$$
x_{1}+2 x_{2}+x_{3}-x_{4}=2
$$

1. For this system of equations: $\quad x_{1}+2 x_{2}+2 x_{3}+3 x_{4}=4$

$$
3 x_{1}+6 x_{2}+4 x_{3}+x_{4}=8
$$

(a) Write down its augmented matrix.
(b) Using only elementary row operations convert the augmented matrix to reduced echelon form. Please indicate what EROs you are performing.
(c) State which variables are leading variables. State which variables are free variables.
(d) Find all solutions of the system. Express your solutions (if any) as column vectors with parameters substituted for the free variables .

Ans:

(a) $\left(\begin{array}{rrrr|r}1 & 2 & 1 & -1 & 2 \\ 1 & 2 & 2 & 3 & 4 \\ 3 & 6 & 4 & 1 & 8\end{array}\right)$ (b) $\xrightarrow[R_{3}-3 R_{1}]{R_{2}-R_{1}}\left(\begin{array}{rrrr|r}1 & 2 & 1 & -1 & 2 \\ 0 & 0 & 1 & 4 & 2 \\ 0 & 0 & 1 & 4 & 2\end{array}\right) \xrightarrow[R_{1}-R_{2}]{R_{3}-R_{2}}\left(\begin{array}{rrrr|r}1 & 2 & 0 & -5 & 0 \\ 0 & 0 & 1 & 4 & 2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$.
(c) x_{1} and x_{3} are lead variables; x_{2} and x_{4} are free.
(d) From the reduced form: $\left.\begin{array}{rl}x_{1}+2 x_{2} & -5 x_{4}=0 \\ x_{3}+4 x_{4}=2\end{array}\right\} \rightarrow\left\{\begin{array}{l}x_{1}=-2 x_{2}+5 x_{4} \\ x_{3}=2-4 x_{4}\end{array}\right.$.

Set $x_{2}=\alpha$ and $x_{4}=\beta$, then solve for the others in terms of α and β :

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
-2 \alpha+5 \beta \\
\alpha \\
2-4 \beta \\
\beta
\end{array}\right) \text {, all } \alpha, \beta \text { in } \mathbb{R} .
$$

2. For each of the following augmented matrices, convert it to echelon form using exactly one elementary row operation, and then determine whether the corresponding system of equations has no solutions, one solution, or infinitely many solutions.
(a) $\left(\begin{array}{lll|l}1 & 2 & 3 & 1 \\ 0 & 1 & 4 & 3 \\ 2 & 4 & 7 & 3\end{array}\right) \xrightarrow{R_{3}-2 R_{1}}\left(\begin{array}{lll|l}1 & 2 & 3 & 1 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 1 & 1\end{array}\right)$
(b) $\left(\begin{array}{lll|l}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 3 \\ 1 & 3 & 4 & 4\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{3}}\left(\begin{array}{lll|l}1 & 3 & 4 & 4 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 0\end{array}\right)$
(c) $\left(\begin{array}{lll|l}1 & 3 & 5 & 7 \\ 0 & 1 & 1 & 2 \\ 0 & 2 & 2 & 5\end{array}\right) \xrightarrow{R_{3}-3 R_{2}}\left(\begin{array}{lll|l}1 & 3 & 5 & 7 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1\end{array}\right)$
(d) $\left(\begin{array}{lll|l}1 & 0 & 4 & 4 \\ 0 & 2 & 5 & 4 \\ 0 & 0 & 1 & 0\end{array}\right) \xrightarrow{(1 / 2) R_{2}}\left(\begin{array}{ccc|c}1 & 0 & 4 & 4 \\ 0 & 1 & \frac{5}{2} & 2 \\ 0 & 0 & 1 & 0\end{array}\right)$

Number of solutions: (a) one (b) infinitely many (c) none (d) one
3. For the matrices $A=\left(\begin{array}{rrr}1 & -1 & 1 \\ 2 & 1 & 2\end{array}\right), \quad B=\left(\begin{array}{ll}2 & 1 \\ 1 & 0 \\ 3 & 2\end{array}\right), \quad C=\left(\begin{array}{ll}1 & 3 \\ 1 & 2\end{array}\right) \quad$ and $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, find the following. When one is not possible, write 'not possible'.
(a) $C A+B^{T}$
(b) $B A$
(c) $C-2 A$
(d) $C^{T}+C^{2}$
(e) $A C$
(f) $B(C-I)$

