MATH 3083 Linear Algebra (Luecking)
NAME:
(Please print clearly)
March 13, 2024

1. For the following sets, state whether it is a subspace of \mathbb{R}^{3} (that is, answer 'yes' or 'no').

- If you answer 'yes', either provide a matrix whose nullspace is that set, or provide a set of vectors whose span is that set.
- If you answer 'no' give an example (using vectors made of actual numbers) that violates one of the closure requirements.
(a) The set $\left\{\left.\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \right\rvert\, x_{1} \leq 0\right.$ and $\left.x_{3} \leq 0\right\}$.

Ans: No, this contains $\left(\begin{array}{r}-1 \\ 0 \\ 0\end{array}\right)$ but not $(-2)\left(\begin{array}{r}-1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right)$.
(b) The set $\left\{\left.\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \right\rvert\, x_{3}=-x_{1}-4 x_{2}\right.$ and $\left.x_{2}=3 x_{1}\right\}$.

Ans: Yes, this is the nullspace of $\left(\begin{array}{rrr}1 & 4 & 1 \\ 3 & -1 & 0\end{array}\right)$.
(c) The set $\left\{\left.\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \right\rvert\, x_{2}=x_{3}\right.$ and $\left.x_{1} x_{2}=0\right\}$.

Ans: No, this contains $\mathbf{x}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $\mathbf{y}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ but not $\mathbf{x}+\mathbf{y}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
(d) The set $\left\{\left.\left(\begin{array}{c}\alpha \\ -2 \alpha+3 \beta \\ 4 \beta\end{array}\right) \right\rvert\, \alpha, \beta\right.$ in $\left.\mathbb{R}\right\}$.

Ans: Yes, this is the span of $\left\{\left(\begin{array}{r}1 \\ -2 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 3 \\ 4\end{array}\right)\right\}$.
2. For each of the following sets of vectors in \mathbb{R}^{3}, answer the following with 'yes' or 'no'.
(i) Does it span \mathbb{R}^{3} ?
(ii) Is it independent?
(iii) Is it a basis for \mathbb{R}^{3} ?

Justify your answers by reducing the appropriate matrix to echelon form.
(a) $\left(\begin{array}{r}1 \\ 1 \\ -3\end{array}\right),\left(\begin{array}{r}2 \\ 3 \\ -1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$

Ans: The matrix with these columns: $\left(\begin{array}{rrr}1 & 2 & 1 \\ 1 & 3 & 2 \\ -3 & -1 & 2\end{array}\right)$, reduces to $\left(\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right)$ in three steps. Then: (i) no, (ii) no and (iii) no.
(b) $\left(\begin{array}{r}1 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{r}-2 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{r}3 \\ 1 \\ -2\end{array}\right)$

Ans: The matrix with these columns: $\left(\begin{array}{rrr}1 & -2 & 3 \\ 1 & -1 & 1 \\ -1 & 1 & -2\end{array}\right)$, reduces to $\left(\begin{array}{rrr}1 & -2 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 1\end{array}\right)$ in four steps. Then: (i) yes, (ii) yes and (iii) yes.
(c) $\left(\begin{array}{l}0 \\ 1 \\ 3\end{array}\right),\left(\begin{array}{r}3 \\ -2 \\ -2\end{array}\right)$

Ans: The matrix with these columns: $\left(\begin{array}{rr}0 & 3 \\ 1 & -2 \\ 3 & -2\end{array}\right)$, reduces to $\left(\begin{array}{rr}1 & -2 \\ 0 & 1 \\ 0 & 0\end{array}\right)$ in four steps.
Then: (i) no, (ii) yes and (iii) no.
(d) $\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{r}0 \\ -1 \\ 2\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 2\end{array}\right)$

Ans: $\left(\begin{array}{rrrr}1 & 0 & 1 & 2 \\ 1 & -1 & 2 & 3 \\ 2 & 2 & 0 & 2\end{array}\right)$ reduces to $\left(\begin{array}{rrrr}1 & 0 & 1 & 2 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0\end{array}\right)$ in four steps.
Then (i) no, (ii) no and (iii) no.
3. Let $\mathcal{E}=\left[\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right]$ be the standard basis for \mathbb{R}^{3}, and let \mathcal{B} be the ordered basis for \mathbb{R}^{3} given by $\mathcal{B}=\left[\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)\right]$. Find the change of basis matrix (transition matrix) from \mathcal{E} to \mathcal{B}.
Ans: Invert the matrix with the columns from \mathcal{B} : row-reduce $\left(\begin{array}{lll|lll}1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 3 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right)$
until the left side is the identity (four steps) and read off the transition matrix from the right side: $\left(\begin{array}{rrr}1 & 0 & -2 \\ -1 & 1 & -1 \\ 0 & 0 & 1\end{array}\right)$.
4. $A=\left(\begin{array}{rrrrr}1 & -2 & 0 & -3 & 2 \\ -2 & 4 & 0 & 6 & -4 \\ -1 & 2 & 0 & 3 & -2 \\ 0 & 0 & 1 & 3 & 5\end{array}\right)$ has reduced echelon form: $\left(\begin{array}{rrrrr}1 & -2 & 0 & -3 & 2 \\ 0 & 0 & 1 & 3 & 5 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$.

