mathbf{v}_2 = \begin{pmatrix} 1\\ 0\\ 1\\ 2 \end{pmatrix} - \frac{3}{3} \begin{pmatrix} 1\\ 1\\ 0\\ 1 \end{pmatrix} - \frac{3}{6} \begin{pmatrix} 1\\ -2\\ 0\\ 1 \end{pmatrix} = \begin{pmatrix} -1/2\\ 0\\ 1\\ 1/2 \end{pmatrix}.$
Multiply by 2 and set $\mathbf{v}_3 = \begin{pmatrix} -1\\ 0\\ 2\\ 1 \end{pmatrix}.$ Then obtain orthonormal vectors by $\mathbf{u}_j = \begin{pmatrix} 1\\ 0\\ 1\\ 1/2 \end{pmatrix}$.

$$\frac{1}{\|\mathbf{v}_{j}\|} \mathbf{v}_{j}. \text{ This produces}$$
$$\mathbf{u}_{1} = \begin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 0 \\ 1/\sqrt{3} \end{pmatrix}, \ \mathbf{u}_{2} = \begin{pmatrix} 1/\sqrt{6} \\ -2/\sqrt{6} \\ 0 \\ 1/\sqrt{6} \end{pmatrix}, \ \mathbf{u}_{3} = \begin{pmatrix} -1/\sqrt{6} \\ 0 \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{pmatrix}.$$

5. Find all eigenvalues of the following matrices. (Do *not* find any eigenvectors *nor* any eigenspaces.)

(a)
$$A = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix}$$
. Ans: $|A - \lambda I| = (1 - \lambda)^2 - 4 = \lambda^2 - 2\lambda - 3 \text{ so } \lambda = -1, 3$
(b) $B = \begin{pmatrix} 3 & 1 & 1 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{pmatrix}$.
Ans: $\begin{vmatrix} 3 - \lambda & 1 & 1 \\ 0 & 2 - \lambda & 4 \\ 0 & 1 & 2 - \lambda \end{vmatrix} = (3 - \lambda) \begin{vmatrix} 2 - \lambda & 4 \\ 1 & 2 - \lambda \end{vmatrix} = (3 - \lambda)[(2 - \lambda)^2 - 4]$
This simplifies to $(3 - \lambda)(\lambda^2 - 4\lambda) = 0$, giving $\lambda = 3, 0, 4$.

Don't write in this box 6. The matrix $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ satisfies $\det(A - \lambda I) = (4 - \lambda)(\lambda - 1)^2$.

(a) Find all the eigenvalues of A and the eigenspace of each eigenvalue.

(b) Answer the following questions: Is A diagonalizable? Why or why not?

Ans: (a)
$$(4 - \lambda)(\lambda - 1)^2 = 0$$
 gives eigenvalues $\lambda = 4, 1, 1$.

$$\lambda = 4: \text{ the matrix } A - 4I = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \xrightarrow{6 \text{ EROs}} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}.$$

So, $x_1 = x_3, x_2 = x_3$ and the eigenspace consists of all $\begin{pmatrix} \alpha \\ \alpha \\ \alpha \end{pmatrix}, \alpha \in \mathbb{R}.$
$$\lambda = 1: \text{ the matrix } A - 1I = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \xrightarrow{2 \text{ EROs}} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

So, $x_1 = -x_2 - x_3$ and the eigenspace consists of all $\begin{pmatrix} -\alpha - \beta \\ \alpha \\ \beta \end{pmatrix}, \alpha, \beta \in \mathbb{R}.$

(b) A is diagonalizable because the dimensions of the eigenspaces add up to 3. Another valid reason: because A is symmetric. The third possible reason is to construct S out of eigenvectors, find S^{-1} , and then verify that $S^{-1}AS$ is diagonal. Obviously, we avoid doing that unless we actually need all that info.