MATH 3083 Linear Algebra (Lucking)

NAME:______(Please print clearly)

First Exam (solutions)

- 1. For this system of equations: $\begin{array}{rcl}
 x_1 + 2x_2 + & x_3 - & x_4 = 2 \\
 x_1 + 2x_2 + 2x_3 + 3x_4 = 4 \\
 3x_1 + 6x_2 + 4x_3 + & x_4 = 8
 \end{array}$
 - (a) Write down its **augmented** matrix.
 - (b) Using *only* elementary row operations convert the augmented matrix to **reduced** echelon form. Please indicate what EROs you are performing.
 - (c) State which variables are leading variables. State which variables are free variables.
 - (d) Find all solutions of the system. Express your solutions (if any) as **column vectors** with parameters substituted for the free variables .

Ans:
(a)
$$\begin{pmatrix} 1 & 2 & 1 & -1 & | & 2 \\ 1 & 2 & 2 & 3 & | & 4 \\ 3 & 6 & 4 & 1 & | & 8 \end{pmatrix}$$
 (b) $\xrightarrow{R_2 - R_1}_{R_3 - 3R_1} \begin{pmatrix} 1 & 2 & 1 & -1 & | & 2 \\ 0 & 0 & 1 & 4 & | & 2 \\ 0 & 0 & 1 & 4 & | & 2 \end{pmatrix} \xrightarrow{R_3 - R_2}_{R_1 - R_2} \begin{pmatrix} 1 & 2 & 0 & -5 & | & 0 \\ 0 & 0 & 1 & 4 & | & 2 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$.

- (c) x_1 and x_3 are lead variables; x_2 and x_4 are free.
- (d) From the reduced form: $\begin{array}{c} x_1 + 2x_2 & -5x_4 = 0 \\ x_3 + 4x_4 = 2 \end{array} \longrightarrow \begin{cases} x_1 = -2x_2 + 5x_4 \\ x_3 = 2 4x_4 \end{cases}$.

Set $x_2 = \alpha$ and $x_4 = \beta$, then solve for the others in terms of α and β :

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -2\alpha + 5\beta \\ \alpha \\ 2 - 4\beta \\ \beta \end{pmatrix}, \text{ all } \alpha, \beta \text{ in } \mathbb{R}.$$

2. For each of the following augmented matrices, convert it to echelon form using *exactly* one elementary row operation, and then determine whether the corresponding system of equations has no solutions, one solution, or infinitely many solutions.

$$(a) \begin{pmatrix} 1 & 2 & 3 & | & 1 \\ 0 & 1 & 4 & | & 3 \\ 2 & 4 & 7 & | & 3 \end{pmatrix} \xrightarrow{R_3 - 2R_1} \begin{pmatrix} 1 & 2 & 3 & | & 1 \\ 0 & 1 & 4 & | & 3 \\ 0 & 0 & 1 & | & 1 \end{pmatrix} (b) \begin{pmatrix} 0 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 3 \\ 1 & 3 & 4 & | & 4 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{pmatrix} 1 & 3 & 4 & | & 4 \\ 0 & 1 & 0 & | & 3 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$
$$(c) \begin{pmatrix} 1 & 3 & 5 & | & 7 \\ 0 & 1 & 1 & | & 2 \\ 0 & 2 & 2 & | & 5 \end{pmatrix} \xrightarrow{R_3 - 3R_2} \begin{pmatrix} 1 & 3 & 5 & | & 7 \\ 0 & 1 & 1 & | & 2 \\ 0 & 0 & 0 & | & 1 \end{pmatrix} (d) \begin{pmatrix} 1 & 0 & 4 & | & 4 \\ 0 & 2 & 5 & | & 4 \\ 0 & 0 & 1 & | & 0 \end{pmatrix} \xrightarrow{(1/2)R_2} \begin{pmatrix} 1 & 0 & 4 & | & 4 \\ 0 & 1 & \frac{5}{2} & | & 2 \\ 0 & 0 & 1 & | & 0 \end{pmatrix}$$
$$Number of solutions: (a) one (b) infinitely many (c) none (d) one$$

