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The cycle index polynomial

We’ve seen several examples where the cycle structure of the group of rigid motions of
a figure allow us to determine the number of distinguishable colorings.

But so far we’ve only used the number of cycles in each permutation.

And we’ve only answered one question: How many distinguishable colorings are there?

If we use more details of the cycles, we can answer questions such as: How many
distinguishable colorings are there in which 2 vertices are blue.

For this we also need to keep track of the length of each cycle. We keep track of this
with another sort of generating function.
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Let’s work on the group for the equilateral triangle. For each element of the group let’s
substitute the variable x1 for each 1-cycle (cycle of length 1), x2 for each 2-cycle
(cycle of length 2), x3 for each 3-cycle, etc.:

G : (1)(2)(3) (123) (132) (1)(23) (2)(13) (3)(12)
x1x1x1 x3 x3 x1x2 x1x2 x1x2

Then we add these all up, collect like terms and divide by the order of the group:

PG(x1, x2, x3) =
1

6
(x31 + 2x3 + 3x1x2)

This is called the cycle index polynomial for the group G.

On the next slide we do this for the rectangle’s group.
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G : (1)(2)(3)(4) (13)(24) (12)(34) (14)(23)
x1x1x1x1 x2x2 x2x2 x2x2

For this group,

PG(x1, x2, x3, x4) =
1

4
(x41 + 3x22)

Here are the computations for the group of the square: G = {(1)(2)(3)(4), (1234),
(13)(24), (1432), (12)(34), (14)(23), (1)(24)(3), (2)(13)(4)}

PG(x1, x2, x3, x4) =
1

8
(x41 + 3x22 + 2x4 + 2x21x2)
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If we have the group, we don’t need to know the figure:

here is the group of rigid
motions of a figure with 5 vertices: G = {(1)(2)(3)(4)(5), (12)(345),
(1)(2)(354), (12)(3)(4)(5), (1)(2)(345), (12)(354)} Then

PG(x1, x2, x3, x4, x5) =
1

6
(x51 + 2x2x3 + 2x21x3 + x31x2)

Once we have the cycle index polynomial we can get the answer to a number of
combinatorial problems.

If there are k colors to choose from, the number of distinguishable colorings is
PG(k, k, k, . . . ). That is, just substitute the number of colors for each variable. For the
rectangle with 2 colors we have PG(x1, x2, x3, x4) = (x41 + 3x22)/4 so,

PG(2, 2, 2, 2) =
1

4
(24 + 3 · 22) = 28

4
= 7.

as we already knew.
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If that were all we could do with it, it wouldn’t be much use because we already know
how to get that.

But the following calculations give us more information: Let’s say we
have colors red and white to color the vertices of a figure. If we take PG and
substitute: x1 = r + w, x2 = r2 + w2, x3 = r3 + w3, etc., we get a bunch of terms
that are all products of powers of r and w. Here is what we get for the rectangle,
where PG(x1, x2, x3, x4) = (x41 + 3x22)/4:

PG(r + w, r2 + w2, r3 + w3, r4 + w4) =
1

4
[(r + w)4 + 3(r2 + w2)2]

= r4 + r3w + 3r2w2 + rw3 + w4

The number in front of each term tells us how many distinguishable colorings have
that combination of colors: there is only one that uses 4 red, or 3 red and 1 white, or 3
white and 1 red, or 4 white. But there are 3 distinguishable colorings that use 2 red
and 2 white.
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Let’s go over again the process for creating the cycle index polynomial for the group of
rigid motions of a figure.

Lets work with another example, a square with one diagonal:

1 2

34

Its group consists of an identity (all vertices unmoved) which has disjoint cycle form
(1)(2)(3)(4). It has 180◦ rotation symmetry (opposite vertices are exchanged):
(13)(24). The given diagonal is a line of symmetry, so we can reflect through it
(vertices 2 and 4 only are exchanged): (1)(24)(3). The other diagonal is also a line of
symmetry (vertices 1 and 3 only are exchanged): (13)(2)(4). The complete group is

G = {(1)(2)(3)(4), (13)(24), (1)(24)(3), (13)(2)(4)}
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For each element of the group we write it cycle structure representation:

Group element cycle structure representation

(1)(2)(3)(4) x1x1x1x1 = x41
(13)(24) x2x2 = x22
(1)(24)(3) x1x2x1 = x21x2
(13)(2)(4) x2x1x1 = x21x2

Adding these and dividing by the size of the group gives us PG:

PG(x1, x2) =
1

4
(x41 + x22 + 2x21x2)

We can get the number of distinguishable colorings by substituting the number of
colors for each variable. Since there is one variable in each term for each cycle in the
group element, replacing each variable by the number of colors will give the same
formula as before: number of colors raised to the number of cycles

8 / 1
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Adding these and dividing by the size of the group gives us PG:

PG(x1, x2) =
1

4
(x41 + x22 + 2x21x2)

We can get the number of distinguishable colorings by substituting the number of
colors for each variable. Since there is one variable in each term for each cycle in the
group element, replacing each variable by the number of colors will give the same
formula as before: number of colors raised to the number of cycles
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Thus PG(2, 2) = (24 + 22 + 2(23))/4 = 9 is the number of distinguishable colorings
when there are 2 colors.

And PG(3, 3) = (34 + 32 + 2(33))/4 = 36 is the number of
distinguishable colorings when there are 3 colors.

If the 2 colors are red and white and we make the following substitutions:

• x1 = r + w.

• x2 = r2 + w2.

• x3 = r3 + w3, etc.

we get an expression from which we can draw several conclusions.

For our current example:

PG(r + w, r2 + w2) =
(r + w)4 + (r2 + w2)2 + 2(r + w)2(r2 + w2)

4
= r4 + 2r3w + 3r2w2 + 2rw3 + w4,
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The term 3r2w2 tells us there are 3 distinguishable colorings in which 2 vertices are red
and 2 are white.

And the term 2rw3 says there are 2 distinguishable colorings with 1
red and 3 white vertices. It is difficult to explain why this works. I refer you to the
textbook if you are sufficiently curious.

Here are the three that use 2 red and 2 white

If there are three colors such as red, white and blue, we would substitute
x1 = r + w + b, x2 = r2 + w2 + b2, etc. The calculations become considerably more
lengthy and this substitution for our small group is already seriously long. However,
symbolic math software (such as Mathematica® or Maple®) can do it rapidly.
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Without showing any details, for our current group:

PG(r + b+ w, r2 + b2 + w2) = r4 + w4 + b4 + 2r3w + 2r3b+ 2w3r + 2w3b

+ 2b3r + 2b3w + 3r2w2 + 3r2b2 + 3w2b2 + 4rwb2 + 4rbw2 + 4wbr2

(I did this by hand . . . I don’t recommend doing that.) We can see from the last term
(for example) there are 4 distinguishable ways to color the vertices where 2 are red,
one white and one blue. Here they are:
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