Combinatorics Review

Daniel H. Luecking

March 15/25, 2024

First order recurrence relations

You will be expected to solve two types. In the first type, some constant or expression is added to each term to produce the next term.

First order recurrence relations

You will be expected to solve two types. In the first type, some constant or expression is added to each term to produce the next term. Some examples:

- $a_{n}=a_{n-1}+7, a_{0}=4$. Solution: $a_{n}=4+7 n$.

First order recurrence relations

You will be expected to solve two types. In the first type, some constant or expression is added to each term to produce the next term. Some examples:

- $a_{n}=a_{n-1}+7, a_{0}=4$. Solution: $a_{n}=4+7 n$.
- $a_{n}=a_{n-1}+3, a_{0}=1$. Solution: $a_{n}=1+3 n$.

First order recurrence relations

You will be expected to solve two types. In the first type, some constant or expression is added to each term to produce the next term. Some examples:

- $a_{n}=a_{n-1}+7, a_{0}=4$. Solution: $a_{n}=4+7 n$.
- $a_{n}=a_{n-1}+3, \quad a_{0}=1$. Solution: $a_{n}=1+3 n$.

These are called arithmetic progressions. Any recurrence relation of the form $a_{n}=a_{n-1}+d, \quad a_{0}=c$ (where d and c are constants) has the solution $a_{n}=c+d n$.
More generally, an expression can be added.

First order recurrence relations

You will be expected to solve two types. In the first type, some constant or expression is added to each term to produce the next term. Some examples:

- $a_{n}=a_{n-1}+7, a_{0}=4$. Solution: $a_{n}=4+7 n$.
- $a_{n}=a_{n-1}+3, \quad a_{0}=1$. Solution: $a_{n}=1+3 n$.

These are called arithmetic progressions. Any recurrence relation of the form $a_{n}=a_{n-1}+d, \quad a_{0}=c$ (where d and c are constants) has the solution $a_{n}=c+d n$.
More generally, an expression can be added.

- $a_{n}=a_{n-1}+4 n, \quad a_{0}=3$. Solution: $a_{n}=3+4+8+\cdots+4 n$, or

$$
a_{n}=3+\sum_{k=1}^{n} 4 k
$$

First order recurrence relations

You will be expected to solve two types. In the first type, some constant or expression is added to each term to produce the next term. Some examples:

- $a_{n}=a_{n-1}+7, a_{0}=4$. Solution: $a_{n}=4+7 n$.
- $a_{n}=a_{n-1}+3, \quad a_{0}=1$. Solution: $a_{n}=1+3 n$.

These are called arithmetic progressions. Any recurrence relation of the form $a_{n}=a_{n-1}+d, \quad a_{0}=c$ (where d and c are constants) has the solution $a_{n}=c+d n$.
More generally, an expression can be added.

- $a_{n}=a_{n-1}+4 n, \quad a_{0}=3$. Solution: $a_{n}=3+4+8+\cdots+4 n$, or

$$
a_{n}=3+\sum_{k=1}^{n} 4 k
$$

- $a_{n}=a_{n-1}+3^{n-1}, a_{0}=2$. Solution:

$$
a_{n}=2+1+3+3^{2}+\cdots+3^{n-1}, \text { or } a_{n}=2+\sum_{k=1}^{n} 3^{k-1}
$$

If a recurrence relation has the form $a_{n}=a_{n-1}+f(n)$ for some expression $f(n)$ and $a_{0}=c$ is the initial condition, then the solution is

$$
a_{n}=c+f(1)+f(2)+\cdots+f(n), \text { or } a_{n}=c+\sum_{k=1}^{n} f(k) .
$$

If a recurrence relation has the form $a_{n}=a_{n-1}+f(n)$ for some expression $f(n)$ and $a_{0}=c$ is the initial condition, then the solution is $a_{n}=c+f(1)+f(2)+\cdots+f(n)$, or $a_{n}=c+\sum_{k=1}^{n} f(k)$.
For the second type, some constant or expression is multiplied by each term to produce the next term.

If a recurrence relation has the form $a_{n}=a_{n-1}+f(n)$ for some expression $f(n)$ and $a_{0}=c$ is the initial condition, then the solution is $a_{n}=c+f(1)+f(2)+\cdots+f(n)$, or $a_{n}=c+\sum_{k=1}^{n} f(k)$.
For the second type, some constant or expression is multiplied by each term to produce the next term. Some examples:

- $a_{n}=3 a_{n-1}, a_{0}=2$. Solution $a_{n}=(2) 3^{n}$.

If a recurrence relation has the form $a_{n}=a_{n-1}+f(n)$ for some expression $f(n)$ and $a_{0}=c$ is the initial condition, then the solution is $a_{n}=c+f(1)+f(2)+\cdots+f(n)$, or $a_{n}=c+\sum_{k=1}^{n} f(k)$.
For the second type, some constant or expression is multiplied by each term to produce the next term. Some examples:

- $a_{n}=3 a_{n-1}, a_{0}=2$. Solution $a_{n}=(2) 3^{n}$.
- $a_{n}=5 a_{n-1}, a_{0}=4$. Solution $a_{n}=(4) 5^{n}$.

If a recurrence relation has the form $a_{n}=a_{n-1}+f(n)$ for some expression $f(n)$ and $a_{0}=c$ is the initial condition, then the solution is
$a_{n}=c+f(1)+f(2)+\cdots+f(n)$, or $a_{n}=c+\sum_{k=1}^{n} f(k)$.
For the second type, some constant or expression is multiplied by each term to produce the next term. Some examples:

- $a_{n}=3 a_{n-1}, a_{0}=2$. Solution $a_{n}=(2) 3^{n}$.
- $a_{n}=5 a_{n-1}, a_{0}=4$. Solution $a_{n}=(4) 5^{n}$.

These are called geometric progressions. Any recurrence relation of the form $a_{n}=r a_{n-1}, \quad a_{0}=c$ (where r and c are constants) has the solution $a_{n}=c r^{n}$.

