
Correcting Errors

Daniel H. Luecking

April 12, 2024

1 / 8



This is the generator matrix for a group code:

G =


1 0 0 0 1 1 1
0 1 0 0 0 1 1
0 0 1 0 1 1 0
0 0 0 1 1 0 1



(a) Write down the corresponding parity check matrix H:

H =

 1 0 1 1 1 0 0
1 1 1 0 0 1 0
1 1 0 1 0 0 1


(b) For each of the received words r = (0110 010), s = (0111 000) and t = (1001 110):
assume there is at most one error and use H to correct it where necessary (or explain
why it cannot be corrected).

2 / 8



This is the generator matrix for a group code:

G =


1 0 0 0 1 1 1
0 1 0 0 0 1 1
0 0 1 0 1 1 0
0 0 0 1 1 0 1


(a) Write down the corresponding parity check matrix H:

H =

 1 0 1 1 1 0 0
1 1 1 0 0 1 0
1 1 0 1 0 0 1



(b) For each of the received words r = (0110 010), s = (0111 000) and t = (1001 110):
assume there is at most one error and use H to correct it where necessary (or explain
why it cannot be corrected).

2 / 8



This is the generator matrix for a group code:

G =


1 0 0 0 1 1 1
0 1 0 0 0 1 1
0 0 1 0 1 1 0
0 0 0 1 1 0 1


(a) Write down the corresponding parity check matrix H:

H =

 1 0 1 1 1 0 0
1 1 1 0 0 1 0
1 1 0 1 0 0 1


(b) For each of the received words r = (0110 010), s = (0111 000) and t = (1001 110):
assume there is at most one error and use H to correct it where necessary (or explain
why it cannot be corrected).

2 / 8



Compute Hrtr = (111)tr.

This is the 1st column of H so there is an error in the 1st
position. We correct it: r 7→ (1110 010).

Compute Hstr = (000)tr. This is the indicator that s has no errors: s = (0111 000) is
the original code word.

Compute Httr = (100)tr. This is the 5th column of H so there is an error in the 5th
position. We correct it: t 7→ (1001 010).

(c) Write down the original messages that r, s and t were meant to send.

Strip off the 3 added parity bits from the correct code words: For r: (1110). For s:
(0111). For t: (1001).

3 / 8



Compute Hrtr = (111)tr. This is the 1st column of H so there is an error in the 1st
position.

We correct it: r 7→ (1110 010).

Compute Hstr = (000)tr. This is the indicator that s has no errors: s = (0111 000) is
the original code word.

Compute Httr = (100)tr. This is the 5th column of H so there is an error in the 5th
position. We correct it: t 7→ (1001 010).

(c) Write down the original messages that r, s and t were meant to send.

Strip off the 3 added parity bits from the correct code words: For r: (1110). For s:
(0111). For t: (1001).

3 / 8



Compute Hrtr = (111)tr. This is the 1st column of H so there is an error in the 1st
position. We correct it: r 7→ (1110 010).

Compute Hstr = (000)tr. This is the indicator that s has no errors: s = (0111 000) is
the original code word.

Compute Httr = (100)tr. This is the 5th column of H so there is an error in the 5th
position. We correct it: t 7→ (1001 010).

(c) Write down the original messages that r, s and t were meant to send.

Strip off the 3 added parity bits from the correct code words: For r: (1110). For s:
(0111). For t: (1001).

3 / 8



Compute Hrtr = (111)tr. This is the 1st column of H so there is an error in the 1st
position. We correct it: r 7→ (1110 010).

Compute Hstr = (000)tr.

This is the indicator that s has no errors: s = (0111 000) is
the original code word.

Compute Httr = (100)tr. This is the 5th column of H so there is an error in the 5th
position. We correct it: t 7→ (1001 010).

(c) Write down the original messages that r, s and t were meant to send.

Strip off the 3 added parity bits from the correct code words: For r: (1110). For s:
(0111). For t: (1001).

3 / 8



Compute Hrtr = (111)tr. This is the 1st column of H so there is an error in the 1st
position. We correct it: r 7→ (1110 010).

Compute Hstr = (000)tr. This is the indicator that s has no errors: s = (0111 000) is
the original code word.

Compute Httr = (100)tr. This is the 5th column of H so there is an error in the 5th
position. We correct it: t 7→ (1001 010).

