# Subgroups and cosets 

Daniel H. Luecking<br>MASC

Aprilr 1, 2024

## Computing in our example groups

I hope everyone can now recognize, and compute in, the example groups covered in the last lecture.

## Computing in our example groups

I hope everyone can now recognize, and compute in, the example groups covered in the last lecture. If I say, "in the group $\mathbb{Z}_{9}$ with addition $\bmod 9$, find $6+6$ and $6+6+6$." You should respond " $6+6=3$ and $(6+6)+6=3+6=0$."

## Computing in our example groups

I hope everyone can now recognize, and compute in, the example groups covered in the last lecture. If I say, "in the group $\mathbb{Z}_{9}$ with addition $\bmod 9$, find $6+6$ and $6+6+6$." You should respond " $6+6=3$ and $(6+6)+6=3+6=0$."

Similarly, for $u\left(\mathbb{Z}_{9}\right)$ with multiplication mod 9 if asked for $4 \cdot 4$ and $4 \cdot 4 \cdot 4$ you should be able to find $4 \cdot 4=16 \bmod 9=7$ and $(4 \cdot 4) \cdot 4=7 \cdot 4=28 \bmod 9=1$.

## Computing in our example groups

I hope everyone can now recognize, and compute in, the example groups covered in the last lecture. If I say, "in the group $\mathbb{Z}_{9}$ with addition $\bmod 9$, find $6+6$ and $6+6+6$." You should respond " $6+6=3$ and $(6+6)+6=3+6=0$."

Similarly, for $u\left(\mathbb{Z}_{9}\right)$ with multiplication mod 9 if asked for $4 \cdot 4$ and $4 \cdot 4 \cdot 4$ you should be able to find $4 \cdot 4=16 \bmod 9=7$ and $(4 \cdot 4) \cdot 4=7 \cdot 4=28 \bmod 9=1$.

Finally, for the permutation $\alpha=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4\end{array}\right)$ you should be able to find

$$
\alpha \alpha=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 1 & 2 & 4
\end{array}\right) \text { and } \alpha \alpha \alpha=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}\right)
$$

## Computing in our example groups

I hope everyone can now recognize, and compute in, the example groups covered in the last lecture. If I say, "in the group $\mathbb{Z}_{9}$ with addition $\bmod 9$, find $6+6$ and $6+6+6$." You should respond " $6+6=3$ and $(6+6)+6=3+6=0$."

Similarly, for $u\left(\mathbb{Z}_{9}\right)$ with multiplication mod 9 if asked for $4 \cdot 4$ and $4 \cdot 4 \cdot 4$ you should be able to find $4 \cdot 4=16 \bmod 9=7$ and $(4 \cdot 4) \cdot 4=7 \cdot 4=28 \bmod 9=1$.

Finally, for the permutation $\alpha=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4\end{array}\right)$ you should be able to find

$$
\alpha \alpha=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 1 & 2 & 4
\end{array}\right) \text { and } \alpha \alpha \alpha=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}\right)
$$

Note that in all these cases, repeating the operation on a single element eventually produced the identity of that group.

## Computing in our example groups

I hope everyone can now recognize, and compute in, the example groups covered in the last lecture. If I say, "in the group $\mathbb{Z}_{9}$ with addition $\bmod 9$, find $6+6$ and $6+6+6$." You should respond " $6+6=3$ and $(6+6)+6=3+6=0$."

Similarly, for $u\left(\mathbb{Z}_{9}\right)$ with multiplication mod 9 if asked for $4 \cdot 4$ and $4 \cdot 4 \cdot 4$ you should be able to find $4 \cdot 4=16 \bmod 9=7$ and $(4 \cdot 4) \cdot 4=7 \cdot 4=28 \bmod 9=1$.

Finally, for the permutation $\alpha=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4\end{array}\right)$ you should be able to find

$$
\alpha \alpha=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 1 & 2 & 4
\end{array}\right) \text { and } \alpha \alpha \alpha=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}\right)
$$

Note that in all these cases, repeating the operation on a single element eventually produced the identity of that group. This is not an accident.

## Subgroups

When we speak of a group $G$ with an operation $*$, we may write "the group $(G, *)$ ". The point is that you need both the set and the operation and this notation tells you both.

## Subgroups

When we speak of a group $G$ with an operation $*$, we may write "the group $(G, *)$ ". The point is that you need both the set and the operation and this notation tells you both. Thus the groups $\left(\mathbb{Z}_{9},+\right)$ and $\left(u\left(\mathbb{Z}_{9}\right), \cdot\right)$ were discussed on the previous page.

## Subgroups

When we speak of a group $G$ with an operation *, we may write "the group $(G, *)^{\prime}$. The point is that you need both the set and the operation and this notation tells you both. Thus the groups $\left(\mathbb{Z}_{9},+\right)$ and $\left(u\left(\mathbb{Z}_{9}\right), \cdot\right)$ were discussed on the previous page. If the operation has already been specified or is understood from context, we just say "the group $G$."

## Subgroups

When we speak of a group $G$ with an operation $*$, we may write "the group $(G, *)$ ". The point is that you need both the set and the operation and this notation tells you both. Thus the groups $\left(\mathbb{Z}_{9},+\right)$ and $\left(u\left(\mathbb{Z}_{9}\right), \cdot\right)$ were discussed on the previous page. If the operation has already been specified or is understood from context, we just say "the group $G$."

We define a subgroup of a group $(G, *)$ to be a nonempty subset $H$ of $G$ which is a group using the same operation $*$.

## Subgroups

When we speak of a group $G$ with an operation *, we may write "the group $(G, *)^{\prime}$. The point is that you need both the set and the operation and this notation tells you both. Thus the groups $\left(\mathbb{Z}_{9},+\right)$ and $\left(u\left(\mathbb{Z}_{9}\right), \cdot\right)$ were discussed on the previous page. If the operation has already been specified or is understood from context, we just say "the group $G$."