Don't write in this box

February 14, 2024

3. For the matrices $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 1 \\ 1 & 0 \\ 3 & 2 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 3 \\ 1 & 2 \end{pmatrix}$ and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, find the following. When one is not possible, write 'not possible'. (a) $CA + B^{T}$ (b) BA (c) C - 2A(d) $C^{T} + C^{2}$ (e) AC (f) B(C - I) **Ans:** (a) $\begin{pmatrix} 7 & 2 & 7 \\ 5 & 1 & 5 \end{pmatrix} + \begin{pmatrix} 2 & 1 & 3 \\ 1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 9 & 3 & 10 \\ 6 & 1 & 7 \end{pmatrix}$ (b) $\begin{pmatrix} 4 & -1 & 4 \\ 1 & -1 & 1 \\ 7 & -1 & 7 \end{pmatrix}$ (c) not possible (d) $\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} + \begin{pmatrix} 4 & 9 \\ 3 & 7 \end{pmatrix} = \begin{pmatrix} 5 & 10 \\ 6 & 9 \end{pmatrix}$ (e) not possible (f) $\begin{pmatrix} 2 & 1 \\ 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 0 & 3 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 7 \\ 0 & 3 \\ 2 & 11 \end{pmatrix}$

4. For the matrix $A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 3 & -2 \\ 2 & 4 & 1 \end{pmatrix}$, find A^{-1} using elementary row operations. **Ans:** $\begin{pmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 1 & 3 & -2 & | & 0 & 1 & 0 \\ 2 & 4 & 1 & | & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 - R_1} \begin{pmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & -2 & | & -1 & 1 & 0 \\ 0 & 0 & 1 & | & -2 & 0 & 1 \end{pmatrix}$ $\xrightarrow{R_2 + 2R_3} \begin{pmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -5 & 1 & 2 \\ 0 & 0 & 1 & | & -5 & 1 & 2 \\ 0 & 0 & 1 & | & -2 & 0 & 1 \end{pmatrix}$ $\xrightarrow{R_2 + 2R_3} \begin{pmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -5 & 1 & 2 \\ 0 & 0 & 1 & | & -2 & 0 & 1 \end{pmatrix}$ $\xrightarrow{R_2 + 2R_3} \begin{pmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -5 & 1 & 2 \\ 0 & 0 & 1 & | & -2 & 0 & 1 \end{pmatrix}$. So $A^{-1} = \begin{pmatrix} 11 & -2 & -4 \\ -5 & 1 & 2 \\ -2 & 0 & 1 \end{pmatrix}$

> Don't write in this box

5. Given partitioned matrices $A = (A_1 | A_2)$ and $B = \left(\frac{B_1}{B_2}\right)$, satisfying

$$A_1B_1 = \begin{pmatrix} 4 & 0 \\ -3 & 2 \\ 4 & -1 \end{pmatrix} \text{ and } A_2B_2 = \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ 4 & 6 \end{pmatrix},$$

answer the following:

(a) How many rows does A have?

Ans: 3, the same as the number of rows of A_1B_1 AND A_2B_2 .

(b) How many columns does B have?

Ans: 2, the same as the number of columns of A_1B_1 and A_2B_2 .

(c) Find AB.

Ans:
$$AB = A_1B_1 + A_2B_2 = \begin{pmatrix} 5 & 1 \\ -1 & 5 \\ 8 & 5 \end{pmatrix}$$

6. Find the following determinants. Please produce completely simplified numerical results.

(a)	9	5	7	-8	(b)	4	7	-12	2			3		
	2	2	0	1		0	2	8	0		1	3	0	0
	2	2	0	1		5	2	9	3	(c)	1	1	3	1
		-16						2				-1		

Ans: (a) Two identical rows, so the determinant is 0.

- (b) Using cofactors of the last row, then cofactors of the second row, this determinant is $\begin{array}{c|c}
 -2 & 4 & 7 & 2 \\
 0 & 2 & 0 \\
 5 & 2 & 3
 \end{array} = -2(2) & 4 & 2 \\
 5 & 3
 \end{array} = -4(12 - 10) = -8.$
- (c) This determinant equals the product of the upper-left and lower-right determinants:

$$\begin{vmatrix} 2 & 3 \\ 1 & 3 \end{vmatrix} \cdot \begin{vmatrix} 3 & 1 \\ 4 & 2 \end{vmatrix} = (6-3)(6-4) = 6.$$

Don't write in this box