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Application of groups: RSA cryptography

In the distant past (say the 1970’s) encrypted communication required the two parties
to meet and determine the encryption codes.

This is impractical today so a public-key method is used: If I want to receive secure
messages, I publish an encryption key which others can use to encrypt messages, but I
keep secret the decryption key .

The Rivest-Shamir-Adleman (RSA) system amounts to the following (I am
simplifying). A message m, being just 0s and 1s, is interpreted as a number in Zn for
some large n (or sequence of numbers if m ≥ n).

I make the number n public as well as a certain number e < n. Then m is encrypted
by computing c = me mod n and c is what is sent to me.

I keep another number d < n secret. It has the property that
cd mod n = med mod n = m and I then have the message m.

The mathematics behind this is the subject of this lecture. It is possible to deduce d
from n and e, but only if n can be factored. This is a well-known difficult problem.

2 / 1



Application of groups: RSA cryptography

In the distant past (say the 1970’s) encrypted communication required the two parties
to meet and determine the encryption codes.

This is impractical today so a public-key method is used: If I want to receive secure
messages, I publish an encryption key which others can use to encrypt messages, but I
keep secret the decryption key .

The Rivest-Shamir-Adleman (RSA) system amounts to the following (I am
simplifying). A message m, being just 0s and 1s, is interpreted as a number in Zn for
some large n (or sequence of numbers if m ≥ n).

I make the number n public as well as a certain number e < n. Then m is encrypted
by computing c = me mod n and c is what is sent to me.

I keep another number d < n secret. It has the property that
cd mod n = med mod n = m and I then have the message m.

The mathematics behind this is the subject of this lecture. It is possible to deduce d
from n and e, but only if n can be factored. This is a well-known difficult problem.

2 / 1



Application of groups: RSA cryptography

In the distant past (say the 1970’s) encrypted communication required the two parties
to meet and determine the encryption codes.

This is impractical today so a public-key method is used: If I want to receive secure
messages, I publish an encryption key which others can use to encrypt messages, but I
keep secret the decryption key .

The Rivest-Shamir-Adleman (RSA) system amounts to the following (I am
simplifying). A message m, being just 0s and 1s, is interpreted as a number in Zn for
some large n (or sequence of numbers if m ≥ n).

I make the number n public as well as a certain number e < n. Then m is encrypted
by computing c = me mod n and c is what is sent to me.

I keep another number d < n secret. It has the property that
cd mod n = med mod n = m and I then have the message m.

The mathematics behind this is the subject of this lecture. It is possible to deduce d
from n and e, but only if n can be factored. This is a well-known difficult problem.

2 / 1



Application of groups: RSA cryptography

In the distant past (say the 1970’s) encrypted communication required the two parties
to meet and determine the encryption codes.

This is impractical today so a public-key method is used: If I want to receive secure
messages, I publish an encryption key which others can use to encrypt messages, but I
keep secret the decryption key .

The Rivest-Shamir-Adleman (RSA) system amounts to the following (I am
simplifying). A message m, being just 0s and 1s, is interpreted as a number in Zn for
some large n (or sequence of numbers if m ≥ n).

I make the number n public as well as a certain number e < n. Then m is encrypted
by computing c = me mod n and c is what is sent to me.

I keep another number d < n secret. It has the property that
cd mod n = med mod n = m and I then have the message m.

The mathematics behind this is the subject of this lecture. It is possible to deduce d
from n and e, but only if n can be factored. This is a well-known difficult problem.

2 / 1



Application of groups: RSA cryptography

In the distant past (say the 1970’s) encrypted communication required the two parties
to meet and determine the encryption codes.

This is impractical today so a public-key method is used: If I want to receive secure
messages, I publish an encryption key which others can use to encrypt messages, but I
keep secret the decryption key .

The Rivest-Shamir-Adleman (RSA) system amounts to the following (I am
simplifying). A message m, being just 0s and 1s, is interpreted as a number in Zn for
some large n (or sequence of numbers if m ≥ n).