We define a subgroup of a group $(G, *)$ to be a nonempty subset $H$ of $G$ which is a group using the same operation $*$. Notice that in $G$ we already have an identity element as well as inverses. For $H$ to be a subgroup the identity must be in $H$ and the inverse of any element in $H$ must be in $H$.

## Subgroups

When we speak of a group $G$ with an operation *, we may write "the group $(G, *)$ ". The point is that you need both the set and the operation and this notation tells you both. Thus the groups $\left(\mathbb{Z}_{9},+\right)$ and $\left(u\left(\mathbb{Z}_{9}\right), \cdot\right)$ were discussed on the previous page. If the operation has already been specified or is understood from context, we just say "the group $G$."

We define a subgroup of a group $(G, *)$ to be a nonempty subset $H$ of $G$ which is a group using the same operation $*$. Notice that in $G$ we already have an identity element as well as inverses. For $H$ to be a subgroup the identity must be in $H$ and the inverse of any element in $H$ must be in $H$. But the most important condition is the first one in the definition of a group: if $a$ and $b$ are in $H$ then $a * b$ must be in $H$.

## Subgroups

When we speak of a group $G$ with an operation $*$, we may write "the group $(G, *)$ ". The point is that you need both the set and the operation and this notation tells you both. Thus the groups $\left(\mathbb{Z}_{9},+\right)$ and $\left(u\left(\mathbb{Z}_{9}\right), \cdot\right)$ were discussed on the previous page. If the operation has already been specified or is understood from context, we just say "the group $G$."

We define a subgroup of a group $(G, *)$ to be a nonempty subset $H$ of $G$ which is a group using the same operation $*$. Notice that in $G$ we already have an identity element as well as inverses. For $H$ to be a subgroup the identity must be in $H$ and the inverse of any element in $H$ must be in $H$. But the most important condition is the first one in the definition of a group: if $a$ and $b$ are in $H$ then $a * b$ must be in $H$.

The second condition in the definition of group (associativity) will automatically be satisfied for $H$ since it is purely a property of the operation and doesn't care whether the elements are in the subset $H$.

## Conditions for a subset to be a subgroup

We only have to check two conditions to see if a subset $H$ of a group $(G, *)$ is a subgroup:

## Theorem

If $(G, *)$ is a group and $H$ is a nonempty subset, then $H$ is a subgroup if and only if $H$ satisfies the two conditions:

## Conditions for a subset to be a subgroup

We only have to check two conditions to see if a subset $H$ of a group $(G, *)$ is a subgroup:

## Theorem

If $(G, *)$ is a group and $H$ is a nonempty subset, then $H$ is a subgroup if and only if $H$ satisfies the two conditions:

- For any $a, b$ in $H, a * b$ is in $H$


## Conditions for a subset to be a subgroup

We only have to check two conditions to see if a subset $H$ of a group $(G, *)$ is a subgroup:

## Theorem

If $(G, *)$ is a group and $H$ is a nonempty subset, then $H$ is a subgroup if and only if $H$ satisfies the two conditions:

- For any $a, b$ in $H, a * b$ is in $H$
- For any $a$ in $H$, the inverse of $a$ is in $H$.

Moreover, if $H$ is finite, the second condition follows from the first, so we only have to check closure.

## Conditions for a subset to be a subgroup

We only have to check two conditions to see if a subset $H$ of a group $(G, *)$ is a subgroup:

## Theorem

If $(G, *)$ is a group and $H$ is a nonempty subset, then $H$ is a subgroup if and only if $H$ satisfies the two conditions:

- For any $a, b$ in $H, a * b$ is in $H$
- For any $a$ in $H$, the inverse of $a$ is in $H$.

Moreover, if $H$ is finite, the second condition follows from the first, so we only have to check closure.

These are the first and last of the four parts of the definition of a group. The middle two parts of the definition (associativity and existence of an identity) follow from $G$ being a group and the above conditions.

## Conditions for a subset to be a subgroup

We only have to check two conditions to see if a subset $H$ of a group $(G, *)$ is a subgroup:

## Theorem

If $(G, *)$ is a group and $H$ is a nonempty subset, then $H$ is a subgroup if and only if $H$ satisfies the two conditions:

- For any $a, b$ in $H, a * b$ is in $H$
- For any $a$ in $H$, the inverse of $a$ is in $H$.

Moreover, if $H$ is finite, the second condition follows from the first, so we only have to check closure.

These are the first and last of the four parts of the definition of a group. The middle two parts of the definition (associativity and existence of an identity) follow from $G$ being a group and the above conditions. The identity is $a * a^{-1}$ which must belong to $H$ if the above two conditions hold.

## Examples of subgroups

- $\{1,4,7\}$ is a subgroup of $u\left(\mathbb{Z}_{9}\right)=\{1,2,4,5,7,8\}$


## Examples of subgroups

- $\{1,4,7\}$ is a subgroup of $u\left(\mathbb{Z}_{9}\right)=\{1,2,4,5,7,8\}$
- $\{0,3,6\}$ is a subgroup of $\mathbb{Z}_{9}$.


## Examples of subgroups

- $\{1,4,7\}$ is a subgroup of $u\left(\mathbb{Z}_{9}\right)=\{1,2,4,5,7,8\}$
- $\{0,3,6\}$ is a subgroup of $\mathbb{Z}_{9}$.
- $\left\{\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right),\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4\end{array}\right),\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4\end{array}\right)\right\}$ is a subgroup of $S_{4}$.


## Examples of subgroups

- $\{1,4,7\}$ is a subgroup of $u\left(\mathbb{Z}_{9}\right)=\{1,2,4,5,7,8\}$
- $\{0,3,6\}$ is a subgroup of $\mathbb{Z}_{9}$.
- $\left\{\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right),\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4\end{array}\right),\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4\end{array}\right)\right\}$ is a subgroup of $S_{4}$.

For the first of these we need to check six possible products: $4 \cdot 4=7,4 \cdot 7=1$, $7 \cdot 7=4$ (plus three more).