Do the following.
(a) Write down a basis for the column space of A :

Ans: The columns of A corresponding to leading 1s: $\left\{\left(\begin{array}{r}1 \\ -2 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)\right\}$
(b) Write down a basis for the row space of A :

Ans: The nonzero rows of the echelon form: $\left.\left.\left\{\begin{array}{lllll}1 & -2 & 0 & -3 & 2\end{array}\right),\left(\begin{array}{lllll}0 & 0 & 1 & 3 & 5\end{array}\right) ~\right) ~\right\} ~$
(c) Write down the rank and nullity of A :

Ans: The rank of A is 2 , the size of the above bases. Its nullity is 3 , the number of columns of the echelon form without leading ones (or $5-2$).
(d) Find a basis for the nullspace of A :

Ans: Solve $A \mathbf{x}=0$ using the echelon form to get $x_{1}=2 x_{2}+3 x_{4}-2 x_{5}$ and $x_{3}=-3 x_{4}-5 x_{5}$. Set each free variable in turn to 1 (with the rest equal to 0) to get the basic solutions: $\left\{\left(\begin{array}{l}2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{r}3 \\ 0 \\ -3 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{r}-2 \\ 0 \\ -5 \\ 0 \\ 1\end{array}\right)\right\}$.
5. Let T be the linear transformation from \mathbb{R}^{3} to \mathbb{R}^{2} given by $T\left(\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)\right)=\binom{2 x_{1}-3 x_{2}+x_{3}}{2 x_{1}-3 x_{3}}$. Find the matrix A that satisfies $A \mathbf{x}=T(\mathbf{x})$ for all x in \mathbb{R}^{3}.

Ans: The columns of A are the three vectors

$$
T\left(\mathbf{e}_{1}\right)=\binom{2}{2}, T\left(\mathbf{e}_{2}\right)=\binom{-3}{0}, T\left(\mathbf{e}_{3}\right)=\binom{1}{-3} \text { so, } A=\left(\begin{array}{rrr}
2 & -3 & 1 \\
2 & 0 & -3
\end{array}\right) .
$$

6. Let $\mathcal{B}=\left[\binom{2}{3},\binom{1}{2}\right]$, an ordered basis for \mathbb{R}^{2}. Let $\mathcal{C}=\left[\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right]$, an ordered basis for \mathbb{R}^{3}. Let L be the linear transformation from \mathbb{R}^{2} to \mathbb{R}^{3} defined by $L\left(\binom{x_{1}}{x_{2}}\right)=\left(\begin{array}{c}x_{1} \\ 2 x_{1}-x_{2} \\ x_{1}+x_{2}\end{array}\right)$.
Find the matrix that represents L relative to the bases \mathcal{B} and \mathcal{C}.
Ans: Apply L to the vectors in $\mathcal{B}: L\binom{2}{3}=\left(\begin{array}{l}2 \\ 1 \\ 5\end{array}\right), L\binom{1}{2}=\left(\begin{array}{l}1 \\ 0 \\ 3\end{array}\right)$, and find their coordinates relative to \mathcal{C}. I.e., solve the following two systems of equations

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
5
\end{array}\right) \quad \text { and }\left(\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
3
\end{array}\right)
$$

Both these can be solved at the same time by row reducing:

$$
\left(\begin{array}{lll|ll}
1 & 0 & 1 & 2 & 1 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 5 & 3
\end{array}\right) \text { to }\left(\begin{array}{lll|rr}
1 & 0 & 0 & -1 & -1 \\
0 & 1 & 0 & 2 & 1 \\
0 & 0 & 1 & 3 & 2
\end{array}\right)
$$

The coordinate vectors are the last two columns, and thus the representing matrix is $A=\left(\begin{array}{rr}-1 & -1 \\ 2 & 1 \\ 3 & 2\end{array}\right)$.
[Alternatively, multiply the matrix form of L by the two transition matrices (\mathcal{B} to \mathcal{E} on the right, \mathcal{E} to \mathcal{C} on the left).]

