
The Pattern Inventory

Daniel H. Luecking
MASC

April 22, 2024

1 / 9



1 2

34

2 / 9



Group element cycle structure representation

(1)(2)(3)(4) x1x1x1x1 = x41
(13)(24) x2x2 = x22
(1)(24)(3) x1x2x1 = x21x2
(13)(2)(4) x2x1x1 = x21x2

Adding these and dividing by the size of the group gives us PG:

PG(x1, x2) =
1

4
(x41 + x22 + 2x21x2)

One thing we could do with this, which we already know how to do without it, is find
the number of distinguishable colorings. Since there is one variable in each term for
each cycle in the group element, replacing each variable by the number of colors will
give the same formula as before: number of colors raised to the number of cycles
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Thus PG(2, 2) = (24 + 22 + 2(23))/4 = 9 is the number of distinguishable colorings
when there are 2 colors.

And PG(3, 3) = (34 + 32 + 2(33))/4 = 36 is the number of
distinguishable colorings when there are 3 colors. If the 2 colors are red and white and
we make the following substitutions:

• x1 = r + w.

• x2 = r2 + w2.

• x3 = r3 + w3, etc.

we get an expression from which we can draw several conclusions.

For our current example:

PG(r + w, r2 + w2) =
(r + w)4 + (r2 + w2)2 + 2(r + w)2(r2 + w2)

4
= r4 + 2r3w + 3r2w2 + 2rw3 + w4,

This is called the pattern inventory .
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From the previous slide:

PG(r + w, r2 + w2) = r4 + 2r3w + 3r2w2 + 2rw3 + w4,

The term 3r2w2 tells us there are 3 distinguishable colorings in which 2 vertices are red
and 2 are white.

And the term 2rw3 says there are 2 distinguishable colorings with 1
red and 3 white vertices.

By combining terms we can answer questions like the following:

1. How many distinguishable colorings use both colors? Add the coefficients of
2r3w + 3r2w2 + 2rw3: 7

2. How many distinguishable colorings have at least 2 white vertices? Add the
coefficients of 3r2w2 + 2rw3 + w4: 6

3. How many distinguishable colorings have an odd number of white vertices? Add
the coefficients of 2r3w1 + 2rw3: 4

If there are three colors such as red, white and blue, we would substitute
x1 = r + w + b, x2 = r2 + w2 + b2, etc.
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For our current group:

PG(r + b+ w, r2 + b2 + w2) = r4 + w4 + b4 + 2r3w + 2r3b+ 2w3r + 2w3b

+ 2b3r + 2b3w + 3r2w2 + 3r2b2 + 3w2b2 + 4rwb2 + 4rbw2 + 4wbr2

We can see from the last term (for example) there are 4 distinguishable ways to color
the vertices where 2 are red, one white and one blue.

We can also answer other questions like before:

1. How many distinguishable colorings have an odd number of white vertices? Add
the coefficients of 2r3w + 2r3b+ 2w3r + 2b3r + 4rwb2 + 4wbr2: 16

2. How many distinguishable colorings have at least 2 white vertices? Add the
coefficients of w4 + 2w3r + 2w3b+ 3r2w2 + 3w2b2 + 4rbw2: 15.

3. How many distinguishable colorings have two white vertices? Add the coefficients
of 3r2w2 + 3w2b2 + 4rbw2: 10.
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Three dimensional figures. The regular tetrahedron has 4 vertices, 6 edges, and 4
triangular faces.

There are congruence of the tetrahedron that are not physically
possible for a solid figure. For example, if we hold 2 corners in place and try to
exchange the other two corners, that is impossible.

In fact, all rotations are possible, no reflections are possible even though there are
planes of symmetry.

[However, if we build it with balls at the 4 vertices and wires connecting them that can
bend and twist a bit, then all permutations are possible.]
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Assuming only rotations are possible, the possible motions written as permutations of
the vertices are

• The identity: (1)(2)(3)(4).

• Rotate about a line through one vertex and the middle of the opposite face:
(1)(234), (1)(243), (2)(134), (2)(143), (3)(124), (3)(142), (4)(123), (4)(132)

• Rotate about a line connecting midpoints of opposite edges:
(12)(34), (13)(24), (14)(23)

The cycle index polynomial is

1

12
(x41 + 8x1x3 + 3x22)

And the number of distinguishable colorings of the vertices with 2 colors is
(24 + 8 · 22 + 3 · 22)/12 = 5. With 3 colors it is (34 + 8 · 32 + 3 · 32)/12 = 15.
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Coloring other parts of a figure. We could consider coloring the sides of a square. The
calculations don’t change once we have the group.

But now we need to label the sides
of the figure and write our group as permutations of the sides. If we number the sides
of the square clockwise with 1 on the top side, then rotations look the same. On the
other hand the left-to-right reflection exchanges only sides 2 and 4, leaving 1 and 3
where they are: (1)(24)(3). However, in the end the group is the same and so the
number of distinguishable colorings of the sides with two colors is the same as the
number of distinguishable colorings of the vertices, namely 6.

However, for nonregular figures this can change. Take the rectangle, the permutations
of the sides looks like

G = {(1)(2)(3)(4), (13)(24), (13)(2)(4), (1)(3)(24)}

And so the number of distinguishable colorings of the sides with two colors is
(24 + 22 + 23 + 23)/4 = 9. Whereas for colorings of the vertices it was 7.
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number of distinguishable colorings of the vertices, namely 6.

However, for nonregular figures this can change. Take the rectangle, the permutations
of the sides looks like

G = {(1)(2)(3)(4), (13)(24), (13)(2)(4), (1)(3)(24)}

And so the number of distinguishable colorings of the sides with two colors is
(24 + 22 + 23 + 23)/4 = 9. Whereas for colorings of the vertices it was 7.
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