## Examples of subgroups

- $\{1,4,7\}$ is a subgroup of $u\left(\mathbb{Z}_{9}\right)=\{1,2,4,5,7,8\}$
- $\{0,3,6\}$ is a subgroup of $\mathbb{Z}_{9}$.
- $\left\{\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right),\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4\end{array}\right),\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4\end{array}\right)\right\}$ is a subgroup of $S_{4}$.

For the first of these we need to check six possible products: $4 \cdot 4=7,4 \cdot 7=1$, $7 \cdot 7=4$ (plus three more).
For the second one: $3+3=6,3+6=0,6+6=3$ (plus three more).

## Examples of subgroups

- $\{1,4,7\}$ is a subgroup of $u\left(\mathbb{Z}_{9}\right)=\{1,2,4,5,7,8\}$
- $\{0,3,6\}$ is a subgroup of $\mathbb{Z}_{9}$.
- $\left\{\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right),\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4\end{array}\right),\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4\end{array}\right)\right\}$ is a subgroup of $S_{4}$.

For the first of these we need to check six possible products: $4 \cdot 4=7,4 \cdot 7=1$, $7 \cdot 7=4$ (plus three more).
For the second one: $3+3=6,3+6=0,6+6=3$ (plus three more).
For the third example, these are the identity permutation id, plus $\alpha$ and $\alpha \alpha$ from earlier. We have already computed $\alpha(\alpha \alpha)=\mathrm{id}$. Moreover, $(\alpha \alpha)(\alpha \alpha)=(\alpha(\alpha \alpha)) \alpha=\mathrm{id} \alpha=\alpha$, etc.

## Powers in groups

If we have any group $(G, \cdot)$ (I'll use multiplication notation for simplicity) and any element $a$ in $G$, we can abbreviate $a \cdot a$ by $a^{2}$ and $a \cdot a \cdot a$ by $a^{3}$, etc.

## Powers in groups

If we have any group ( $G, \cdot$ ) (I'll use multiplication notation for simplicity) and any element $a$ in $G$, we can abbreviate $a \cdot a$ by $a^{2}$ and $a \cdot a \cdot a$ by $a^{3}$, etc. Similarly, $a^{-1}$ is the inverse of $a, a^{-2}=a^{-1} \cdot a^{-1}$ is the inverse of $a^{2}$ and $a^{-3}=a^{-1} \cdot a^{-1} \cdot a^{-1}$ is the inverse of $a^{3}$, etc.

## Powers in groups

If we have any group ( $G, \cdot$ ) (I'll use multiplication notation for simplicity) and any element $a$ in $G$, we can abbreviate $a \cdot a$ by $a^{2}$ and $a \cdot a \cdot a$ by $a^{3}$, etc. Similarly, $a^{-1}$ is the inverse of $a, a^{-2}=a^{-1} \cdot a^{-1}$ is the inverse of $a^{2}$ and $a^{-3}=a^{-1} \cdot a^{-1} \cdot a^{-1}$ is the inverse of $a^{3}$, etc.
[If the operation is ' + ', it is more traditional to write repeated operations as follows: $a+a=2 a, a+a+a=3 a$.

## Powers in groups

If we have any group ( $G, \cdot$ ) (I'll use multiplication notation for simplicity) and any element $a$ in $G$, we can abbreviate $a \cdot a$ by $a^{2}$ and $a \cdot a \cdot a$ by $a^{3}$, etc. Similarly, $a^{-1}$ is the inverse of $a, a^{-2}=a^{-1} \cdot a^{-1}$ is the inverse of $a^{2}$ and $a^{-3}=a^{-1} \cdot a^{-1} \cdot a^{-1}$ is the inverse of $a^{3}$, etc.
[If the operation is ' + ', it is more traditional to write repeated operations as follows: $a+a=2 a, a+a+a=3 a$. In this case the inverse of $a$ would be written $-a$. Then $-3 a$, for example, would mean $-a+-a+-a$ which is also the inverse of $3 a$.]

## Powers in groups

If we have any group ( $G, \cdot$ ) (I'll use multiplication notation for simplicity) and any element $a$ in $G$, we can abbreviate $a \cdot a$ by $a^{2}$ and $a \cdot a \cdot a$ by $a^{3}$, etc. Similarly, $a^{-1}$ is the inverse of $a, a^{-2}=a^{-1} \cdot a^{-1}$ is the inverse of $a^{2}$ and $a^{-3}=a^{-1} \cdot a^{-1} \cdot a^{-1}$ is the inverse of $a^{3}$, etc.
[If the operation is ' + ', it is more traditional to write repeated operations as follows: $a+a=2 a, a+a+a=3 a$. In this case the inverse of $a$ would be written $-a$. Then $-3 a$, for example, would mean $-a+-a+-a$ which is also the inverse of $3 a$.]

Because of the regrouping property, $a \cdot a \cdot a$ is not ambiguous because both possible interpretations $(a \cdot a) \cdot a$ and $a \cdot(a \cdot a)$ must be equal. The same is true of all powers.

Cyclic groups and subgroups

## Cyclic groups and subgroups

The basic property of this notation is that $a^{n} \cdot a^{k}=a^{n+k}$ and this holds regardless of the signs of the integers $n$ and $k$.

## Cyclic groups and subgroups

The basic property of this notation is that $a^{n} \cdot a^{k}=a^{n+k}$ and this holds regardless of the signs of the integers $n$ and $k$. For this to be consistent, we have to define $a^{0}$ to be the identity element $e$ and $a^{1}=a$.

## Cyclic groups and subgroups

The basic property of this notation is that $a^{n} \cdot a^{k}=a^{n+k}$ and this holds regardless of the signs of the integers $n$ and $k$. For this to be consistent, we have to define $a^{0}$ to be the identity element $e$ and $a^{1}=a$. [For additive groups we have $n a+k a=(n+k) a$, $0 a$ is the identity (usually called 0 ) and $1 a=a$.]

