Correcting Errors

Daniel H. Luecking

April 12, 2024

This is the generator matrix for a group code:

$$
G=\left(\begin{array}{cccc|ccc}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right)
$$

This is the generator matrix for a group code:

$$
G=\left(\begin{array}{cccc|ccc}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right)
$$

(a) Write down the corresponding parity check matrix H :

$$
H=\left(\begin{array}{llll|lll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

This is the generator matrix for a group code:

$$
G=\left(\begin{array}{llll|lll}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right)
$$

(a) Write down the corresponding parity check matrix H :

$$
H=\left(\begin{array}{llll|lll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

(b) For each of the received words $r=(0110010), s=(0111000)$ and $t=(1001110)$: assume there is at most one error and use H to correct it where necessary (or explain why it cannot be corrected).

Compute $H r^{\text {tr }}=(111)^{\text {tr }}$.

Compute $H r^{\text {tr }}=(111)^{\text {tr }}$. This is the 1st column of H so there is an error in the 1st position.

Compute $H r^{\text {tr }}=(111)^{\text {tr }}$. This is the 1st column of H so there is an error in the 1st position. We correct it: $r \mapsto(1110010)$.

Compute $H r^{\text {tr }}=(111)^{\text {tr }}$. This is the 1st column of H so there is an error in the 1st position. We correct it: $r \mapsto(1110010)$.

Compute $H s^{\text {tr }}=(000)^{\text {tr }}$.

Compute $H r^{\text {tr }}=(111)^{\text {tr }}$. This is the 1st column of H so there is an error in the 1st position. We correct it: $r \mapsto(1110010)$.

Compute $H s^{\operatorname{tr}}=(000)^{\mathrm{tr}}$. This is the indicator that s has no errors: $s=(0111000)$ is the original code word.

Compute $H r^{\mathrm{tr}}=(111)^{\mathrm{tr}}$. This is the 1 st column of H so there is an error in the 1st position. We correct it: $r \mapsto(1110010)$.

Compute $H s^{\operatorname{tr}}=(000)^{\mathrm{tr}}$. This is the indicator that s has no errors: $s=(0111000)$ is the original code word.

Compute $H t^{\mathrm{tr}}=(100)^{\mathrm{tr}}$.

Compute $H r^{\mathrm{tr}}=(111)^{\mathrm{tr}}$. This is the 1 st column of H so there is an error in the 1st position. We correct it: $r \mapsto(1110010)$.

Compute $H s^{\operatorname{tr}}=(000)^{\mathrm{tr}}$. This is the indicator that s has no errors: $s=(0111000)$ is the original code word.

Compute $H t^{\operatorname{tr}}=(100)^{\operatorname{tr}}$. This is the 5th column of H so there is an error in the 5th position.

Compute $H r^{\mathrm{tr}}=(111)^{\mathrm{tr}}$. This is the 1 st column of H so there is an error in the 1st position. We correct it: $r \mapsto(1110010)$.

Compute $H s^{\operatorname{tr}}=(000)^{\mathrm{tr}}$. This is the indicator that s has no errors: $s=(0111000)$ is the original code word.

Compute $H t^{\operatorname{tr}}=(100)^{\operatorname{tr}}$. This is the 5th column of H so there is an error in the 5th position. We correct it: $t \mapsto(1001010)$.

Compute $H r^{\text {tr }}=(111)^{\text {tr }}$. This is the 1 st column of H so there is an error in the 1st position. We correct it: $r \mapsto(1110010)$.

Compute $H s^{\operatorname{tr}}=(000)^{\mathrm{tr}}$. This is the indicator that s has no errors: $s=(0111000)$ is the original code word.

Compute $H t^{\operatorname{tr}}=(100)^{\operatorname{tr}}$. This is the 5th column of H so there is an error in the 5th position. We correct it: $t \mapsto(1001010)$.
(c) Write down the original messages that r, s and t were meant to send.

Compute $H r^{\text {tr }}=(111)^{\text {tr }}$. This is the 1 st column of H so there is an error in the 1st position. We correct it: $r \mapsto(1110010)$.

Compute $H s^{\operatorname{tr}}=(000)^{\mathrm{tr}}$. This is the indicator that s has no errors: $s=(0111000)$ is the original code word.

Compute $H t^{\text {tr }}=(100)^{\operatorname{tr}}$. This is the 5th column of H so there is an error in the 5th position. We correct it: $t \mapsto(1001010)$.
(c) Write down the original messages that r, s and t were meant to send.

Strip off the 3 added parity bits from the correct code words:

Compute $H r^{\text {tr }}=(111)^{\text {tr }}$. This is the 1 st column of H so there is an error in the 1st position. We correct it: $r \mapsto(1110010)$.

Compute $H s^{\operatorname{tr}}=(000)^{\mathrm{tr}}$. This is the indicator that s has no errors: $s=(0111000)$ is the original code word.

Compute $H t^{\text {tr }}=(100)^{\text {tr }}$. This is the 5th column of H so there is an error in the 5th position. We correct it: $t \mapsto(1001010)$.
(c) Write down the original messages that r, s and t were meant to send.