If a recurrence relation has the form $a_{n}=a_{n-1}+f(n)$ for some expression $f(n)$ and $a_{0}=c$ is the initial condition, then the solution is
$a_{n}=c+f(1)+f(2)+\cdots+f(n)$, or $a_{n}=c+\sum_{k=1}^{n} f(k)$.
For the second type, some constant or expression is multiplied by each term to produce the next term. Some examples:

- $a_{n}=3 a_{n-1}, a_{0}=2$. Solution $a_{n}=(2) 3^{n}$.
- $a_{n}=5 a_{n-1}, a_{0}=4$. Solution $a_{n}=(4) 5^{n}$.

These are called geometric progressions. Any recurrence relation of the form $a_{n}=r a_{n-1}, \quad a_{0}=c$ (where r and c are constants) has the solution $a_{n}=c r^{n}$.
More generally, we can multiply by an expression.

If a recurrence relation has the form $a_{n}=a_{n-1}+f(n)$ for some expression $f(n)$ and $a_{0}=c$ is the initial condition, then the solution is
$a_{n}=c+f(1)+f(2)+\cdots+f(n)$, or $a_{n}=c+\sum_{k=1}^{n} f(k)$.
For the second type, some constant or expression is multiplied by each term to produce the next term. Some examples:

- $a_{n}=3 a_{n-1}, a_{0}=2$. Solution $a_{n}=(2) 3^{n}$.
- $a_{n}=5 a_{n-1}, a_{0}=4$. Solution $a_{n}=(4) 5^{n}$.

These are called geometric progressions. Any recurrence relation of the form $a_{n}=r a_{n-1}, \quad a_{0}=c$ (where r and c are constants) has the solution $a_{n}=c r^{n}$.
More generally, we can multiply by an expression.

- $a_{n}=n^{2} a_{n-1}, a_{0}=3$. Solution: $a_{n}=3\left(1^{2}\right)\left(2^{2}\right)\left(3^{2}\right) \cdots\left(n^{2}\right)$.

If a recurrence relation has the form $a_{n}=a_{n-1}+f(n)$ for some expression $f(n)$ and $a_{0}=c$ is the initial condition, then the solution is
$a_{n}=c+f(1)+f(2)+\cdots+f(n)$, or $a_{n}=c+\sum_{k=1}^{n} f(k)$.
For the second type, some constant or expression is multiplied by each term to produce the next term. Some examples:

- $a_{n}=3 a_{n-1}, a_{0}=2$. Solution $a_{n}=(2) 3^{n}$.
- $a_{n}=5 a_{n-1}, a_{0}=4$. Solution $a_{n}=(4) 5^{n}$.

These are called geometric progressions. Any recurrence relation of the form $a_{n}=r a_{n-1}, \quad a_{0}=c$ (where r and c are constants) has the solution $a_{n}=c r^{n}$.
More generally, we can multiply by an expression.

- $a_{n}=n^{2} a_{n-1}, a_{0}=3$. Solution: $a_{n}=3\left(1^{2}\right)\left(2^{2}\right)\left(3^{2}\right) \cdots\left(n^{2}\right)$.
- $a_{n}=4^{n} a_{n-1}, a_{0}=5$. Solution: $a_{n}=5\left(4^{1}\right)\left(4^{2}\right)\left(4^{3}\right) \cdots\left(4^{n}\right)$.

If a recurrence relation has the form $a_{n}=f(n) a_{n-1}$ for some expression $f(n)$ and $a_{0}=c$ is the initial condition, then the solution is $a_{n}=c f(1) f(2) f(3) \cdots f(n)$.

If a recurrence relation has the form $a_{n}=f(n) a_{n-1}$ for some expression $f(n)$ and $a_{0}=c$ is the initial condition, then the solution is $a_{n}=c f(1) f(2) f(3) \cdots f(n)$.

Second order recurrence relations

If a recurrence relation has the form $a_{n}=f(n) a_{n-1}$ for some expression $f(n)$ and $a_{0}=c$ is the initial condition, then the solution is $a_{n}=c f(1) f(2) f(3) \cdots f(n)$.

Second order recurrence relations

We considered only constant coefficient linear recurrence relations. These we split into homogeneous versus nonhomogeneous:

If a recurrence relation has the form $a_{n}=f(n) a_{n-1}$ for some expression $f(n)$ and $a_{0}=c$ is the initial condition, then the solution is $a_{n}=c f(1) f(2) f(3) \cdots f(n)$.

Second order recurrence relations

We considered only constant coefficient linear recurrence relations. These we split into homogeneous versus nonhomogeneous:

- Homogeneous: $a_{n}+b a_{n-1}+c a_{n-2}=0$.

If a recurrence relation has the form $a_{n}=f(n) a_{n-1}$ for some expression $f(n)$ and $a_{0}=c$ is the initial condition, then the solution is $a_{n}=c f(1) f(2) f(3) \cdots f(n)$.

Second order recurrence relations

We considered only constant coefficient linear recurrence relations. These we split into homogeneous versus nonhomogeneous:

- Homogeneous: $a_{n}+b a_{n-1}+c a_{n-2}=0$.
- Nonhomogeneous: $a_{n}+b a_{n-1}+c a_{n-2}=f(n)$.

If a recurrence relation has the form $a_{n}=f(n) a_{n-1}$ for some expression $f(n)$ and $a_{0}=c$ is the initial condition, then the solution is $a_{n}=c f(1) f(2) f(3) \cdots f(n)$.

Second order recurrence relations

We considered only constant coefficient linear recurrence relations. These we split into homogeneous versus nonhomogeneous:

- Homogeneous: $a_{n}+b a_{n-1}+c a_{n-2}=0$.
- Nonhomogeneous: $a_{n}+b a_{n-1}+c a_{n-2}=f(n)$.