## Cyclic groups and subgroups

The basic property of this notation is that $a^{n} \cdot a^{k}=a^{n+k}$ and this holds regardless of the signs of the integers $n$ and $k$. For this to be consistent, we have to define $a^{0}$ to be the identity element $e$ and $a^{1}=a$. [For additive groups we have $n a+k a=(n+k) a$, $0 a$ is the identity (usually called 0 ) and $1 a=a$.]
If $(G, \cdot)$ is a finite group with $n$ elements, and we start with an element $a$, then the $n+1$ elements $a^{0}, a^{1}, a^{2}, a^{3}, \cdots, a^{n}$ cannot all be different.

## Cyclic groups and subgroups

The basic property of this notation is that $a^{n} \cdot a^{k}=a^{n+k}$ and this holds regardless of the signs of the integers $n$ and $k$. For this to be consistent, we have to define $a^{0}$ to be the identity element $e$ and $a^{1}=a$. [For additive groups we have $n a+k a=(n+k) a$, $0 a$ is the identity (usually called 0 ) and $1 a=a$.]
If $(G, \cdot)$ is a finite group with $n$ elements, and we start with an element $a$, then the $n+1$ elements $a^{0}, a^{1}, a^{2}, a^{3}, \cdots, a^{n}$ cannot all be different. So at some point $a^{m}$ equals some previous element $a^{j}$. Then we can operate by $a^{-j}$ on both sides of $a^{m}=a^{j}$ to get $a^{m-j}=e=a^{0}$.

## Cyclic groups and subgroups

The basic property of this notation is that $a^{n} \cdot a^{k}=a^{n+k}$ and this holds regardless of the signs of the integers $n$ and $k$. For this to be consistent, we have to define $a^{0}$ to be the identity element $e$ and $a^{1}=a$. [For additive groups we have $n a+k a=(n+k) a$, $0 a$ is the identity (usually called 0 ) and $1 a=a$.]
If $(G, \cdot)$ is a finite group with $n$ elements, and we start with an element $a$, then the $n+1$ elements $a^{0}, a^{1}, a^{2}, a^{3}, \cdots, a^{n}$ cannot all be different. So at some point $a^{m}$ equals some previous element $a^{j}$. Then we can operate by $a^{-j}$ on both sides of $a^{m}=a^{j}$ to get $a^{m-j}=e=a^{0}$.

We conclude that if $G$ is finite then successive powers of any element $a$ eventually produce the identity, say $a^{k}=e$, and after that, previous powers are repeated.

## Cyclic groups and subgroups

The basic property of this notation is that $a^{n} \cdot a^{k}=a^{n+k}$ and this holds regardless of the signs of the integers $n$ and $k$. For this to be consistent, we have to define $a^{0}$ to be the identity element $e$ and $a^{1}=a$. [For additive groups we have $n a+k a=(n+k) a$, $0 a$ is the identity (usually called 0 ) and $1 a=a$.]
If $(G, \cdot)$ is a finite group with $n$ elements, and we start with an element $a$, then the $n+1$ elements $a^{0}, a^{1}, a^{2}, a^{3}, \cdots, a^{n}$ cannot all be different. So at some point $a^{m}$ equals some previous element $a^{j}$. Then we can operate by $a^{-j}$ on both sides of $a^{m}=a^{j}$ to get $a^{m-j}=e=a^{0}$.

We conclude that if $G$ is finite then successive powers of any element $a$ eventually produce the identity, say $a^{k}=e$, and after that, previous powers are repeated. That is, $a^{k+1}=a^{k} \cdot a=e a=a$. We'll see in a minute that $\left\{a, a^{2}, \ldots, a^{k}=e\right\}$ is a group.

## Cyclic groups and subgroups

The basic property of this notation is that $a^{n} \cdot a^{k}=a^{n+k}$ and this holds regardless of the signs of the integers $n$ and $k$. For this to be consistent, we have to define $a^{0}$ to be the identity element $e$ and $a^{1}=a$. [For additive groups we have $n a+k a=(n+k) a$, $0 a$ is the identity (usually called 0 ) and $1 a=a$.]
If $(G, \cdot)$ is a finite group with $n$ elements, and we start with an element $a$, then the $n+1$ elements $a^{0}, a^{1}, a^{2}, a^{3}, \cdots, a^{n}$ cannot all be different. So at some point $a^{m}$ equals some previous element $a^{j}$. Then we can operate by $a^{-j}$ on both sides of $a^{m}=a^{j}$ to get $a^{m-j}=e=a^{0}$.

We conclude that if $G$ is finite then successive powers of any element $a$ eventually produce the identity, say $a^{k}=e$, and after that, previous powers are repeated. That is, $a^{k+1}=a^{k} \cdot a=e a=a$. We'll see in a minute that $\left\{a, a^{2}, \ldots, a^{k}=e\right\}$ is a group. It is called the cyclic subgroup generated by $a$ and is denoted $\langle a\rangle$.

## Why is $\langle a\rangle$ a subgroup?

The first integer $k$ for which $a^{k}=e$ is called the order of $a$. It also happens to be the order (i.e. size) of $\langle a\rangle$.

## Why is $\langle a\rangle$ a subgroup?

The first integer $k$ for which $a^{k}=e$ is called the order of $a$. It also happens to be the order (i.e. size) of $\langle a\rangle$.
Note that if $m=q k$ then $a^{q k}$ is a product of $q k a$ 's. These can be grouped into a product of $q$ repetitions of $a^{k}$.

## Why is $\langle a\rangle$ a subgroup?

The first integer $k$ for which $a^{k}=e$ is called the order of $a$. It also happens to be the order (i.e. size) of $\langle a\rangle$.
Note that if $m=q k$ then $a^{q k}$ is a product of $q k a$ 's. These can be grouped into a product of $q$ repetitions of $a^{k}$. That is, $a^{q k}=\left(a^{k}\right)^{q}$. If $a^{k}=e$ then $a^{q k}=e^{q}=e$. Therefore, if $m=q k+r$ then $a^{m}=a^{q k} a^{r}=e a^{r}=a^{r}$.