(c) Write down the original messages that r, s and t were meant to send.

Strip off the 3 added parity bits from the correct code words: For r: (1110). For s:
(0111). For t: (1001).

3 / 8



Compute Hrtr = (111)tr. This is the 1st column of H so there is an error in the 1st
position. We correct it: r 7→ (1110 010).

Compute Hstr = (000)tr. This is the indicator that s has no errors: s = (0111 000) is
the original code word.

Compute Httr = (100)tr.

This is the 5th column of H so there is an error in the 5th
position. We correct it: t 7→ (1001 010).

(c) Write down the original messages that r, s and t were meant to send.

Strip off the 3 added parity bits from the correct code words: For r: (1110). For s:
(0111). For t: (1001).

3 / 8



Compute Hrtr = (111)tr. This is the 1st column of H so there is an error in the 1st
position. We correct it: r 7→ (1110 010).

Compute Hstr = (000)tr. This is the indicator that s has no errors: s = (0111 000) is
the original code word.

Compute Httr = (100)tr. This is the 5th column of H so there is an error in the 5th
position.

We correct it: t 7→ (1001 010).

(c) Write down the original messages that r, s and t were meant to send.

Strip off the 3 added parity bits from the correct code words: For r: (1110). For s:
(0111). For t: (1001).

3 / 8



Compute Hrtr = (111)tr. This is the 1st column of H so there is an error in the 1st
position. We correct it: r 7→ (1110 010).

Compute Hstr = (000)tr. This is the indicator that s has no errors: s = (0111 000) is
the original code word.

Compute Httr = (100)tr. This is the 5th column of H so there is an error in the 5th
position. We correct it: t 7→ (1001 010).

(c) Write down the original messages that r, s and t were meant to send.

Strip off the 3 added parity bits from the correct code words: For r: (1110). For s:
(0111). For t: (1001).

3 / 8



Compute Hrtr = (111)tr. This is the 1st column of H so there is an error in the 1st
position. We correct it: r 7→ (1110 010).

Compute Hstr = (000)tr. This is the indicator that s has no errors: s = (0111 000) is
the original code word.

Compute Httr = (100)tr. This is the 5th column of H so there is an error in the 5th
position. We correct it: t 7→ (1001 010).

(c) Write down the original messages that r, s and t were meant to send.

Strip off the 3 added parity bits from the correct code words: For r: (1110). For s:
(0111). For t: (1001).

3 / 8



Compute Hrtr = (111)tr. This is the 1st column of H so there is an error in the 1st
position. We correct it: r 7→ (1110 010).

Compute Hstr = (000)tr. This is the indicator that s has no errors: s = (0111 000) is
the original code word.

Compute Httr = (100)tr. This is the 5th column of H so there is an error in the 5th
position. We correct it: t 7→ (1001 010).

(c) Write down the original messages that r, s and t were meant to send.

Strip off the 3 added parity bits from the correct code words:

For r: (1110). For s:
(0111). For t: (1001).

3 / 8



Compute Hrtr = (111)tr. This is the 1st column of H so there is an error in the 1st
position. We correct it: r 7→ (1110 010).

Compute Hstr = (000)tr. This is the indicator that s has no errors: s = (0111 000) is
the original code word.

Compute Httr = (100)tr. This is the 5th column of H so there is an error in the 5th
position. We correct it: t 7→ (1001 010).

(c) Write down the original messages that r, s and t were meant to send.

Strip off the 3 added parity bits from the correct code words: For r: (1110). For s:
(0111). For t: (1001).

3 / 8



Another example: the whole workflow, start to finish.

We start with a generator matrix. Here is the one we will be working with in this
example:

G =


1 0 0 0 0 1 1 0 0
0 1 0 0 0 0 1 1 0
0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 1 0 1
0 0 0 0 1 1 0 1 0


This encodes 5-bit messages (elements from Z5

2) as 9-bit codewords.

For example to encode the messages w = (01100) and v = (01011) we multiply

wG = (01100 0101) and vG = (01011 1001)

4 / 8



Another example: the whole workflow, start to finish.

We start with a generator matrix. Here is the one we will be working with in this
example:

G =


1 0 0 0 0 1 1 0 0
0 1 0 0 0 0 1 1 0
0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 1 0 1
0 0 0 0 1 1 0 1 0



This encodes 5-bit messages (elements from Z5
2) as 9-bit codewords.

