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What are groups and what are they for?

Over the centuries mathematicians have noticed similarities in many problems. This
led to attempts to extract the common properties of these problems and study those
properties in isolation.

This was especially true for problems that involve symmetry, whether in geometry,
theory of equations, or combinatorics. Problems that involved symmetry led to the
concept of groups.

The symmetries in geometry are the kinds you learn about in grade school. If a figure
has left-right symmetry, that means you can flip the figure over left-to-right without
changing the figure.

There are is also rotation symmetry, meaning you can rotate the figure around a center
point some number of degrees without changing the figure. The group involved here is
not the figure, but rather the collection of motions that do not change the figure.
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Invertibility is the key

One property that motions of a symmetric figure have is that they can be combined.
Another key property is: a motion that doesn’t change the figure can be undone by
another motion: If a figure is flipped over, you can flip it back. If it is rotated, you can
rotate it back.

While symmetry can be obvious in geometry, it is not so obvious in other contexts.
Nevertheless it often exists below the surface, and the concept of a group can bring it
to light.
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What is a group?

A group is a set, together with a binary operation.

Depending on the example, the
operation could be addition, multiplication, or something like “apply two motions in a
row”.

If I don’t want to specify exactly what the operation is, I will use multiplication-like
notation. Here I will assume the operation is called ‘∗’. Then (G, ∗) is a group if

C1 For any a, b in G, a ∗ b is in G. (We say G is “closed under ∗”.)
G1 For any a, b, c in G, (a ∗ b) ∗ c = a ∗ (b ∗ c). (We say “∗ is associative”)

G2 There exists an element e ∈ G such that for every a in G, e ∗ a = a = a ∗ e. (e is
called the “identity” element. In examples, it could be 0 or 1 or something else
entirely.)

G3 For any a in G there is another element b such that a ∗ b = e = b ∗ a (b is called
the “inverse” of a. In examples, b can be written −a or a−1.)
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Examples: groups associated with rings

Example 1: The properties that a ring R is required to have (textbook, section 14.1)
include the 4 that groups need when ‘+’ is the operation, so (R,+) is a group:

1. The closure property is required of all rings

2. The associative property: (a+ b) + c = a+ (b+ c).

3. The identity element is 0: a+ 0 = a = 0 + a.

4. The inverse of a is −a: a+−a = 0 = −a+ a.

Example 2: If a ring R has a unity, then the set of units u(R) is a group where the
operation is multiplication.

1. The closure property follows from the fact that if a, b are in u(R) then
(ab)−1 = b−1a−1 so ab is also a unit.

2. The associative property (ab)c = a(bc) a basic condition for rings.

3. The identity element is the unity u: a · u = a = u · a.
4. The inverse of a is a−1. It is also a unit.
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Permutations

The permutations of a finite set A, can be viewed as one-to-one functions from the set
of possible positions to the set A.

But we’ve seen that ‘positions’ are not required for
permutations. We can consider all one-to-one functions from any set X to A and
count them as permutations.

To get a group out of this we need one-to-one functions from A to A. If A has n
elements we call Sn the set of all one-to-one functions from A to A, with the
operation of composition (denoted f ◦ g, defined by (f ◦ g)(x) = f(g(x))). We call Sn

the symmetric group on n objects. It has n! elements.

1. The composition of two one-to-one functions in Sn is also one-to-one.

2. The associative property f ◦ (g ◦ h) = (f ◦ g) ◦ h comes from the fact that when
applied to some element x both ultimately equal f(g(h(x))).

3. The identity element is the identity function: id(x) = x.

4. The inverse of f in Sn is the inverse function.
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Properties of groups

If it is not specified what group G we are dealing with, we will always use the same
notation as if the operation is multiplication.

That is, writing ab or a · b instead of
something like a ∗ b.

• The cancellation properties: if ab = ac then b = c. This is because we can
“multiply” both sides by a−1 to get a−1(ab) = a−1(ac) then regroup to
(a−1a)b = (a−1a)c. This is eb = ec which says b = c. Similarly, if ba = ca then
b = c.

• The identity is unique: if ba = a write this as ba = ea and then cancellation gives
b = e.

• The inverse is unique: if b and c are inverses of a, so that ab = e = ac, use
cancellation to get b = c.
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Order of a group

It is traditional to call the size of a group G its ‘order’. For example the order of Zn (a
group with addition) is n.

The order of u(Zn) (the group of units of the ring Zn) is ϕ(n) (because that is the
number of units in Zn).

The order of Sn is n!.

Going back to the idea of motions of a symmetric figure, the set of motions of a
square has order 8: 4 lines of symmetry (vertical, horizontal and 2 diagonals) give 4
‘flipping over’ motions. There are four rotations (by 0◦, 90◦, 180◦ and 270◦). We’ll
have more to say about these kinds of groups later in the chapter.
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A further look at examples

First a definition. A group G is called Abelian (or abelian) if ab = ba for all a, b in G.
(Named after the mathematician Niels Henrik Abel.)

A ring with addition is Abelian: a+ b = b+ a is one of the requirements for rings.

The group of units of a ring may not be Abelian, but if R is a commutative ring then
it is. In particular, u(Zn) is Abelian.

Some other groups associated with integers:

• The group of units of the ring Z is {1,−1} with multiplication for the operation.

• The additive group of Z2 is {0, 1} with addition mod 2.

• The additive group of Zn
2 consists of strings of bits with length n. The operation

is bitwise addition mod 2 (i.e., the bitwise xor).
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More on permutations

Consider S4, the permutations of a set A with 4 elements. The set doesn’t really
matter, so let’s use A = {1, 2, 3, 4}.

