Correcting Errors

Daniel H. Luecking

April 12, 2024

This is the generator matrix for a group code:

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & | & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & | & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & | & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & | & 1 & 0 & 1 \end{pmatrix}$$

This is the generator matrix for a group code:

(a) Write down the corresponding parity check matrix H:

This is the generator matrix for a group code:

(a) Write down the corresponding parity check matrix H:

(b) For each of the received words $r = (0110\ 010)$, $s = (0111\ 000)$ and $t = (1001\ 110)$: assume there is at most one error and use H to correct it where necessary (or explain why it cannot be corrected).

Compute $Hr^{tr} = (111)^{tr}$.

Compute $Hr^{tr} = (111)^{tr}$. This is the 1st column of H so there is an error in the 1st position.

Compute $Hs^{tr} = (000)^{tr}$.

Compute $Hs^{tr} = (000)^{tr}$. This is the indicator that s has no errors: s = (0111000) is the original code word.

Compute $Hs^{tr} = (000)^{tr}$. This is the indicator that s has no errors: s = (0111000) is the original code word.

Compute $Ht^{tr} = (100)^{tr}$.

Compute $Hs^{tr} = (000)^{tr}$. This is the indicator that s has no errors: s = (0111000) is the original code word.

Compute $Ht^{tr} = (100)^{tr}$. This is the 5th column of H so there is an error in the 5th position.

Compute $Hs^{tr} = (000)^{tr}$. This is the indicator that s has no errors: s = (0111000) is the original code word.

Compute $Ht^{tr} = (100)^{tr}$. This is the 5th column of H so there is an error in the 5th position. We correct it: $t \mapsto (1001\,010)$.

Compute $Hs^{tr} = (000)^{tr}$. This is the indicator that s has no errors: s = (0111000) is the original code word.

Compute $Ht^{tr} = (100)^{tr}$. This is the 5th column of H so there is an error in the 5th position. We correct it: $t \mapsto (1001\,010)$.

(c) Write down the original messages that r, s and t were meant to send.

Compute $Hs^{tr} = (000)^{tr}$. This is the indicator that s has no errors: s = (0111000) is the original code word.

Compute $Ht^{tr} = (100)^{tr}$. This is the 5th column of H so there is an error in the 5th position. We correct it: $t \mapsto (1001\,010)$.

(c) Write down the original messages that r, s and t were meant to send.

Strip off the 3 added parity bits from the correct code words:

Compute $Hs^{tr} = (000)^{tr}$. This is the indicator that s has no errors: s = (0111000) is the original code word.

Compute $Ht^{tr} = (100)^{tr}$. This is the 5th column of H so there is an error in the 5th position. We correct it: $t \mapsto (1001\,010)$.

(c) Write down the original messages that r, s and t were meant to send.

Strip off the 3 added parity bits from the correct code words: For r: (1110). For s: (0111). For t: (1001).

We start with a generator matrix. Here is the one we will be working with in this example:

$$G = \left(\begin{array}{ccccccccccccc} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \end{array}\right)$$

We start with a generator matrix. Here is the one we will be working with in this example:

$$G = \left(\begin{array}{ccccccccccccc} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \end{array}\right)$$

This encodes 5-bit messages (elements from \mathbb{Z}_2^5) as 9-bit codewords.

We start with a generator matrix. Here is the one we will be working with in this example:

$$G = \left(\begin{array}{ccccccccccccc} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \end{array}\right)$$

This encodes 5-bit messages (elements from \mathbb{Z}_2^5) as 9-bit codewords.

For example to encode the messages w = (01100) and v = (01011) we multiply

 $wG = (01100\,0101)$ and $vG = (01011\,1001)$

For checking and correcting received words, we need the parity-check matrix H.

For checking and correcting received words, we need the parity-check matrix H. This is obtained by first transposing the right side of G:

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} \implies A^{\mathrm{tr}} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

For checking and correcting received words, we need the parity-check matrix H. This is obtained by first transposing the right side of G:

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} \implies A^{\mathrm{tr}} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

and then appending an identity matrix to the right of A^{tr} :

$$H = \left(\begin{array}{cccc|c} 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{array}\right)$$

Now the code words we send can be processed. We'll do this with the following words that might be received at the destination.

```
r = (01010\ 0011), s = (11000\ 1001) and t = (00011\ 1000)
```

Now the code words we send can be processed. We'll do this with the following words that might be received at the destination.

$$r = (01010\ 0011), s = (11000\ 1001)$$
 and $t = (00011\ 1000)$

To process r we compute Hr^{tr} . This will equal the sum of columns 2, 4, 8 and 9 of H:

$$Hr^{\rm tr} = \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix} + \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} + \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} + \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}$$

Now the code words we send can be processed. We'll do this with the following words that might be received at the destination.

$$r = (01010\ 0011), s = (11000\ 1001)$$
 and $t = (00011\ 1000)$

To process r we compute Hr^{tr} . This will equal the sum of columns 2, 4, 8 and 9 of H:

$$Hr^{\rm tr} = \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix} + \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} + \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} + \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\0\\0 \end{pmatrix}$$

This shows that r is a valid code word and the message being sent is (01010), obtained by dropping the last 4 bits appended by the encoding step.

To process $s = (11000\,1001)$ we compute Hs^{tr} . This will equal the sum of columns 1, 2, 6 and 9 of H:

$$Hs^{\text{tr}} = \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} + \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix} + \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} + \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}$$

To process $s = (11000\,1001)$ we compute Hs^{tr} . This will equal the sum of columns 1, 2, 6 and 9 of H:

$$Hs^{\rm tr} = \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} + \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix} + \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} + \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}$$

This shows that s is not a valid code word.

To process $s = (11000\ 1001)$ we compute Hs^{tr} . This will equal the sum of columns 1, 2, 6 and 9 of H:

$$Hs^{\rm tr} = \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} + \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix} + \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} + \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}$$

This shows that s is not a valid code word. Since the product is the third column of H we deduce (assuming there is at most one error) that the error is in position 3.

To process $s = (11000\ 1001)$ we compute Hs^{tr} . This will equal the sum of columns 1, 2, 6 and 9 of H:

$$Hs^{\rm tr} = \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} + \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix} + \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} + \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}$$

This shows that s is not a valid code word. Since the product is the third column of H we deduce (assuming there is at most one error) that the error is in position 3. Changing the 0 in that position to a 1 we get a valid code word: $(11100\ 1001)$.

Finally, we get the original message by removing the last 4 bits from the corrected word: $\left(11100\right)$

$$Ht^{\rm tr} = \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} + \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix} + \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} = \begin{pmatrix} 0\\1\\1\\1 \end{pmatrix}$$

$$Ht^{\rm tr} = \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} + \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix} + \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} = \begin{pmatrix} 0\\1\\1\\1 \end{pmatrix}$$

This shows that t is not a valid code word.

$$Ht^{\rm tr} = \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} + \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix} + \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} = \begin{pmatrix} 0\\1\\1\\1 \end{pmatrix}$$

This shows that t is not a valid code word. Since the product is not any of the columns of H we deduce that t does not have distance 1 from any code word. That is, there must have been errors in more than 1 bit.

$$Ht^{\rm tr} = \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} + \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix} + \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} = \begin{pmatrix} 0\\1\\1\\1 \end{pmatrix}$$

This shows that t is not a valid code word. Since the product is not any of the columns of H we deduce that t does not have distance 1 from any code word. That is, there must have been errors in more than 1 bit.

Producing the original message would be nothing more than a guess.