We solve the homogeneous case by first solving the characteristic equation: $r^{2}+b r+c=0$. What we do next depends on what the roots are.

Case 1: there are two real roots

Case 1: there are two real roots

An example is $a_{n}-a_{n-1}-6 a_{n-2}=0, a_{0}=0, a_{1}=1$.

Case 1: there are two real roots

An example is $a_{n}-a_{n-1}-6 a_{n-2}=0, a_{0}=0, a_{1}=1$.
The characteristic equation is $r^{2}-r-6=0$ or $(r-3)(r+2)=0$.

Case 1: there are two real roots

An example is $a_{n}-a_{n-1}-6 a_{n-2}=0, a_{0}=0, a_{1}=1$.
The characteristic equation is $r^{2}-r-6=0$ or $(r-3)(r+2)=0$.
The solutions are $r=3$ and $r=-2$. These give basic solutions 3^{n} and $(-2)^{n}$.

Case 1: there are two real roots

An example is $a_{n}-a_{n-1}-6 a_{n-2}=0, a_{0}=0, a_{1}=1$.
The characteristic equation is $r^{2}-r-6=0$ or $(r-3)(r+2)=0$.
The solutions are $r=3$ and $r=-2$. These give basic solutions 3^{n} and $(-2)^{n}$.
The general solution is $a_{n}=C_{1} 3^{n}+C_{2}(-2)^{n}$.

Case 1: there are two real roots

An example is $a_{n}-a_{n-1}-6 a_{n-2}=0, a_{0}=0, a_{1}=1$.
The characteristic equation is $r^{2}-r-6=0$ or $(r-3)(r+2)=0$.
The solutions are $r=3$ and $r=-2$. These give basic solutions 3^{n} and $(-2)^{n}$.
The general solution is $a_{n}=C_{1} 3^{n}+C_{2}(-2)^{n}$.
The initial conditions can be written:

$$
a_{0}=0=C_{1}+C_{2} \quad \text { and } \quad a_{1}=1=3 C_{1}-2 C_{2}
$$

Case 1: there are two real roots

An example is $a_{n}-a_{n-1}-6 a_{n-2}=0, a_{0}=0, a_{1}=1$.
The characteristic equation is $r^{2}-r-6=0$ or $(r-3)(r+2)=0$.
The solutions are $r=3$ and $r=-2$. These give basic solutions 3^{n} and $(-2)^{n}$.
The general solution is $a_{n}=C_{1} 3^{n}+C_{2}(-2)^{n}$.
The initial conditions can be written:

$$
a_{0}=0=C_{1}+C_{2} \quad \text { and } \quad a_{1}=1=3 C_{1}-2 C_{2}
$$

Solving these gives $C_{1}=1 / 5$ and $C_{2}=-1 / 5$, and the completed solution is

$$
a_{n}=(1 / 5) 3^{n}-(1 / 5)(-2)^{n} .
$$

Case 2: there is a double root

Case 2: there is a double root
An example is $a_{n}-10 a_{n-1}+25 a_{n-2}=0, a_{0}=1, a_{1}=7$.

Case 2: there is a double root
An example is $a_{n}-10 a_{n-1}+25 a_{n-2}=0, a_{0}=1, a_{1}=7$.
The characteristic equation is $r^{2}-10 r+25=0$ or $(r-5)(r-5)=0$.

Case 2: there is a double root

An example is $a_{n}-10 a_{n-1}+25 a_{n-2}=0, a_{0}=1, a_{1}=7$.
The characteristic equation is $r^{2}-10 r+25=0$ or $(r-5)(r-5)=0$.
The solutions are $r=5$ and $r=5$. These give basic solutions 5^{n} and $n 5^{n}$.

Case 2: there is a double root

An example is $a_{n}-10 a_{n-1}+25 a_{n-2}=0, a_{0}=1, a_{1}=7$.
The characteristic equation is $r^{2}-10 r+25=0$ or $(r-5)(r-5)=0$.
The solutions are $r=5$ and $r=5$. These give basic solutions 5^{n} and $n 5^{n}$.
The general solution is $a_{n}=C_{1} 5^{n}+C_{2} n 5^{n}$.

Case 2: there is a double root

An example is $a_{n}-10 a_{n-1}+25 a_{n-2}=0, a_{0}=1, a_{1}=7$.
The characteristic equation is $r^{2}-10 r+25=0$ or $(r-5)(r-5)=0$.
The solutions are $r=5$ and $r=5$. These give basic solutions 5^{n} and $n 5^{n}$.
The general solution is $a_{n}=C_{1} 5^{n}+C_{2} n 5^{n}$.
The initial conditions can be written:

$$
a_{0}=1=C_{1} \quad \text { and } \quad a_{1}=7=5 C_{1}+5 C_{2}
$$

Case 2: there is a double root

An example is $a_{n}-10 a_{n-1}+25 a_{n-2}=0, a_{0}=1, a_{1}=7$.
The characteristic equation is $r^{2}-10 r+25=0$ or $(r-5)(r-5)=0$.
The solutions are $r=5$ and $r=5$. These give basic solutions 5^{n} and $n 5^{n}$.
The general solution is $a_{n}=C_{1} 5^{n}+C_{2} n 5^{n}$.
The initial conditions can be written:

$$
a_{0}=1=C_{1} \quad \text { and } \quad a_{1}=7=5 C_{1}+5 C_{2}
$$

Solving these gives $C_{1}=1$ and $C_{2}=2 / 5$, and the completed solution is

$$
a_{n}=5^{n}+(2 / 5) n 5^{n} .
$$

Case 3: there are two complex roots

Case 3: there are two complex roots

An example is $a_{n}-6 a_{n-1}+10 a_{n-2}=0, a_{0}=2, a_{1}=4$.

Case 3: there are two complex roots

An example is $a_{n}-6 a_{n-1}+10 a_{n-2}=0, a_{0}=2, a_{1}=4$.
The characteristic equation is $r^{2}-6 r+10=0$.