We need a notation that allows us to quickly define permutations. We use one based
on defining a function with a table of values. For example, the table

x 1 2 3 4

f(x) 2 3 1 4

defines a function f whose values are obtained by looking up x in the first row and
reading off the value f(x) below it. Notice that the second row is a permutation of the
first row. Every different permutation will produce a different one-to-one function.
This is in part why we simply call these functions permutations.
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Permutation notation

It is traditional to name permutations with Greek letters. It is also traditional to write
the composition of two permutation, say α and β, by αβ.

This is interpreted as ‘first α
then β’. [In function notation this would be β(α(x)) because we evaluate innermost

parentheses first.]. We abbreviate the table on the previous page as α =
(
1 2 3 4
2 3 1 4

)
,

which defines α to be the same function as f .

If β =
(
1 2 3 4
3 4 1 2

)
then αβ =

(
1 2 3 4
4 1 3 2

)
. The following diagrams can help to see this.

We can visualize functions using arrows. On the next slide we see arrows used to
represent α and β, as well as αβ
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Aids in composing permutation

Below α =
(
1 2 3 4
2 3 1 4

)
, β =

(
1 2 3 4
3 4 1 2

)
, and αβ =

(
1 2 3 4
4 1 3 2

)
.

1

2

3

4

1

2

3

4

1

2

3

4

α β

1

2

3

4

1

2

3

4

αβ

To get the second figure from the first, connect the head of an α-arrow to the tail of
the β-arrow and straighten it out.
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Aids in visualizing permutations

We can imagine permutations as representing motions. If 1, 2, 3, and 4 label four
points in a plane (or in space) we can imagine a permutation as moving one point to
another.

For example, α from before moves 1 to 2, 2 to 3, and 3 to 1 while leaving 4
where it is. We can represent this with arrows connecting the points. This is done
below for α and β

1 2

34

α

1 2

34

β

This can be used to compute αα. Just follow two arrows. For example starting from 1,
the arrows go to 2 then 3, so we see that αα moves 1 to 3. It is not so useful for
computing αβ. One can do that by drawing both permutations in the same figure,
with different colored arrows. See the figure on the next page.

13 / 14



Aids in visualizing permutations

We can imagine permutations as representing motions. If 1, 2, 3, and 4 label four
points in a plane (or in space) we can imagine a permutation as moving one point to
another. For example, α from before moves 1 to 2, 2 to 3, and 3 to 1 while leaving 4
where it is.

We can represent this with arrows connecting the points. This is done
below for α and β

1 2

34

α

1 2

34

β

This can be used to compute αα. Just follow two arrows. For example starting from 1,
the arrows go to 2 then 3, so we see that αα moves 1 to 3. It is not so useful for
computing αβ. One can do that by drawing both permutations in the same figure,
with different colored arrows. See the figure on the next page.

13 / 14



Aids in visualizing permutations

We can imagine permutations as representing motions. If 1, 2, 3, and 4 label four
points in a plane (or in space) we can imagine a permutation as moving one point to
another. For example, α from before moves 1 to 2, 2 to 3, and 3 to 1 while leaving 4
where it is. We can represent this with arrows connecting the points. This is done
below for α and β

1 2

34

α

1 2

34

β

This can be used to compute αα. Just follow two arrows. For example starting from 1,
the arrows go to 2 then 3, so we see that αα moves 1 to 3. It is not so useful for
computing αβ. One can do that by drawing both permutations in the same figure,
with different colored arrows. See the figure on the next page.

13 / 14



Aids in visualizing permutations

We can imagine permutations as representing motions. If 1, 2, 3, and 4 label four
points in a plane (or in space) we can imagine a permutation as moving one point to
another. For example, α from before moves 1 to 2, 2 to 3, and 3 to 1 while leaving 4
where it is. We can represent this with arrows connecting the points. This is done
below for α and β

1 2

34

α

1 2

34

β

This can be used to compute αα. Just follow two arrows.

For example starting from 1,
the arrows go to 2 then 3, so we see that αα moves 1 to 3. It is not so useful for
computing αβ. One can do that by drawing both permutations in the same figure,
with different colored arrows. See the figure on the next page.

13 / 14



Aids in visualizing permutations

We can imagine permutations as representing motions. If 1, 2, 3, and 4 label four
points in a plane (or in space) we can imagine a permutation as moving one point to
another. For example, α from before moves 1 to 2, 2 to 3, and 3 to 1 while leaving 4
where it is. We can represent this with arrows connecting the points. This is done
below for α and β

1 2

34

α

1 2

34

β

This can be used to compute αα. Just follow two arrows. For example starting from 1,
the arrows go to 2 then 3, so we see that αα moves 1 to 3.

It is not so useful for
computing αβ. One can do that by drawing both permutations in the same figure,
with different colored arrows. See the figure on the next page.

13 / 14



Aids in visualizing permutations

We can imagine permutations as representing motions. If 1, 2, 3, and 4 label four
points in a plane (or in space) we can imagine a permutation as moving one point to
another. For example, α from before moves 1 to 2, 2 to 3, and 3 to 1 while leaving 4
where it is. We can represent this with arrows connecting the points. This is done
below for α and β

1 2

34

α

1 2

34

β

This can be used to compute αα. Just follow two arrows. For example starting from 1,
the arrows go to 2 then 3, so we see that αα moves 1 to 3. It is not so useful for
computing αβ. One can do that by drawing both permutations in the same figure,
with different colored arrows. See the figure on the next page.
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Composing permutations as motions

1 2

34

We can then follow the black arrow from 1 to 2 and then the red arrow from 2 to 4 to
see that αβ moves 1 to 4. This gives

1 2

34

αβ

From this we can read off αβ =
(
1 2 3 4
4 1 3 2

)
.
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