I make the number n public as well as a certain number e < n. Then m is encrypted
by computing c = me mod n and c is what is sent to me.

I keep another number d < n secret. It has the property that
cd mod n = med mod n = m and I then have the message m.

The mathematics behind this is the subject of this lecture. It is possible to deduce d
from n and e, but only if n can be factored. This is a well-known difficult problem.

2 / 1



Application of groups: RSA cryptography

In the distant past (say the 1970’s) encrypted communication required the two parties
to meet and determine the encryption codes.

This is impractical today so a public-key method is used: If I want to receive secure
messages, I publish an encryption key which others can use to encrypt messages, but I
keep secret the decryption key .

The Rivest-Shamir-Adleman (RSA) system amounts to the following (I am
simplifying). A message m, being just 0s and 1s, is interpreted as a number in Zn for
some large n (or sequence of numbers if m ≥ n).

I make the number n public as well as a certain number e < n. Then m is encrypted
by computing c = me mod n and c is what is sent to me.

I keep another number d < n secret. It has the property that
cd mod n = med mod n = m and I then have the message m.

The mathematics behind this is the subject of this lecture. It is possible to deduce d
from n and e, but only if n can be factored. This is a well-known difficult problem.

2 / 1



Application of groups: RSA cryptography

In the distant past (say the 1970’s) encrypted communication required the two parties
to meet and determine the encryption codes.

This is impractical today so a public-key method is used: If I want to receive secure
messages, I publish an encryption key which others can use to encrypt messages, but I
keep secret the decryption key .

The Rivest-Shamir-Adleman (RSA) system amounts to the following (I am
simplifying). A message m, being just 0s and 1s, is interpreted as a number in Zn for
some large n (or sequence of numbers if m ≥ n).

I make the number n public as well as a certain number e < n. Then m is encrypted
by computing c = me mod n and c is what is sent to me.

I keep another number d < n secret. It has the property that
cd mod n = med mod n = m and I then have the message m.

The mathematics behind this is the subject of this lecture. It is possible to deduce d
from n and e, but only if n can be factored. This is a well-known difficult problem.

2 / 1



Raising to powers

While modern computers can do millions of multiplications per second, security
requires the chosen n to have thousands of bits and e and d are required to have
dozens of bits.

We’re talking numbers larger than a million million million or so. So
one needs an efficient method to take powers.

There is a method that relies on the observation that raising to the 2k power requires
only k multiplications: m2k is obtained by squaring m to get m2 then squaring that to
get m22 then squaring that to get m23 , etc.

Since e is a sum of powers of 2 (at most as many as the number of bits in e), an
algorithm can be use that produces me in about twice as many steps as there are bits
in e. Thus one needs only dozens of multiplications. Also, since we work in Zn the
numbers never get larger than n.

The existence of the e and d that satisfy med mod n = m requires n to have a special
form: it must be a product of distinct primes. These primes must be large, for security,
so the system specifies n = pq for two large primes p and q.
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The group of units

Recall that Lagrange’s theorem implies that if G is a group and a is in G then a|G|

equals the group’s identity.

If we consider this in u(Zn) which has size ϕ(n) we
conclude that if a is a unit in Zn we have aϕ(n) mod n = 1.

If p is a prime, then every element of Zp is a unit except 0 and ϕ(p) = p− 1 so
ap−1 mod p = 1 for all a ̸= 0 in Zp. If we raise that to a power we also get
ak(p−1) = 1. If we multiply that by a we get

akϕ(p)+1 mod p = a for any integer k.

This continues to hold when a = 0 so it is true for all a in Zp.

If we replace p by any n, the above may not be true if a is not a unit and not 0, but if
n is a product of distinct primes, for example if n = pq, where p and q are different
primes, then it is true. That is, for any a in Zn with n = pq

akϕ(n)+1 mod n = a, for any integer k.
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The Chinese Remainder Theorem

The reason for the last equation in Zpq is the Chinese Remainder Theorem:

Theorem

If n = pq where gcd(p, q) = 1 then there is a one-to-one homomorphism between Zn

and Zp × Zq.

