
MATH 3083 Linear Algebra (Luecking) NAME:
(Please print clearly)

Second Exam (solutions) March 13, 2024

1. For the following sets, state whether it is a subspace of R3 (that is, answer ‘yes’ or ‘no’).
• If you answer ‘yes’, either provide a matrix whose nullspace is that set, or provide a

set of vectors whose span is that set.
• If you answer ‘no’ give an example (using vectors made of actual numbers) that

violates one of the closure requirements.

(a) The set


x1
x2
x3

 x1 ≤ 0 and x3 ≤ 0

 .

Ans: No, this contains

−1
0
0

 but not (−2)

−1
0
0

 =

 2
0
0

.

(b) The set


x1
x2
x3

 x3 = −x1 − 4x2 and x2 = 3x1

 .

Ans: Yes, this is the nullspace of

 1 4 1
3 −1 0

.

(c) The set


x1
x2
x3

 x2 = x3 and x1x2 = 0

 .

Ans: No, this contains x =

 1
0
0

 and y =

 0
1
1

 but not x + y =

 1
1
1

.

(d) The set


 α
−2α + 3β

4β

 α, β in R

 .

Ans: Yes, this is the span of


 1
−2

0

 ,

 0
3
4


.
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2. For each of the following sets of vectors in R3, answer the following with ‘yes’ or ‘no’.

(i) Does it span R3?

(ii) Is it independent?

(iii) Is it a basis for R3?

Justify your answers by reducing the appropriate matrix to echelon form.

(a)

 1
1
−3

 ,

 2
3
−1

 ,

 1
2
2


Ans: The matrix with these columns:

 1 2 1
1 3 2
−3 −1 2

, reduces to

 1 2 1
0 1 1
0 0 0

 in three

steps. Then: (i) no, (ii) no and (iii) no.

(b)

 1
1
−1

 ,

−2
−1

1

 ,

 3
1
−2


Ans: The matrix with these columns:

 1 −2 3
1 −1 1
−1 1 −2

, reduces to

 1 −2 3
0 1 −2
0 0 1

 in

four steps. Then: (i) yes, (ii) yes and (iii) yes.

(c)

 0
1
3

 ,

 3
−2
−2


Ans: The matrix with these columns:

 0 3
1 −2
3 −2

, reduces to

 1 −2
0 1
0 0

 in four steps.

Then: (i) no, (ii) yes and (iii) no.

(d)

 1
1
2

 ,

 0
−1

2

 ,

 1
2
0

 ,

 2
3
2


Ans:

 1 0 1 2
1 −1 2 3
2 2 0 2

 reduces to

 1 0 1 2
0 1 −1 −1
0 0 0 0

 in four steps.

Then (i) no, (ii) no and (iii) no.
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3. Let E =

 1
0
0

 ,

 0
1
0

 ,

 0
0
1


 be the standard basis for R3 , and let B be the

ordered basis for R3 given by B =

 1
1
0

 ,

 0
1
0

 ,

 2
3
1


 . Find the change of basis

matrix (transition matrix) from E to B .

Ans: Invert the matrix with the columns from B: row-reduce

 1 0 2 1 0 0
1 1 3 0 1 0
0 0 1 0 0 1


until the left side is the identity (four steps) and read off the transition matrix from

the right side:

 1 0 −2
−1 1 −1

0 0 1

.

4. A =


1 −2 0 −3 2
−2 4 0 6 −4
−1 2 0 3 −2

0 0 1 3 5

 has reduced echelon form:


1 −2 0 −3 2
0 0 1 3 5
0 0 0 0 0
0 0 0 0 0

.

Do the following.

(a) Write down a basis for the column space of A:

Ans: The columns of A corresponding to leading 1s:




1
−2
−1

0

 ,


0
0
0
1




(b) Write down a basis for the row space of A:

Ans: The nonzero rows of the echelon form: {( 1 −2 0 −3 2 ) , ( 0 0 1 3 5) )}

(c) Write down the rank and nullity of A:

Ans: The rank of A is 2, the size of the above bases. Its nullity is 3, the number of

columns of the echelon form without leading ones (or 5− 2).

(d) Find a basis for the nullspace of A:

Ans: Solve Ax = 0 using the echelon form to get x1 = 2x2 + 3x4 − 2x5 and

x3 = −3x4 − 5x5. Set each free variable in turn to 1 (with the rest equal to 0) to

get the basic solutions:




2
1
0
0
0

 ,


3
0
−3

1
0

 ,


−2

0
−5

0
1


.
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5. Let T be the linear transformation from R3 to R2 given by

T

x1
x2
x3


 =

 2x1 − 3x2 + x3
2x1 − 3x3

 . Find the matrix A that satisfies Ax = T (x)

for all x in R3 .

Ans: The columns of A are the three vectors

T (e1) =

 2
2

, T (e2) =

−3
0

, T (e3) =

 1
−3

 so, A =

 2 −3 1
2 0 −3

.

6. Let B =

[ 2
3

 ,

 1
2

] , an ordered basis for R2. Let C =

 1
1
0

 ,

 0
1
1

 ,

 1
0
1


 ,

an ordered basis for R3 . Let L be the linear transformation from R2 to R3 defined by

L

(x1
x2

) =

 x1
2x1 − x2
x1 + x2

 .

Find the matrix that represents L relative to the bases B and C .

Ans: Apply L to the vectors in B: L

 2
3

 =

 2
1
5

 , L

 1
2

 =

 1
0
3

, and find their

coordinates relative to C. I.e., solve the following two systems of equations 1 0 1
1 1 0
0 1 1


α1

α2

α3

 =

 2
1
5

 and

 1 0 1
1 1 0
0 1 1


 β1
β2
β3

 =

 1
0
3


Both these can be solved at the same time by row reducing: 1 0 1 2 1

1 1 0 1 0
0 1 1 5 3

 to

 1 0 0 −1 −1
0 1 0 2 1
0 0 1 3 2


The coordinate vectors are the last two columns, and thus the representing matrix

is A =

−1 −1
2 1
3 2

.

[Alternatively, multiply the matrix form of L by the two transition matrices (B to

E on the right, E to C on the left).]
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