For example to encode the messages w = (01100) and v = (01011) we multiply

wG = (01100 0101) and vG = (01011 1001)

4 / 8



Another example: the whole workflow, start to finish.

We start with a generator matrix. Here is the one we will be working with in this
example:

G =


1 0 0 0 0 1 1 0 0
0 1 0 0 0 0 1 1 0
0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 1 0 1
0 0 0 0 1 1 0 1 0


This encodes 5-bit messages (elements from Z5

2) as 9-bit codewords.

For example to encode the messages w = (01100) and v = (01011) we multiply

wG = (01100 0101) and vG = (01011 1001)

4 / 8



Another example: the whole workflow, start to finish.

We start with a generator matrix. Here is the one we will be working with in this
example:

G =


1 0 0 0 0 1 1 0 0
0 1 0 0 0 0 1 1 0
0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 1 0 1
0 0 0 0 1 1 0 1 0


This encodes 5-bit messages (elements from Z5

2) as 9-bit codewords.

For example to encode the messages w = (01100) and v = (01011) we multiply

wG = (01100 0101) and vG = (01011 1001)

4 / 8



For checking and correcting received words, we need the parity-check matrix H.

This
is obtained by first transposing the right side of G:

A =


1 1 0 0
0 1 1 0
0 0 1 1
0 1 0 1
1 0 1 0

 =⇒ Atr =


1 0 0 0 1
1 1 0 1 0
0 1 1 0 1
0 0 1 1 0


and then appending an identity matrix to the right of Atr:

H =


1 0 0 0 1 1 0 0 0
1 1 0 1 0 0 1 0 0
0 1 1 0 1 0 0 1 0
0 0 1 1 0 0 0 0 1



5 / 8



For checking and correcting received words, we need the parity-check matrix H. This
is obtained by first transposing the right side of G:

A =


1 1 0 0
0 1 1 0
0 0 1 1
0 1 0 1
1 0 1 0

 =⇒ Atr =


1 0 0 0 1
1 1 0 1 0
0 1 1 0 1
0 0 1 1 0



and then appending an identity matrix to the right of Atr:

H =


1 0 0 0 1 1 0 0 0
1 1 0 1 0 0 1 0 0
0 1 1 0 1 0 0 1 0
0 0 1 1 0 0 0 0 1



5 / 8



For checking and correcting received words, we need the parity-check matrix H. This
is obtained by first transposing the right side of G:

A =


1 1 0 0
0 1 1 0
0 0 1 1
0 1 0 1
1 0 1 0

 =⇒ Atr =


1 0 0 0 1
1 1 0 1 0
0 1 1 0 1
0 0 1 1 0


and then appending an identity matrix to the right of Atr:

H =


1 0 0 0 1 1 0 0 0
1 1 0 1 0 0 1 0 0
0 1 1 0 1 0 0 1 0
0 0 1 1 0 0 0 0 1



5 / 8



Now the code words we send can be processed. We’ll do this with the following words
that might be received at the destination.

r = (01010 0011), s = (11000 1001) and t = (00011 1000)

To process r we compute Hrtr. This will equal the sum of columns 2, 4, 8 and 9 of H:

Hrtr =


0
1
1
0

+


0
1
0
1

+


0
0
1
0

+


0
0
0
1

 =


0
0
0
0


This shows that r is a valid code word and the message being sent is (01010),
obtained by dropping the last 4 bits appended by the encoding step.

6 / 8



Now the code words we send can be processed. We’ll do this with the following words
that might be received at the destination.

r = (01010 0011), s = (11000 1001) and t = (00011 1000)

To process r we compute Hrtr. This will equal the sum of columns 2, 4, 8 and 9 of H:

Hrtr =


0
1
1
0

+


0
1
0
1

+


0
0
1
0

+


0
0
0
1

 =


0
0
0
0



This shows that r is a valid code word and the message being sent is (01010),
obtained by dropping the last 4 bits appended by the encoding step.