A homomorphism of rings is a function that preserves both addition and scalar
multiplication. This means that one can do computations in Zn by transferring
elements m in Zn to elements (r, s) in Zp × Zq, doing the computations there, then
returning to Zn. The function that turns m into (r, s) is easy: r = m mod p and
s = m mod q.

The return function is almost as simple if we use the fact that 1 = ap+ bq for integers
a and b. Then we can return to Zn by (r, s) 7→ m = (bqr + aps) mod n
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Now for any positive integers j and l we have rjϕ(p)+1 = r in Zp and slϕ(q)+1 = s for
all s in Zq. It follows that (r, s)

kϕ(q)ϕ(p)+1 = (r, s) in Zp × Zq for any positive integer
l.

Transferring these computations back to Zn, and using the fact that
ϕ(n) = ϕ(p)ϕ(q) we get

mkϕ(n)+1 = m for any positive integer k.
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Where do e and d come from?

From the previous slide we see that we get mkϕ(n)+1 = m for any message m ∈ Zn. In
order to translate this into med = m we only need e and d to satisfy ed = kϕ(n) + 1.

This is equivalent to ed mod ϕ(n) = 1 or e · d = 1 in the ring Zϕ(n). As a consequence
all we need to do is pick e < ϕ(n) such that gcd(e, ϕ(n)) = 1 and set d equal to its
inverse in Zϕ(n).

Since p and q are odd, ϕ(n) = (p− 1)(q − 1) is even so e must be odd. In practice a
good fraction of the odd numbers less that ϕ(n) have gcd(e, ϕ(n)) = 1, so e can be
found eventually just by choosing odd numbers k < ϕ(n) at random and testing the
value of gcd(k, ϕ(n)).

[The textbook incorrectly computes the probability of getting a suitable e in one try.
The argument there correctly produces the odds of getting a unit in Zn, but e has to
be a unit in Zϕ(n).]

There are ways to get e without random choosing. For example, picking e to be the
larger of p or q always works, but that would be an insecure choice.
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value of gcd(k, ϕ(n)).

[The textbook incorrectly computes the probability of getting a suitable e in one try.
The argument there correctly produces the odds of getting a unit in Zn, but e has to
be a unit in Zϕ(n).]

There are ways to get e without random choosing. For example, picking e to be the
larger of p or q always works, but that would be an insecure choice.
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Where do p and q come from

It turns out there are ways to test whether a number is prime without trying to
eliminate all possible factorizations.

Since obtaining p and q has to be done only once
(e.g., when you install your browser) it doesn’t matter too much if it takes a little
time. So typically they are found by randomly selecting numbers in an appropriate
range of sizes and testing them for primality until two primes are found.

There are some other concerns besides size and primality. The two primes cannot be
too close to each other. They also shouldn’t match what others have chosen.

A more thorough coverage of the RSA system can be found on Wikipedia:
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

Coverage of primality testing can be found at
https://en.wikipedia.org/wiki/Primality_test
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Is this cryptography system unbreakable?

No one knows how secure the RSA system is. Its security lies in being unable to
determine d from n and e.

This can be done easily if the factorization of n can be
found. It is thought (though not proven) that determining d is computationally as hard
as factoring n. How hard could that be?

Using state-of-the-art factoring algorithms, the record for finding p and q is a 795 bit
number n. It was done in 2019 and took 900 years of CPU time (distributed over
thousands of computers that donated CPU time). Numbers n up to 512 bits can be
routinely factored in a few weeks on common hardware. Most numbers n used these
days are longer than 1024 bits and recommendations for the future range from 2048 to
4096 bits.

A quantum computer, should one ever be developed for practical use, could
theoretically quickly factor almost any size number.

There are attacks on RSA that involve the special nature of some messages. Other
parts of the RSA system (e.g. scrambling m) are designed to avoid such attacks.
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