Case 3: there are two complex roots

An example is $a_{n}-6 a_{n-1}+10 a_{n-2}=0, a_{0}=2, a_{1}=4$.
The characteristic equation is $r^{2}-6 r+10=0$.
The solutions are $r=3+i$ and $r=3-i$. These give basic solutions $(3+i)^{n}$ and $(3-i)^{n}$.

Case 3: there are two complex roots

An example is $a_{n}-6 a_{n-1}+10 a_{n-2}=0, a_{0}=2, a_{1}=4$.
The characteristic equation is $r^{2}-6 r+10=0$.
The solutions are $r=3+i$ and $r=3-i$. These give basic solutions $(3+i)^{n}$ and $(3-i)^{n}$.
The general solution is $a_{n}=C_{1}(3+i)^{n}+C_{2}(3-i)^{n}$.

Case 3: there are two complex roots

An example is $a_{n}-6 a_{n-1}+10 a_{n-2}=0, a_{0}=2, a_{1}=4$.
The characteristic equation is $r^{2}-6 r+10=0$.
The solutions are $r=3+i$ and $r=3-i$. These give basic solutions $(3+i)^{n}$ and $(3-i)^{n}$.
The general solution is $a_{n}=C_{1}(3+i)^{n}+C_{2}(3-i)^{n}$.
The initial conditions can be written:

$$
a_{0}=2=C_{1}+C_{2} \quad \text { and } \quad a_{1}=4=(3+i) C_{1}+(3-i) C_{2}
$$

Case 3: there are two complex roots

An example is $a_{n}-6 a_{n-1}+10 a_{n-2}=0, a_{0}=2, a_{1}=4$.
The characteristic equation is $r^{2}-6 r+10=0$.
The solutions are $r=3+i$ and $r=3-i$. These give basic solutions $(3+i)^{n}$ and $(3-i)^{n}$.
The general solution is $a_{n}=C_{1}(3+i)^{n}+C_{2}(3-i)^{n}$.
The initial conditions can be written:

$$
a_{0}=2=C_{1}+C_{2} \quad \text { and } \quad a_{1}=4=(3+i) C_{1}+(3-i) C_{2}
$$

Solving these gives $C_{1}=1+i$ and $C_{2}=1-i$, and the completed solution is

$$
a_{n}=(1+i)(3+i)^{n}+(1-i)(3-i)^{n} .
$$

Nonhomogeneous recurrence relations

Nonhomogeneous recurrence relations

Our method consists of (1) solving the corresponding homogeneous recurrence relation,

Nonhomogeneous recurrence relations

Our method consists of (1) solving the corresponding homogeneous recurrence relation, (2) finding a particular solution,

Nonhomogeneous recurrence relations

Our method consists of (1) solving the corresponding homogeneous recurrence relation, (2) finding a particular solution, (3) adding the two together,

Nonhomogeneous recurrence relations

Our method consists of (1) solving the corresponding homogeneous recurrence relation, (2) finding a particular solution, (3) adding the two together, and (4) applying the initial conditions.

Nonhomogeneous recurrence relations

Our method consists of (1) solving the corresponding homogeneous recurrence relation, (2) finding a particular solution, (3) adding the two together, and (4) applying the initial conditions.
We've already covered (1), while (3) and (4) are straightforward, so we'll concentrate on (2).

Nonhomogeneous recurrence relations

Our method consists of (1) solving the corresponding homogeneous recurrence relation, (2) finding a particular solution, (3) adding the two together, and (4) applying the initial conditions.
We've already covered (1), while (3) and (4) are straightforward, so we'll concentrate on (2).
If the right side is a polynomial, possibly times an nth power, then we expect there is a particular solution that is a polynomial of the same degree times the same nth power.

Nonhomogeneous recurrence relations

Our method consists of (1) solving the corresponding homogeneous recurrence relation, (2) finding a particular solution, (3) adding the two together, and (4) applying the initial conditions.
We've already covered (1), while (3) and (4) are straightforward, so we'll concentrate on (2).
If the right side is a polynomial, possibly times an nth power, then we expect there is a particular solution that is a polynomial of the same degree times the same nth power.
An example: $a_{n}-a_{n-1}-6 a_{n-2}=(4) 2^{n}, a_{0}=1, a_{1}=2$.

We solve it by first solving the corresponding homogeneous recurrence relation: $a_{n}-a_{n-1}-6 a_{n-2}=0$. This gives the homogeneous solution:

$$
a_{n}^{(h)}=C_{1} 3^{n}+C_{2}(-2)^{n} .
$$

We solve it by first solving the corresponding homogeneous recurrence relation: $a_{n}-a_{n-1}-6 a_{n-2}=0$. This gives the homogeneous solution:

$$
a_{n}^{(h)}=C_{1} 3^{n}+C_{2}(-2)^{n} .
$$

Then we decide what a particular solution might look like.

We solve it by first solving the corresponding homogeneous recurrence relation: $a_{n}-a_{n-1}-6 a_{n-2}=0$. This gives the homogeneous solution:

$$
a_{n}^{(h)}=C_{1} 3^{n}+C_{2}(-2)^{n} .
$$

Then we decide what a particular solution might look like. Since the right side is a constant times 2^{n}, we suppose one solution might be a constant times 2^{n}

We solve it by first solving the corresponding homogeneous recurrence relation: $a_{n}-a_{n-1}-6 a_{n-2}=0$. This gives the homogeneous solution:

$$
a_{n}^{(h)}=C_{1} 3^{n}+C_{2}(-2)^{n} .
$$

Then we decide what a particular solution might look like. Since the right side is a constant times 2^{n}, we suppose one solution might be a constant times 2^{n} and so we put $a_{n}=A 2^{n}$ into the recurrence relation and see what A will have to be:

$$
A 2^{n}-A 2^{n-1}-6 A 2^{n-2}=(4) 2^{n} \Longrightarrow-A=4 \Longrightarrow A=-4 .
$$