Strip off the 3 added parity bits from the correct code words: For r : (1110). For s : (0111). For t : (1001).

Another example: the whole workflow, start to finish.

Another example: the whole workflow, start to finish.
We start with a generator matrix. Here is the one we will be working with in this example:

$$
G=\left(\begin{array}{lllll|llll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}\right)
$$

Another example: the whole workflow, start to finish.
We start with a generator matrix. Here is the one we will be working with in this example:

$$
G=\left(\begin{array}{lllll|llll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}\right)
$$

This encodes 5-bit messages (elements from \mathbb{Z}_{2}^{5}) as 9-bit codewords.

Another example: the whole workflow, start to finish.
We start with a generator matrix. Here is the one we will be working with in this example:

$$
G=\left(\begin{array}{lllll|llll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}\right)
$$

This encodes 5-bit messages (elements from \mathbb{Z}_{2}^{5}) as 9-bit codewords.
For example to encode the messages $w=(01100)$ and $v=(01011)$ we multiply

$$
w G=(011000101) \text { and } v G=(010111001)
$$

For checking and correcting received words, we need the parity-check matrix H.

For checking and correcting received words, we need the parity-check matrix H. This is obtained by first transposing the right side of G :

$$
A=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right) \Longrightarrow A^{\operatorname{tr}}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

For checking and correcting received words, we need the parity-check matrix H. This is obtained by first transposing the right side of G :

$$
A=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right) \Longrightarrow A^{\operatorname{tr}}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

and then appending an identity matrix to the right of $A^{\text {tr }}$:

$$
H=\left(\begin{array}{lllll|llll}
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Now the code words we send can be processed. We'll do this with the following words that might be received at the destination.
$r=(010100011), s=(110001001)$ and $t=(000111000)$

Now the code words we send can be processed. We'll do this with the following words that might be received at the destination.
$r=(010100011), s=(110001001)$ and $t=(00011$ 1000 $)$
To process r we compute $H r^{\text {tr }}$. This will equal the sum of columns 2, 4, 8 and 9 of H :

$$
H r^{\operatorname{tr}}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Now the code words we send can be processed. We'll do this with the following words that might be received at the destination.
$r=(010100011), s=(110001001)$ and $t=(000111000)$
To process r we compute $H r^{\text {tr }}$. This will equal the sum of columns 2, 4, 8 and 9 of H :

$$
H r^{\mathrm{tr}}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

This shows that r is a valid code word and the message being sent is (01010), obtained by dropping the last 4 bits appended by the encoding step.

To process $s=(110001001)$ we compute $H s^{\operatorname{tr}}$. This will equal the sum of columns 1 , 2, 6 and 9 of H :

$$
H s^{\operatorname{tr}}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right)
$$

To process $s=(110001001)$ we compute $H s^{\text {tr }}$. This will equal the sum of columns 1 , 2, 6 and 9 of H :

$$
H s^{\operatorname{tr}}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right)
$$

This shows that s is not a valid code word.

To process $s=(110001001)$ we compute $H s^{\text {tr }}$. This will equal the sum of columns 1 , 2, 6 and 9 of H :

$$
H s^{\operatorname{tr}}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right)
$$

This shows that s is not a valid code word. Since the product is the third column of H we deduce (assuming there is at most one error) that the error is in position 3.

To process $s=(110001001)$ we compute $H s^{\text {tr }}$. This will equal the sum of columns 1 , 2, 6 and 9 of H :

$$
H s^{\operatorname{tr}}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right)
$$

This shows that s is not a valid code word. Since the product is the third column of H we deduce (assuming there is at most one error) that the error is in position 3. Changing the 0 in that position to a 1 we get a valid code word: (11100 1001).

Finally, we get the original message by removing the last 4 bits from the corrected word: (11100)

To process $t=(000111000)$ we compute $H t^{\text {tr }}$. This will equal the sum of columns 4 , 5 and 6 of H :

$$
H t^{\operatorname{tr}}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right)
$$

To process $t=(000111000)$ we compute $H t^{\text {tr }}$. This will equal the sum of columns 4 , 5 and 6 of H :

$$
H t^{\operatorname{tr}}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right)
$$

This shows that t is not a valid code word.

To process $t=(000111000)$ we compute $H t^{\text {tr }}$. This will equal the sum of columns 4 , 5 and 6 of H :

$$
H t^{\operatorname{tr}}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right)
$$

This shows that t is not a valid code word. Since the product is not any of the columns of H we deduce that t does not have distance 1 from any code word. That is, there must have been errors in more than 1 bit.

To process $t=(000111000)$ we compute $H t^{\text {tr }}$. This will equal the sum of columns 4 , 5 and 6 of H :

$$
H t^{\operatorname{tr}}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right)
$$

This shows that t is not a valid code word. Since the product is not any of the columns of H we deduce that t does not have distance 1 from any code word. That is, there must have been errors in more than 1 bit.

Producing the original message would be nothing more than a guess.