## Why is $\langle a\rangle$ a subgroup?

The first integer $k$ for which $a^{k}=e$ is called the order of $a$. It also happens to be the order (i.e. size) of $\langle a\rangle$.
Note that if $m=q k$ then $a^{q k}$ is a product of $q k a$ 's. These can be grouped into a product of $q$ repetitions of $a^{k}$. That is, $a^{q k}=\left(a^{k}\right)^{q}$. If $a^{k}=e$ then $a^{q k}=e^{q}=e$. Therefore, if $m=q k+r$ then $a^{m}=a^{q k} a^{r}=e a^{r}=a^{r}$. That is, if $k$ is the order of $a$, then $a^{m}=a^{m \bmod k}$.

To see that $\langle a\rangle$ is a group we only have to show every element has an inverse and that it is closed under the operation.

## Why is $\langle a\rangle$ a subgroup?

The first integer $k$ for which $a^{k}=e$ is called the order of $a$. It also happens to be the order (i.e. size) of $\langle a\rangle$.
Note that if $m=q k$ then $a^{q k}$ is a product of $q k a$ 's. These can be grouped into a product of $q$ repetitions of $a^{k}$. That is, $a^{q k}=\left(a^{k}\right)^{q}$. If $a^{k}=e$ then $a^{q k}=e^{q}=e$. Therefore, if $m=q k+r$ then $a^{m}=a^{q k} a^{r}=e a^{r}=a^{r}$. That is, if $k$ is the order of $a$, then $a^{m}=a^{m \bmod k}$.

To see that $\langle a\rangle$ is a group we only have to show every element has an inverse and that it is closed under the operation. To see the first note that $a^{j} \cdot a^{k-j}=a^{k}=e$ if $k$ is the order of $a$. Thus every $a^{j}$ has an inverse which is also in $\langle a\rangle$.

## Why is $\langle a\rangle$ a subgroup?

The first integer $k$ for which $a^{k}=e$ is called the order of $a$. It also happens to be the order (i.e. size) of $\langle a\rangle$.
Note that if $m=q k$ then $a^{q k}$ is a product of $q k a$ 's. These can be grouped into a product of $q$ repetitions of $a^{k}$. That is, $a^{q k}=\left(a^{k}\right)^{q}$. If $a^{k}=e$ then $a^{q k}=e^{q}=e$. Therefore, if $m=q k+r$ then $a^{m}=a^{q k} a^{r}=e a^{r}=a^{r}$. That is, if $k$ is the order of $a$, then $a^{m}=a^{m \bmod k}$.

To see that $\langle a\rangle$ is a group we only have to show every element has an inverse and that it is closed under the operation. To see the first note that $a^{j} \cdot a^{k-j}=a^{k}=e$ if $k$ is the order of $a$. Thus every $a^{j}$ has an inverse which is also in $\langle a\rangle$. To see closure, note that $a^{j} \cdot a^{m}=a^{(j+m) \bmod k}$, which is also in $\langle a\rangle$.

## Examples of cyclic subgroups

For the group $\mathbb{Z}_{9}, 6$ has order 3 and $\langle 6\rangle=\{6,6+6=3,3+6=0\}$.

## Examples of cyclic subgroups

For the group $\mathbb{Z}_{9}, 6$ has order 3 and $\langle 6\rangle=\{6,6+6=3,3+6=0\}$. Note that $\mathbb{Z}_{9}$ is itself cyclic, being equal to $\langle 1\rangle$. This happens for every $\left(\mathbb{Z}_{n},+\right)$.

## Examples of cyclic subgroups

For the group $\mathbb{Z}_{9}, 6$ has order 3 and $\langle 6\rangle=\{6,6+6=3,3+6=0\}$. Note that $\mathbb{Z}_{9}$ is itself cyclic, being equal to $\langle 1\rangle$. This happens for every $\left(\mathbb{Z}_{n},+\right)$.

For $u\left(Z_{9}\right), 4$ has order 3 and $\langle 4\rangle=\{4,4 \cdot 4=7,7 \cdot 4=1\}$.

## Examples of cyclic subgroups

For the group $\mathbb{Z}_{9}, 6$ has order 3 and $\langle 6\rangle=\{6,6+6=3,3+6=0\}$. Note that $\mathbb{Z}_{9}$ is itself cyclic, being equal to $\langle 1\rangle$. This happens for every $\left(\mathbb{Z}_{n},+\right)$.
For $u\left(Z_{9}\right), 4$ has order 3 and $\langle 4\rangle=\{4,4 \cdot 4=7,7 \cdot 4=1\}$. The element 2 has order 6 . The element 8 has order 2 .

## Examples of cyclic subgroups

For the group $\mathbb{Z}_{9}, 6$ has order 3 and $\langle 6\rangle=\{6,6+6=3,3+6=0\}$. Note that $\mathbb{Z}_{9}$ is itself cyclic, being equal to $\langle 1\rangle$. This happens for every $\left(\mathbb{Z}_{n},+\right)$.
For $u\left(Z_{9}\right), 4$ has order 3 and $\langle 4\rangle=\{4,4 \cdot 4=7,7 \cdot 4=1\}$. The element 2 has order 6 . The element 8 has order 2 .
For $S_{4}, \alpha=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4\end{array}\right)$ has order 3 and

$$
\langle\alpha\rangle=\left\{\alpha=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & 4
\end{array}\right), \alpha^{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 1 & 2 & 4
\end{array}\right), \alpha^{3}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}\right)\right\}
$$

## Examples of cyclic subgroups

For the group $\mathbb{Z}_{9}, 6$ has order 3 and $\langle 6\rangle=\{6,6+6=3,3+6=0\}$. Note that $\mathbb{Z}_{9}$ is itself cyclic, being equal to $\langle 1\rangle$. This happens for every $\left(\mathbb{Z}_{n},+\right)$.
For $u\left(Z_{9}\right), 4$ has order 3 and $\langle 4\rangle=\{4,4 \cdot 4=7,7 \cdot 4=1\}$. The element 2 has order 6 . The element 8 has order 2 .
For $S_{4}, \alpha=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4\end{array}\right)$ has order 3 and

$$
\langle\alpha\rangle=\left\{\alpha=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & 4
\end{array}\right), \alpha^{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 1 & 2 & 4
\end{array}\right), \alpha^{3}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}\right)\right\}
$$

Some more examples along the same lines:
In $\left(\mathbb{Z}_{15},+\right), 3$ has order 5 and $\langle 3\rangle=\{3,6,9,12,0\}$.