We solve it by first solving the corresponding homogeneous recurrence relation: $a_{n}-a_{n-1}-6 a_{n-2}=0$. This gives the homogeneous solution:

$$
a_{n}^{(h)}=C_{1} 3^{n}+C_{2}(-2)^{n} .
$$

Then we decide what a particular solution might look like. Since the right side is a constant times 2^{n}, we suppose one solution might be a constant times 2^{n} and so we put $a_{n}=A 2^{n}$ into the recurrence relation and see what A will have to be:

$$
A 2^{n}-A 2^{n-1}-6 A 2^{n-2}=(4) 2^{n} \Longrightarrow-A=4 \Longrightarrow A=-4 .
$$

This gives us the particular solution:

$$
a_{n}^{(p)}=-(4) 2^{n} .
$$

The general solution is then $a_{n}=a_{n}^{(h)}+a_{n}^{(p)}=C_{1} 3^{n}+C_{2}(-2)^{n}-(4) 2^{n}$.

The general solution is then $a_{n}=a_{n}^{(h)}+a_{n}^{(p)}=C_{1} 3^{n}+C_{2}(-2)^{n}-(4) 2^{n}$. Now we apply the initial conditions

$$
a_{0}=1=C_{1}+C_{2}-4 \quad \text { and } \quad a_{1}=2=3 C_{1}-2 C_{2}-8
$$

The general solution is then $a_{n}=a_{n}^{(h)}+a_{n}^{(p)}=C_{1} 3^{n}+C_{2}(-2)^{n}-(4) 2^{n}$. Now we apply the initial conditions

$$
a_{0}=1=C_{1}+C_{2}-4 \quad \text { and } \quad a_{1}=2=3 C_{1}-2 C_{2}-8
$$

This has solutions $C_{1}=4$ and $C_{2}=1$ for a completed solution:

$$
a_{n}=(4) 3^{n}+(-2)^{n}-(4) 2^{n} .
$$

The general solution is then $a_{n}=a_{n}^{(h)}+a_{n}^{(p)}=C_{1} 3^{n}+C_{2}(-2)^{n}-(4) 2^{n}$. Now we apply the initial conditions

$$
a_{0}=1=C_{1}+C_{2}-4 \quad \text { and } \quad a_{1}=2=3 C_{1}-2 C_{2}-8
$$

This has solutions $C_{1}=4$ and $C_{2}=1$ for a completed solution:

$$
a_{n}=(4) 3^{n}+(-2)^{n}-(4) 2^{n} .
$$

A snag in the method

The general solution is then $a_{n}=a_{n}^{(h)}+a_{n}^{(p)}=C_{1} 3^{n}+C_{2}(-2)^{n}-(4) 2^{n}$. Now we apply the initial conditions

$$
a_{0}=1=C_{1}+C_{2}-4 \quad \text { and } \quad a_{1}=2=3 C_{1}-2 C_{2}-8
$$

This has solutions $C_{1}=4$ and $C_{2}=1$ for a completed solution:

$$
a_{n}=(4) 3^{n}+(-2)^{n}-(4) 2^{n} .
$$

A snag in the method
Consider the recurrence relation $a_{n}-a_{n-1}-2 a_{n-2}=(3) 2^{n}, a_{0}=0$, $a_{1}=1$.

The general solution is then $a_{n}=a_{n}^{(h)}+a_{n}^{(p)}=C_{1} 3^{n}+C_{2}(-2)^{n}-(4) 2^{n}$. Now we apply the initial conditions

$$
a_{0}=1=C_{1}+C_{2}-4 \quad \text { and } \quad a_{1}=2=3 C_{1}-2 C_{2}-8
$$

This has solutions $C_{1}=4$ and $C_{2}=1$ for a completed solution:

$$
a_{n}=(4) 3^{n}+(-2)^{n}-(4) 2^{n} .
$$

A snag in the method

Consider the recurrence relation $a_{n}-a_{n-1}-2 a_{n-2}=(3) 2^{n}, a_{0}=0$, $a_{1}=1$. If we tried the same particular solution: $a_{n}=A 2^{n}$ the same process would give us $0 A=3$, which is impossible for any A.

What goes wrong here is that the homogeneous solution:

$$
a_{n}^{(h)}=C_{1} 2^{n}+C_{2}(-1)^{n}
$$

shows that $A 2^{n}$ is a solution of the homogeneous equation and so will always produce 0 and never (3) 2^{n}.

What goes wrong here is that the homogeneous solution:

$$
a_{n}^{(h)}=C_{1} 2^{n}+C_{2}(-1)^{n}
$$

shows that $A 2^{n}$ is a solution of the homogeneous equation and so will always produce 0 and never (3) 2^{n}. In cases like this we multiply the proposed solution $A 2^{n}$ by n and try $a_{n}=A n 2^{n}$.

What goes wrong here is that the homogeneous solution:

$$
a_{n}^{(h)}=C_{1} 2^{n}+C_{2}(-1)^{n}
$$

shows that $A 2^{n}$ is a solution of the homogeneous equation and so will always produce 0 and never (3) 2^{n}. In cases like this we multiply the proposed solution $A 2^{n}$ by n and try $a_{n}=A n 2^{n}$.
Putting this in the recurrence relation gives

$$
A n 2^{n}-A(n-1) 2^{n-1}-2 A(n-2) 2^{n-2}=(3) 2^{n} \Longrightarrow(3 / 2) A=3
$$

What goes wrong here is that the homogeneous solution:

$$
a_{n}^{(h)}=C_{1} 2^{n}+C_{2}(-1)^{n}
$$

shows that $A 2^{n}$ is a solution of the homogeneous equation and so will always produce 0 and never (3) 2^{n}. In cases like this we multiply the proposed solution $A 2^{n}$ by n and try $a_{n}=A n 2^{n}$.
Putting this in the recurrence relation gives

$$
A n 2^{n}-A(n-1) 2^{n-1}-2 A(n-2) 2^{n-2}=(3) 2^{n} \Longrightarrow(3 / 2) A=3
$$