Ans: (a) $\left(\begin{array}{lll}7 & 2 & 7 \\ 5 & 1 & 5\end{array}\right)+\left(\begin{array}{lll}2 & 1 & 3 \\ 1 & 0 & 2\end{array}\right)=\left(\begin{array}{rrr}9 & 3 & 10 \\ 6 & 1 & 7\end{array}\right)$
(b) $\left(\begin{array}{lll}4 & -1 & 4 \\ 1 & -1 & 1 \\ 7 & -1 & 7\end{array}\right)$
(c) not possible
(d) $\left(\begin{array}{ll}1 & 1 \\ 3 & 2\end{array}\right)+\left(\begin{array}{ll}4 & 9 \\ 3 & 7\end{array}\right)=\left(\begin{array}{rr}5 & 10 \\ 6 & 9\end{array}\right)$
(e) not possible
(f) $\left(\begin{array}{ll}2 & 1 \\ 1 & 0 \\ 3 & 1\end{array}\right)\left(\begin{array}{ll}0 & 3 \\ 1 & 1\end{array}\right)=\left(\begin{array}{rr}1 & 7 \\ 0 & 3 \\ 2 & 11\end{array}\right)$
4. For the matrix $A=\left(\begin{array}{rrr}1 & 2 & 0 \\ 1 & 3 & -2 \\ 2 & 4 & 1\end{array}\right)$, find A^{-1} using elementary row operations.

Ans: $\left(\begin{array}{rrr|rrr}1 & 2 & 0 & 1 & 0 & 0 \\ 1 & 3 & -2 & 0 & 1 & 0 \\ 2 & 4 & 1 & 0 & 0 & 1\end{array}\right) \xrightarrow[R_{3}-2 R_{1}]{R_{2}-R_{1}}\left(\begin{array}{rrr|rrr}1 & 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & -2 & -1 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & 1\end{array}\right)$

$$
\xrightarrow{R_{2}+2 R_{3}}\left(\begin{array}{lll|rrr}
1 & 2 & 0 & \begin{array}{rl}
1 & 0 \\
0 \\
0 & 1
\end{array} & 0 & -5 \\
-5 & 1 & 2 \\
0 & 0 & 1 & -1 & 0 & 1
\end{array}\right) \xrightarrow{R_{1}-2 R_{2}}\left(\begin{array}{lll|rrr}
1 & 0 & 0 & 11 & -2 & -4 \\
0 & 1 & 0 & -5 & 1 & 2 \\
0 & 0 & 1 & -2 & 0 & 1
\end{array}\right) .
$$

$$
\text { So } A^{-1}=\left(\begin{array}{rrr}
11 & -2 & -4 \\
-5 & 1 & 2 \\
-2 & 0 & 1
\end{array}\right)
$$

5. Given partitioned matrices $A=\left(A_{1} \mid A_{2}\right)$ and $B=\left(\frac{B_{1}}{B_{2}}\right)$, satisfying

$$
A_{1} B_{1}=\left(\begin{array}{rr}
4 & 0 \\
-3 & 2 \\
4 & -1
\end{array}\right) \text { and } A_{2} B_{2}=\left(\begin{array}{ll}
1 & 1 \\
2 & 3 \\
4 & 6
\end{array}\right)
$$

answer the following:
(a) How many rows does A have?

Ans: 3 , the same as the number of rows of $A_{1} B_{1}$ AND $A_{2} B_{2}$.
(b) How many columns does B have?

Ans: 2, the same as the number of columns of $A_{1} B_{1}$ and $A_{2} B_{2}$.
(c) Find $A B$.

Ans: $A B=A_{1} B_{1}+A_{2} B_{2}=\left(\begin{array}{rr}5 & 1 \\ -1 & 5 \\ 8 & 5\end{array}\right)$
6. Find the following determinants. Please produce completely simplified numerical results.
(a) $\left|\begin{array}{rrrr}9 & 5 & 7 & -8 \\ 2 & 2 & 0 & 1 \\ 2 & 2 & 0 & 1 \\ 11 & -16 & 10 & 9\end{array}\right|$
(b) $\left|\begin{array}{rrrr}4 & 7 & -12 & 2 \\ 0 & 2 & 8 & 0 \\ 5 & 2 & 9 & 3 \\ 0 & 0 & 2 & 0\end{array}\right|$
(c) $\left|\begin{array}{rrrr}2 & 3 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 1 & 1 & 3 & 1 \\ 3 & -1 & 4 & 2\end{array}\right|$

Ans: (a) Two identical rows, so the determinant is 0 .
(b) Using cofactors of the last row, then cofactors of the second row, this determinant is

$$
-2\left|\begin{array}{lll}
4 & 7 & 2 \\
0 & 2 & 0 \\
5 & 2 & 3
\end{array}\right|=-2(2)\left|\begin{array}{ll}
4 & 2 \\
5 & 3
\end{array}\right|=-4(12-10)=-8
$$

(c) This determinant equals the product of the upper-left and lower-right determinants:

$$
\left|\begin{array}{ll}
2 & 3 \\
1 & 3
\end{array}\right| \cdot\left|\begin{array}{ll}
3 & 1 \\
4 & 2
\end{array}\right|=(6-3)(6-4)=6 .
$$