## Examples of cyclic subgroups

For the group $\mathbb{Z}_{9}, 6$ has order 3 and $\langle 6\rangle=\{6,6+6=3,3+6=0\}$. Note that $\mathbb{Z}_{9}$ is itself cyclic, being equal to $\langle 1\rangle$. This happens for every $\left(\mathbb{Z}_{n},+\right)$.
For $u\left(Z_{9}\right), 4$ has order 3 and $\langle 4\rangle=\{4,4 \cdot 4=7,7 \cdot 4=1\}$. The element 2 has order 6 . The element 8 has order 2 .
For $S_{4}, \alpha=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4\end{array}\right)$ has order 3 and

$$
\langle\alpha\rangle=\left\{\alpha=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & 4
\end{array}\right), \alpha^{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 1 & 2 & 4
\end{array}\right), \alpha^{3}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}\right)\right\}
$$

Some more examples along the same lines:
In $\left(\mathbb{Z}_{15},+\right), 3$ has order 5 and $\langle 3\rangle=\{3,6,9,12,0\}$.
In $\left(u\left(\mathbb{Z}_{16}\right), \cdot\right), 5$ has order 4 and $\langle 5\rangle=\{5,9,13,1\}$.

## Examples of cyclic subgroups

For the group $\mathbb{Z}_{9}, 6$ has order 3 and $\langle 6\rangle=\{6,6+6=3,3+6=0\}$. Note that $\mathbb{Z}_{9}$ is itself cyclic, being equal to $\langle 1\rangle$. This happens for every $\left(\mathbb{Z}_{n},+\right)$.
For $u\left(Z_{9}\right), 4$ has order 3 and $\langle 4\rangle=\{4,4 \cdot 4=7,7 \cdot 4=1\}$. The element 2 has order 6 . The element 8 has order 2 .
For $S_{4}, \alpha=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4\end{array}\right)$ has order 3 and

$$
\langle\alpha\rangle=\left\{\alpha=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & 4
\end{array}\right), \alpha^{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 1 & 2 & 4
\end{array}\right), \alpha^{3}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}\right)\right\}
$$

Some more examples along the same lines:
In $\left(\mathbb{Z}_{15},+\right), 3$ has order 5 and $\langle 3\rangle=\{3,6,9,12,0\}$.
In $\left(u\left(\mathbb{Z}_{16}\right), \cdot\right), 5$ has order 4 and $\langle 5\rangle=\{5,9,13,1\}$.
$\ln S_{5}, \gamma=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1\end{array}\right)$ has order 4 and

$$
\langle\gamma\rangle=\left\{\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 4 & 3 & 5 & 1
\end{array}\right),\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 5 & 3 & 1 & 2
\end{array}\right),\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 1 & 3 & 2 & 4
\end{array}\right),\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5
\end{array}\right)\right\}
$$

## Cosets of a subgroup

Definition: If $(G, \cdot)$ is a group and $H$ is any subgroup of $G$, and $a$ is any element of $G$ then $a \cdot H$ means the set of all products $a \cdot h$ for $h \in H$.

## Cosets of a subgroup

Definition: If $(G, \cdot)$ is a group and $H$ is any subgroup of $G$, and $a$ is any element of $G$ then $a \cdot H$ means the set of all products $a \cdot h$ for $h \in H$. This set $a \cdot H$ is called a left coset of $H$.

## Cosets of a subgroup

Definition: If $(G, \cdot)$ is a group and $H$ is any subgroup of $G$, and $a$ is any element of $G$ then $a \cdot H$ means the set of all products $a \cdot h$ for $h \in H$. This set $a \cdot H$ is called a left coset of $H$.
$H \cdot a$ would be defined similarly and called a right coset of $H$. If the operation is addition, cosets would be written $a+H$.

## Cosets of a subgroup

Definition: If $(G, \cdot)$ is a group and $H$ is any subgroup of $G$, and $a$ is any element of $G$ then $a \cdot H$ means the set of all products $a \cdot h$ for $h \in H$. This set $a \cdot H$ is called a left coset of $H$.
$H \cdot a$ would be defined similarly and called a right coset of $H$. If the operation is addition, cosets would be written $a+H$. The properties of left and right cosets are essentially the same, so I will deal only with left cosets and just say "cosets".

Consider the group $\left(\mathbb{Z}_{12},+\right)$ and the subgroup $H=\langle 3\rangle=\{0,3,6,9\}$.

## Cosets of a subgroup

Definition: If $(G, \cdot)$ is a group and $H$ is any subgroup of $G$, and $a$ is any element of $G$ then $a \cdot H$ means the set of all products $a \cdot h$ for $h \in H$. This set $a \cdot H$ is called a left coset of $H$.
$H \cdot a$ would be defined similarly and called a right coset of $H$. If the operation is addition, cosets would be written $a+H$. The properties of left and right cosets are essentially the same, so I will deal only with left cosets and just say "cosets".

Consider the group $\left(\mathbb{Z}_{12},+\right)$ and the subgroup $H=\langle 3\rangle=\{0,3,6,9\}$. Then $2+H=\{2,5,8,11\}$ is one of the cosets of $H$. Note that $2+H$ is the same set as $5+H$ (check this).

## Cosets of a subgroup

Definition: If $(G, \cdot)$ is a group and $H$ is any subgroup of $G$, and $a$ is any element of $G$ then $a \cdot H$ means the set of all products $a \cdot h$ for $h \in H$. This set $a \cdot H$ is called a left coset of $H$.
$H \cdot a$ would be defined similarly and called a right coset of $H$. If the operation is addition, cosets would be written $a+H$. The properties of left and right cosets are essentially the same, so I will deal only with left cosets and just say "cosets".