This yelds $A=2$ and so, $a_{n}^{(p)}=2 n 2^{n}$. Then, the general solution is

$$
a_{n}=C_{1} 2^{n}+C_{2}(-1)^{n}+2 n 2^{n} .
$$

What goes wrong here is that the homogeneous solution:

$$
a_{n}^{(h)}=C_{1} 2^{n}+C_{2}(-1)^{n}
$$

shows that $A 2^{n}$ is a solution of the homogeneous equation and so will always produce 0 and never (3) 2^{n}. In cases like this we multiply the proposed solution $A 2^{n}$ by n and try $a_{n}=A n 2^{n}$.
Putting this in the recurrence relation gives

$$
A n 2^{n}-A(n-1) 2^{n-1}-2 A(n-2) 2^{n-2}=(3) 2^{n} \Longrightarrow(3 / 2) A=3
$$

This yelds $A=2$ and so, $a_{n}^{(p)}=2 n 2^{n}$. Then, the general solution is

$$
a_{n}=C_{1} 2^{n}+C_{2}(-1)^{n}+2 n 2^{n}
$$

Applying the initial conditions to this:

$$
a_{0}=0=C_{1}+C_{2}+0 \quad \text { and } \quad a_{1}=1=2 C_{1}-C_{2}+4
$$

we get $C_{1}=-1$ and $C_{2}=1$ for a complete solution:

$$
a_{n}=-2^{n}+(-1)^{n}+2 n 2^{n} .
$$

Computations in \mathbb{Z}_{n}

\mathbb{Z}_{n} is the set $\{0,1, \ldots, n-1\}$. We make it a ring by giving it two operations we call addition + and multiplication \cdot, defined as follows.

$$
m+k=(m+k \bmod n) \quad \text { and } \quad m \cdot k=(m k \bmod n)
$$

For example, in \mathbb{Z}_{6} we have the following operation tables:

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

\cdot	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

In any ring $-x$ is that element which when added to x produces $0 . \ln \mathbb{Z}_{6}$, $2+4=(6 \bmod 6)=0$ so $-2=4$. Similarly $-5=1$ and $-3=3$.

In any ring $-x$ is that element which when added to x produces $0 . \ln \mathbb{Z}_{6}$, $2+4=(6 \bmod 6)=0$ so $-2=4$. Similarly $-5=1$ and $-3=3$.
If an element u in a ring R satisfies $u \cdot x=x \cdot u=x$ for all elements x in R, then u is called a unity and we say R is a ring with unity.

In any ring $-x$ is that element which when added to x produces 0 . $\ln \mathbb{Z}_{6}$, $2+4=(6 \bmod 6)=0$ so $-2=4$. Similarly $-5=1$ and $-3=3$.
If an element u in a ring R satisfies $u \cdot x=x \cdot u=x$ for all elements x in R, then u is called a unity and we say R is a ring with unity. All \mathbb{Z}_{n} are rings with unity and 1 is the unity.

In any ring $-x$ is that element which when added to x produces $0 . \ln \mathbb{Z}_{6}$, $2+4=(6 \bmod 6)=0$ so $-2=4$. Similarly $-5=1$ and $-3=3$.
If an element u in a ring R satisfies $u \cdot x=x \cdot u=x$ for all elements x in R, then u is called a unity and we say R is a ring with unity. All \mathbb{Z}_{n} are rings with unity and 1 is the unity.
For a ring R with unity u, an element x is called a unit if there is an element y in R that satisfies $x \cdot y=y \cdot x=u$.

In any ring $-x$ is that element which when added to x produces $0 . \ln \mathbb{Z}_{6}$, $2+4=(6 \bmod 6)=0$ so $-2=4$. Similarly $-5=1$ and $-3=3$.
If an element u in a ring R satisfies $u \cdot x=x \cdot u=x$ for all elements x in R, then u is called a unity and we say R is a ring with unity. All \mathbb{Z}_{n} are rings with unity and 1 is the unity.
For a ring R with unity u, an element x is called a unit if there is an element y in R that satisfies $x \cdot y=y \cdot x=u$. We call y the inverse of x and denote it by x^{-1}.

In any ring $-x$ is that element which when added to x produces $0 . \ln \mathbb{Z}_{6}$, $2+4=(6 \bmod 6)=0$ so $-2=4$. Similarly $-5=1$ and $-3=3$.
If an element u in a ring R satisfies $u \cdot x=x \cdot u=x$ for all elements x in R, then u is called a unity and we say R is a ring with unity. All \mathbb{Z}_{n} are rings with unity and 1 is the unity.
For a ring R with unity u, an element x is called a unit if there is an element y in R that satisfies $x \cdot y=y \cdot x=u$. We call y the inverse of x and denote it by x^{-1}.
In \mathbb{Z}_{6} only the elements 1 and 5 are units with $1^{-1}=1$ and $5^{-1}=5$.

In any ring $-x$ is that element which when added to x produces $0 . \ln \mathbb{Z}_{6}$, $2+4=(6 \bmod 6)=0$ so $-2=4$. Similarly $-5=1$ and $-3=3$.
If an element u in a ring R satisfies $u \cdot x=x \cdot u=x$ for all elements x in R, then u is called a unity and we say R is a ring with unity. All \mathbb{Z}_{n} are rings with unity and 1 is the unity.
For a ring R with unity u, an element x is called a unit if there is an element y in R that satisfies $x \cdot y=y \cdot x=u$. We call y the inverse of x and denote it by x^{-1}.
$\ln \mathbb{Z}_{6}$ only the elements 1 and 5 are units with $1^{-1}=1$ and $5^{-1}=5$. In \mathbb{Z}_{7}, all the elements except 0 are units and

$$
1^{-1}=1, \quad 2^{-1}=4, \quad 3^{-1}=5, \quad 4^{-1}=2, \quad 5^{-1}=3, \quad 6^{-1}=6
$$

You will be expected to do any computations in any of the rings \mathbb{Z}_{n}.