6 / 8



Now the code words we send can be processed. We’ll do this with the following words
that might be received at the destination.

r = (01010 0011), s = (11000 1001) and t = (00011 1000)

To process r we compute Hrtr. This will equal the sum of columns 2, 4, 8 and 9 of H:

Hrtr =


0
1
1
0

+


0
1
0
1

+


0
0
1
0

+


0
0
0
1

 =


0
0
0
0


This shows that r is a valid code word and the message being sent is (01010),
obtained by dropping the last 4 bits appended by the encoding step.

6 / 8



To process s = (11000 1001) we compute Hstr. This will equal the sum of columns 1,
2, 6 and 9 of H:

Hstr =


1
1
0
0

+


0
1
1
0

+


1
0
0
0

+


0
0
0
1

 =


0
0
1
1



This shows that s is not a valid code word. Since the product is the third column of H
we deduce (assuming there is at most one error) that the error is in position 3.
Changing the 0 in that position to a 1 we get a valid code word: (11100 1001).

Finally, we get the original message by removing the last 4 bits from the corrected
word: (11100)

7 / 8



To process s = (11000 1001) we compute Hstr. This will equal the sum of columns 1,
2, 6 and 9 of H:

Hstr =


1
1
0
0

+


0
1
1
0

+


1
0
0
0

+


0
0
0
1

 =


0
0
1
1


This shows that s is not a valid code word.

Since the product is the third column of H
we deduce (assuming there is at most one error) that the error is in position 3.
Changing the 0 in that position to a 1 we get a valid code word: (11100 1001).

Finally, we get the original message by removing the last 4 bits from the corrected
word: (11100)

7 / 8



To process s = (11000 1001) we compute Hstr. This will equal the sum of columns 1,
2, 6 and 9 of H:

Hstr =


1
1
0
0

+


0
1
1
0

+


1
0
0
0

+


0
0
0
1

 =


0
0
1
1


This shows that s is not a valid code word. Since the product is the third column of H
we deduce (assuming there is at most one error) that the error is in position 3.

Changing the 0 in that position to a 1 we get a valid code word: (11100 1001).

Finally, we get the original message by removing the last 4 bits from the corrected
word: (11100)

7 / 8



To process s = (11000 1001) we compute Hstr. This will equal the sum of columns 1,
2, 6 and 9 of H:

Hstr =


1
1
0
0

+


0
1
1
0

+


1
0
0
0

+


0
0
0
1

 =


0
0
1
1


This shows that s is not a valid code word. Since the product is the third column of H
we deduce (assuming there is at most one error) that the error is in position 3.
Changing the 0 in that position to a 1 we get a valid code word: (11100 1001).

Finally, we get the original message by removing the last 4 bits from the corrected
word: (11100)

7 / 8



To process t = (00011 1000) we compute Httr. This will equal the sum of columns 4,
5 and 6 of H:

Httr =


0
1
0
1

+


1
0
1
0

+


1
0
0
0

 =


0
1
1
1



This shows that t is not a valid code word. Since the product is not any of the
columns of H we deduce that t does not have distance 1 from any code word. That is,
there must have been errors in more than 1 bit.

Producing the original message would be nothing more than a guess.

8 / 8



To process t = (00011 1000) we compute Httr. This will equal the sum of columns 4,
5 and 6 of H:

Httr =


0
1
0
1

+


1
0
1
0

+


1
0
0
0

 =


0
1
1
1


This shows that t is not a valid code word.

Since the product is not any of the
columns of H we deduce that t does not have distance 1 from any code word. That is,
there must have been errors in more than 1 bit.

Producing the original message would be nothing more than a guess.

8 / 8



To process t = (00011 1000) we compute Httr. This will equal the sum of columns 4,
5 and 6 of H:

Httr =


0
1
0
1

+


1
0
1
0

+


1
0
0
0

 =


0
1
1
1


This shows that t is not a valid code word. Since the product is not any of the
columns of H we deduce that t does not have distance 1 from any code word. That is,
there must have been errors in more than 1 bit.

Producing the original message would be nothing more than a guess.

8 / 8



To process t = (00011 1000) we compute Httr. This will equal the sum of columns 4,
5 and 6 of H:

Httr =


0
1
0
1

+


1
0
1
0

+


1
0
0
0

 =


0
1
1
1


This shows that t is not a valid code word. Since the product is not any of the
columns of H we deduce that t does not have distance 1 from any code word. That is,
there must have been errors in more than 1 bit.

Producing the original message would be nothing more than a guess.

8 / 8