Consider the group $\left(\mathbb{Z}_{12},+\right)$ and the subgroup $H=\langle 3\rangle=\{0,3,6,9\}$. Then $2+H=\{2,5,8,11\}$ is one of the cosets of $H$. Note that $2+H$ is the same set as $5+H$ (check this). In the table on the next page, all possible distinct cosets of $H$ are shown

## Properties of cosets

Cosets of the subgroup $H=\{0,3,6,9\}$ in $\mathbb{Z}_{12}$ :

$$
\begin{aligned}
H=0+H & =\{0,3,6,9\} \\
1+H & =\{1,4,7,10\} \\
2+H & =\{2,5,8,11\}
\end{aligned}
$$

## Properties of cosets

Cosets of the subgroup $H=\{0,3,6,9\}$ in $\mathbb{Z}_{12}$ :

$$
\begin{aligned}
H=0+H & =\{0,3,6,9\} \\
1+H & =\{1,4,7,10\} \\
2+H & =\{2,5,8,11\}
\end{aligned}
$$

These repeat for other additions: $3+H=0+H, 4+H=1+H$, and so on. This sort of thing happens for every subgroup of any group.

## Properties of cosets

Cosets of the subgroup $H=\{0,3,6,9\}$ in $\mathbb{Z}_{12}$ :

$$
\begin{aligned}
H=0+H & =\{0,3,6,9\} \\
1+H & =\{1,4,7,10\} \\
2+H & =\{2,5,8,11\}
\end{aligned}
$$

These repeat for other additions: $3+H=0+H, 4+H=1+H$, and so on. This sort of thing happens for every subgroup of any group.

## Theorem

- Two cosets $a \cdot H$ and $b \cdot H$ are equal if $b^{-1} \cdot a$ belongs to $H$ and otherwise are disjoint.


## Properties of cosets

Cosets of the subgroup $H=\{0,3,6,9\}$ in $\mathbb{Z}_{12}$ :

$$
\begin{aligned}
H=0+H & =\{0,3,6,9\} \\
1+H & =\{1,4,7,10\} \\
2+H & =\{2,5,8,11\}
\end{aligned}
$$

These repeat for other additions: $3+H=0+H, 4+H=1+H$, and so on. This sort of thing happens for every subgroup of any group.

## Theorem

- Two cosets $a \cdot H$ and $b \cdot H$ are equal if $b^{-1} \cdot a$ belongs to $H$ and otherwise are disjoint.
- The size of each coset is the same as the size of $H:|a \cdot H|=|H|$


## Properties of cosets

Cosets of the subgroup $H=\{0,3,6,9\}$ in $\mathbb{Z}_{12}$ :

$$
\begin{aligned}
H=0+H & =\{0,3,6,9\} \\
1+H & =\{1,4,7,10\} \\
2+H & =\{2,5,8,11\}
\end{aligned}
$$

These repeat for other additions: $3+H=0+H, 4+H=1+H$, and so on. This sort of thing happens for every subgroup of any group.

## Theorem

- Two cosets $a \cdot H$ and $b \cdot H$ are equal if $b^{-1} \cdot a$ belongs to $H$ and otherwise are disjoint.
- The size of each coset is the same as the size of $H:|a \cdot H|=|H|$
- Every element of $G$ is in one of the cosets of $H$. In fact a belongs to $a \cdot H$ because $H$ contains the identity $e$, and so $a \cdot e$ belongs to $a \cdot H$.


## Lagrange's Theorem

The since all cosets are disjoint, and together make up all of $G$ it follows that $|G|$ is the sum of the sizes of the cosets.

## Lagrange's Theorem

The since all cosets are disjoint, and together make up all of $G$ it follows that $|G|$ is the sum of the sizes of the cosets. Since the cosets are all the size of $H$, that sum is just the product of the number of cosets times the size of $H$.

## Lagrange's Theorem

The since all cosets are disjoint, and together make up all of $G$ it follows that $|G|$ is the sum of the sizes of the cosets. Since the cosets are all the size of $H$, that sum is just the product of the number of cosets times the size of $H$. For example, we considered $\mathbb{Z}_{12}$ earlier. A certain subgroup had 3 cosets, each of size 4 .

## Lagrange's Theorem

The since all cosets are disjoint, and together make up all of $G$ it follows that $|G|$ is the sum of the sizes of the cosets. Since the cosets are all the size of $H$, that sum is just the product of the number of cosets times the size of $H$. For example, we considered $\mathbb{Z}_{12}$ earlier. A certain subgroup had 3 cosets, each of size 4 .

These ideas lead to the following theorem:

## Theorem (Lagrange's Theorem)

If $H$ is a subgroup of $G$, then $|H|$ evenly divides $|G|$ and the number of cosets of $H$ is $|G| /|H|$.

## Lagrange's Theorem

The since all cosets are disjoint, and together make up all of $G$ it follows that $|G|$ is the sum of the sizes of the cosets. Since the cosets are all the size of $H$, that sum is just the product of the number of cosets times the size of $H$. For example, we considered $\mathbb{Z}_{12}$ earlier. A certain subgroup had 3 cosets, each of size 4 .

These ideas lead to the following theorem:

## Theorem (Lagrange's Theorem)

If $H$ is a subgroup of $G$, then $|H|$ evenly divides $|G|$ and the number of cosets of $H$ is $|G| /|H|$.

We can apply Lagrange's Theorem to the subgroup $H=\langle a\rangle$.

## Lagrange's Theorem

The since all cosets are disjoint, and together make up all of $G$ it follows that $|G|$ is the sum of the sizes of the cosets. Since the cosets are all the size of $H$, that sum is just the product of the number of cosets times the size of $H$. For example, we considered $\mathbb{Z}_{12}$ earlier. A certain subgroup had 3 cosets, each of size 4 .

These ideas lead to the following theorem:

## Theorem (Lagrange's Theorem)

If $H$ is a subgroup of $G$, then $|H|$ evenly divides $|G|$ and the number of cosets of $H$ is $|G| /|H|$.