You will be expected to do any computations in any of the rings \mathbb{Z}_{n}. For example, in \mathbb{Z}_{19}.
$7+13+4 \cdot 11=1+6=7$, or $4 \cdot 7 \cdot 3=9 \cdot 3=8$, or $-7=12$, or $4^{-1}=5$.

You will be expected to do any computations in any of the rings \mathbb{Z}_{n}. For example, in \mathbb{Z}_{19}.
$7+13+4 \cdot 11=1+6=7$, or $4 \cdot 7 \cdot 3=9 \cdot 3=8$, or $-7=12$, or $4^{-1}=5$.
We know that an element k of \mathbb{Z}_{n} is a proper zero divisor if it is not 0 and $\operatorname{gcd}(n, k)>1$.

You will be expected to do any computations in any of the rings \mathbb{Z}_{n}. For example, in \mathbb{Z}_{19}.
$7+13+4 \cdot 11=1+6=7$, or $4 \cdot 7 \cdot 3=9 \cdot 3=8$, or $-7=12$, or $4^{-1}=5$.
We know that an element k of \mathbb{Z}_{n} is a proper zero divisor if it is not 0 and $\operatorname{gcd}(n, k)>1$. That is, there is an integer larger than 1 that evenly divides both k and n.

You will be expected to do any computations in any of the rings \mathbb{Z}_{n}. For example, in \mathbb{Z}_{19}.
$7+13+4 \cdot 11=1+6=7$, or $4 \cdot 7 \cdot 3=9 \cdot 3=8$, or $-7=12$, or $4^{-1}=5$.
We know that an element k of \mathbb{Z}_{n} is a proper zero divisor if it is not 0 and $\operatorname{gcd}(n, k)>1$. That is, there is an integer larger than 1 that evenly divides both k and n. All other elements, those that satisfy $\operatorname{gcd}(n, k)=1$, are units.

You will be expected to do any computations in any of the rings \mathbb{Z}_{n}. For example, in \mathbb{Z}_{19}.
$7+13+4 \cdot 11=1+6=7$, or $4 \cdot 7 \cdot 3=9 \cdot 3=8$, or $-7=12$, or $4^{-1}=5$.
We know that an element k of \mathbb{Z}_{n} is a proper zero divisor if it is not 0 and $\operatorname{gcd}(n, k)>1$. That is, there is an integer larger than 1 that evenly divides both k and n. All other elements, those that satisfy $\operatorname{gcd}(n, k)=1$, are units.
For example, in \mathbb{Z}_{12} the proper zero divisors are $2,3,4,6,8,9,10$ and the units are $1,5,7,11$. Notice that 0 is not in either list.

You will be expected to do any computations in any of the rings \mathbb{Z}_{n}. For example, in \mathbb{Z}_{19}.
$7+13+4 \cdot 11=1+6=7$, or $4 \cdot 7 \cdot 3=9 \cdot 3=8$, or $-7=12$, or $4^{-1}=5$.
We know that an element k of \mathbb{Z}_{n} is a proper zero divisor if it is not 0 and $\operatorname{gcd}(n, k)>1$. That is, there is an integer larger than 1 that evenly divides both k and n. All other elements, those that satisfy $\operatorname{gcd}(n, k)=1$, are units.
For example, in \mathbb{Z}_{12} the proper zero divisors are $2,3,4,6,8,9,10$ and the units are $1,5,7,11$. Notice that 0 is not in either list. You will be expected to be able to list these for any not-too-large \mathbb{Z}_{n}.

We have a formula for the number of units in \mathbb{Z}_{n}, if n can be completely factored into primes.

We have a formula for the number of units in \mathbb{Z}_{n}, if n can be completely factored into primes. The number of units in \mathbb{Z}_{n} is

$$
\phi(n)=n\left(\frac{p_{1}-1}{p_{1}}\right)\left(\frac{p_{2}-1}{p_{2}}\right) \cdots
$$

We have a formula for the number of units in \mathbb{Z}_{n}, if n can be completely factored into primes. The number of units in \mathbb{Z}_{n} is

$$
\phi(n)=n\left(\frac{p_{1}-1}{p_{1}}\right)\left(\frac{p_{2}-1}{p_{2}}\right) \cdots
$$

continuing through all the different, prime divisors p_{1}, p_{2}, \ldots of n.

We have a formula for the number of units in \mathbb{Z}_{n}, if n can be completely factored into primes. The number of units in \mathbb{Z}_{n} is

$$
\phi(n)=n\left(\frac{p_{1}-1}{p_{1}}\right)\left(\frac{p_{2}-1}{p_{2}}\right) \cdots
$$

continuing through all the different, prime divisors p_{1}, p_{2}, \ldots of n. For example, because $2100=2^{2} \cdot 3 \cdot 5^{2} \cdot 7$, the number of units in \mathbb{Z}_{2100} is

$$
\phi(2100)=2100\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\left(\frac{4}{5}\right)\left(\frac{6}{7}\right)=\frac{(2100)(1)(2)(4)(6)}{(2)(3)(5)(7)}=480
$$

We have a formula for the number of units in \mathbb{Z}_{n}, if n can be completely factored into primes. The number of units in \mathbb{Z}_{n} is

$$
\phi(n)=n\left(\frac{p_{1}-1}{p_{1}}\right)\left(\frac{p_{2}-1}{p_{2}}\right) \cdots
$$

continuing through all the different, prime divisors p_{1}, p_{2}, \ldots of n. For example, because $2100=2^{2} \cdot 3 \cdot 5^{2} \cdot 7$, the number of units in \mathbb{Z}_{2100} is

$$
\phi(2100)=2100\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\left(\frac{4}{5}\right)\left(\frac{6}{7}\right)=\frac{(2100)(1)(2)(4)(6)}{(2)(3)(5)(7)}=480
$$

The number of proper zero divisors is one less than everything else (because 0 is neither a unit nor a proper zero divisor). That is, $n-\phi(n)-1$.