We can apply Lagrange's Theorem to the subgroup $H=\langle a\rangle$. Suppose $|H|=k$ and $|G|=n$, then $n / k=q$ is an integer. Since $a^{k}=e$ it follows from earlier that $a^{n}=a^{q k}=e$.

## Lagrange's Theorem

The since all cosets are disjoint, and together make up all of $G$ it follows that $|G|$ is the sum of the sizes of the cosets. Since the cosets are all the size of $H$, that sum is just the product of the number of cosets times the size of $H$. For example, we considered $\mathbb{Z}_{12}$ earlier. A certain subgroup had 3 cosets, each of size 4 .

These ideas lead to the following theorem:

## Theorem (Lagrange's Theorem)

If $H$ is a subgroup of $G$, then $|H|$ evenly divides $|G|$ and the number of cosets of $H$ is $|G| /|H|$.

We can apply Lagrange's Theorem to the subgroup $H=\langle a\rangle$. Suppose $|H|=k$ and $|G|=n$, then $n / k=q$ is an integer. Since $a^{k}=e$ it follows from earlier that $a^{n}=a^{q k}=e$. That is,

$$
\text { for any } a \text { in } G, a^{|G|}=e
$$

## Examples

We can check Lagrange's Theorem against our previous examples. The group ( $\mathbb{Z}_{9},+$ ) has order 9 and the subgroup $H=\langle 6\rangle$ has order 3 , so the number of cosets will be $9 / 3=3$.

## Examples

We can check Lagrange's Theorem against our previous examples. The group ( $\mathbb{Z}_{9},+$ ) has order 9 and the subgroup $H=\langle 6\rangle$ has order 3 , so the number of cosets will be $9 / 3=3$.

The group $\left(u\left(\mathbb{Z}_{9}\right), \cdot\right)$ has order $\phi(9)=6$ and the subgroup $H=\langle 4\rangle$ has order 3 , so the number of cosets will be $6 / 3=2$.

## Examples

We can check Lagrange's Theorem against our previous examples. The group ( $\mathbb{Z}_{9},+$ ) has order 9 and the subgroup $H=\langle 6\rangle$ has order 3 , so the number of cosets will be $9 / 3=3$.
The group $\left(u\left(\mathbb{Z}_{9}\right), \cdot\right)$ has order $\phi(9)=6$ and the subgroup $H=\langle 4\rangle$ has order 3 , so the number of cosets will be $6 / 3=2$.
The group $S_{4}$ has order $4!=24$ and the subgroup $\langle\alpha\rangle, \alpha=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4\end{array}\right)$ from before, has order 3 , so it has $24 / 3=8$ cosets.

## Examples

We can check Lagrange's Theorem against our previous examples. The group ( $\mathbb{Z}_{9},+$ ) has order 9 and the subgroup $H=\langle 6\rangle$ has order 3 , so the number of cosets will be $9 / 3=3$.
The group $\left(u\left(\mathbb{Z}_{9}\right), \cdot\right)$ has order $\phi(9)=6$ and the subgroup $H=\langle 4\rangle$ has order 3 , so the number of cosets will be $6 / 3=2$.
The group $S_{4}$ has order $4!=24$ and the subgroup $\langle\alpha\rangle, \alpha=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4\end{array}\right)$ from before, has order 3 , so it has $24 / 3=8$ cosets.

The group $\left(\mathbb{Z}_{15},+\right)$ has order 15 and the subgroup $\langle 3\rangle$ has order 5 , so there are $15 / 5=3$ cosets.

## Examples

We can check Lagrange's Theorem against our previous examples. The group $\left(\mathbb{Z}_{9},+\right)$ has order 9 and the subgroup $H=\langle 6\rangle$ has order 3 , so the number of cosets will be $9 / 3=3$.
The group $\left(u\left(\mathbb{Z}_{9}\right), \cdot\right)$ has order $\phi(9)=6$ and the subgroup $H=\langle 4\rangle$ has order 3 , so the number of cosets will be $6 / 3=2$.
The group $S_{4}$ has order $4!=24$ and the subgroup $\langle\alpha\rangle, \alpha=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4\end{array}\right)$ from before, has order 3 , so it has $24 / 3=8$ cosets.
The group $\left(\mathbb{Z}_{15},+\right)$ has order 15 and the subgroup $\langle 3\rangle$ has order 5 , so there are $15 / 5=3$ cosets.

The group $\left(u\left(\mathbb{Z}_{16}\right), \cdot\right)$ has order $\phi(16)=8$ and the subgroup $\langle 5\rangle$ has order 4 , so there are $8 / 4=2$ cosets.

## Examples

We can check Lagrange's Theorem against our previous examples. The group $\left(\mathbb{Z}_{9},+\right)$ has order 9 and the subgroup $H=\langle 6\rangle$ has order 3 , so the number of cosets will be $9 / 3=3$.
The group $\left(u\left(\mathbb{Z}_{9}\right), \cdot\right)$ has order $\phi(9)=6$ and the subgroup $H=\langle 4\rangle$ has order 3 , so the number of cosets will be $6 / 3=2$.
The group $S_{4}$ has order $4!=24$ and the subgroup $\langle\alpha\rangle, \alpha=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4\end{array}\right)$ from before, has order 3 , so it has $24 / 3=8$ cosets.
The group $\left(\mathbb{Z}_{15},+\right)$ has order 15 and the subgroup $\langle 3\rangle$ has order 5 , so there are $15 / 5=3$ cosets.

The group $\left(u\left(\mathbb{Z}_{16}\right), \cdot\right)$ has order $\phi(16)=8$ and the subgroup $\langle 5\rangle$ has order 4 , so there are $8 / 4=2$ cosets.

Lagrange's Theorem puts limits on the possible subgroups. For example, $\left(u\left(\mathbb{Z}_{16}\right), \cdot\right)$ cannot have any subgroups with size 3 or 5 . The only possible sizes are factors of 8 : $1,2,4,8$.