We have a formula for the number of units in \mathbb{Z}_{n}, if n can be completely factored into primes. The number of units in \mathbb{Z}_{n} is

$$
\phi(n)=n\left(\frac{p_{1}-1}{p_{1}}\right)\left(\frac{p_{2}-1}{p_{2}}\right) \cdots
$$

continuing through all the different, prime divisors p_{1}, p_{2}, \ldots of n. For example, because $2100=2^{2} \cdot 3 \cdot 5^{2} \cdot 7$, the number of units in \mathbb{Z}_{2100} is

$$
\phi(2100)=2100\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\left(\frac{4}{5}\right)\left(\frac{6}{7}\right)=\frac{(2100)(1)(2)(4)(6)}{(2)(3)(5)(7)}=480
$$

The number of proper zero divisors is one less than everything else (because 0 is neither a unit nor a proper zero divisor). That is, $n-\phi(n)-1$.
For \mathbb{Z}_{2100} there are $2100-480-1=1619$ proper zero divisors.

We have a formula for the number of units in \mathbb{Z}_{n}, if n can be completely factored into primes. The number of units in \mathbb{Z}_{n} is

$$
\phi(n)=n\left(\frac{p_{1}-1}{p_{1}}\right)\left(\frac{p_{2}-1}{p_{2}}\right) \cdots
$$

continuing through all the different, prime divisors p_{1}, p_{2}, \ldots of n. For example, because $2100=2^{2} \cdot 3 \cdot 5^{2} \cdot 7$, the number of units in \mathbb{Z}_{2100} is

$$
\phi(2100)=2100\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\left(\frac{4}{5}\right)\left(\frac{6}{7}\right)=\frac{(2100)(1)(2)(4)(6)}{(2)(3)(5)(7)}=480
$$

The number of proper zero divisors is one less than everything else (because 0 is neither a unit nor a proper zero divisor). That is, $n-\phi(n)-1$.
For \mathbb{Z}_{2100} there are $2100-480-1=1619$ proper zero divisors. You will be expected to do this for any \mathbb{Z}_{n} if I give you the factorization of n.

Finally, you should be able to find the inverse of any element in any \mathbb{Z}_{n} using the Euclidean algorithm.

Finally, you should be able to find the inverse of any element in any \mathbb{Z}_{n} using the Euclidean algorithm.
For example, find 101^{-1} in the ring \mathbb{Z}_{409}.

Finally, you should be able to find the inverse of any element in any \mathbb{Z}_{n} using the Euclidean algorithm.
For example, find 101^{-1} in the ring \mathbb{Z}_{409}. The Euclidean algorithm gives

$$
\left\{\begin{array} { l }
{ 4 0 9 = 4 (1 0 1) + 5 } \\
{ 1 0 1 = 2 0 (5) + 1 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
n=4 k+r_{1} \\
k=20 r_{1}+r_{2}
\end{array}\right.\right.
$$

where $n=409, k=101, r_{1}=5$ and $r_{2}=1$.

Finally, you should be able to find the inverse of any element in any \mathbb{Z}_{n} using the Euclidean algorithm.
For example, find 101^{-1} in the ring \mathbb{Z}_{409}. The Euclidean algorithm gives

$$
\left\{\begin{array} { l }
{ 4 0 9 = 4 (1 0 1) + 5 } \\
{ 1 0 1 = 2 0 (5) + 1 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
n=4 k+r_{1} \\
k=20 r_{1}+r_{2}
\end{array}\right.\right.
$$

where $n=409, k=101, r_{1}=5$ and $r_{2}=1$. Using $r_{1}=n-4 k$ from the top equation in the bottom equation:

$$
\begin{aligned}
& k=20(n-4 k)+r_{2} \\
& k=20 n-80 k+r_{2}
\end{aligned}
$$

Finally, you should be able to find the inverse of any element in any \mathbb{Z}_{n} using the Euclidean algorithm.
For example, find 101^{-1} in the ring \mathbb{Z}_{409}. The Euclidean algorithm gives

$$
\left\{\begin{array} { l }
{ 4 0 9 = 4 (1 0 1) + 5 } \\
{ 1 0 1 = 2 0 (5) + 1 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
n=4 k+r_{1} \\
k=20 r_{1}+r_{2}
\end{array}\right.\right.
$$

where $n=409, k=101, r_{1}=5$ and $r_{2}=1$. Using $r_{1}=n-4 k$ from the top equation in the bottom equation:

$$
\begin{aligned}
& k=20(n-4 k)+r_{2} \\
& k=20 n-80 k+r_{2}
\end{aligned}
$$

Solving for r_{2} : $r_{2}=81 k-20 n$.

Finally, you should be able to find the inverse of any element in any \mathbb{Z}_{n} using the Euclidean algorithm.
For example, find 101^{-1} in the ring \mathbb{Z}_{409}. The Euclidean algorithm gives

$$
\left\{\begin{array} { l }
{ 4 0 9 = 4 (1 0 1) + 5 } \\
{ 1 0 1 = 2 0 (5) + 1 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
n=4 k+r_{1} \\
k=20 r_{1}+r_{2}
\end{array}\right.\right.
$$

where $n=409, k=101, r_{1}=5$ and $r_{2}=1$. Using $r_{1}=n-4 k$ from the top equation in the bottom equation:

$$
\begin{aligned}
& k=20(n-4 k)+r_{2} \\
& k=20 n-80 k+r_{2} .
\end{aligned}
$$

Solving for $r_{2}: r_{2}=81 k-20 n$. Putting the actual values back: $1=81(101)-20(409)$. This tells us that, in the ring $\mathbb{Z}_{409}, 1=81 \cdot 101$ and so $(101)^{-1}=81$.

