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A couple of examples of finding inverses. Find the inverse of 100 in the ring Z711.
Here’s the Euclidean algorithm:

711 = 7(100) + 11

100 = 9(11) + 1

So gcd(711, 100) = 1 and we know that 100 is invertible. With n = 711, k = 100,
r1 = 11 and r2 = 1:

n = 7k + r1

k = 9r1 + r2

we can eliminate r1 by inserting its value (n− 7k) in the second equation:

k = 9(n− 7k) + r2 or r2 = 64k − 9n or 1 = 64(100)− 9(711)

This tells us that 64 · 100 = 1 in Z711 so, 100−1 = 64.
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Lets take the same ring, Z711 and find the inverse of 101.

711 = 7(101) + 4

101 = 25(4) + 1

So gcd(711, 101) = 1 and we know that 101 is invertible. We can eliminate the
intermediate remainder 4 by substituting 4 = (711)− 7(101) into the second equation:

(101) = 25((711)− 7(101)) + 1,

= 25(711)− 175(101) + 1, or

1 = 176(101)− 25(711)

This tells us that 176 · 101 = 1 in Z711 so, 101−1 = 176.
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Counting units

Counting how many units Zn has is the same as counting the number of integers k
between 1 and n that satisfy gcd(n, k) = 1.

This was first accomplished by Euler,
who denoted the number by ϕ(n). Nowadays, ϕ is called Euler’s totient function or the
Euler ϕ-function.

That is, ϕ(n) is the number of units in Zn or the number of k with 1 ≤ k ≤ n such
that gcd(n, k) = 1.

If we know the prime factorization of n there is a relatively simple formula for ϕ(n).
The first thing we remark is that if d evenly divides both k and n, then any prime
factor of d also does so.
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So, if we want to eliminate numbers with gcd(n, k) > 1 we only need to test primes.
In fact we only need to test primes that divide n.

Suppose p1, p2, p3 are all the prime divisors of n. Then we want to count how many
integers from 1 to n do not satisfy any of the following conditions

c1: divisible by p1

c2: divisible by p2

c3: divisible by p3

So we need to process an inclusion/exclusion problem: N = n, N(c1) = n/p1,
N(c2) = n/p2, N(c3) = n/p3, So,

S1 = n

(
1

p1
+

1

p2
+

1

p3

)
.
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Continuing: The numbers that satisfy both c1 and c2, those divisible by both p1 and p2
must be divisible by p1p2

and there are N(c1c2) = n/(p1p2) of those. Similarly,
N(c1c3) = n/(p1p3), N(c2c3) = n/(p2p3) and so,

S2 = n

(
1

p1p2
+

1

p1p3
+

1

p2p3

)
.

and lastly

S3 = n

(
1

p1p2p3

)
.

Putting these together

N(c1c2c3) = n− n

(
1

p1
+

1

p2
+

1

p3

)
+ n

(
1

p1p2
+

1

p1p3
+

1

p2p3

)
− n

(
1

p1p2p3

)
= n

(
1− 1

p1
− 1

p2
− 1

p3
+

1

p1p2
+

1

p1p3
+

1

p2p3
− 1

p1p2p3

)
= n

(
1− 1

p1

)(
1− 1

p2

)(
1− 1

p3

)
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All that was for 3 prime factors.

The formula for any number of primes is: if
p1, p2, . . . , pk are the different primes that divide n then

ϕ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pk

)
= n

(
p1 − 1

p1

)(
p2 − 1

p2

)
· · ·

(
pk − 1

pk

)
In particular, if p is a prime number then ϕ(p) = p(1− 1/p) = p− 1,
ϕ(p2) = p2(1− 1/p) = p(p− 1), etc.

Some examples. 90 = 2(32)5 so the prime divisors are 2, 3, and 5. Then

ϕ(90) = 90

(
1− 1

2

)(
1− 1

3

)(
1− 1

5

)
= 2(32)5

(
1

2

)(
2

3

)(
4

5

)
= 3(1)(2)(4) = 24
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ϕ(90) = 90

(
1− 1

2

)(
1− 1

3

)(
1− 1

5

)
= 2(32)5

(
1

2

)(
2

3

)(
4

5

)
= 3(1)(2)(4) = 24
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Another example: find ϕ(2200). Since 2200 = 235211 we get

ϕ(2200) = 235211

(
1

2

)(
4

5

)(
10

11

)
= 225(1)(4)(10) = 800.

Two final examples: ϕ(100) = 100(1/2)(4/5) = 40. From 1155 = 3(5)(7)(11) we have
ϕ(1155) = 1155(2/3)(4/5)(6/7)(10/11) = 480.

Counting proper zero divisors

Because every element of Zn is either 0 or a unit or a proper zero divisor, there must
be n− ϕ(n)− 1 proper zero divisors.

Since ϕ(90) = 24, the ring Z90 has 24 units and 90− 24− 1 = 65 proper zero divisors.
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The ring Z2200 has ϕ(2200) = 800 units and 2200− 800− 1 = 1399 proper zero
divisors.

The ring Z100 has ϕ(100) = 40 units and 100− 40− 1 = 59 proper zero divisors.
The ring Z1155 has ϕ(1155) = 480 units and 1155− 480− 1 = 674 proper zero divisors.
The ring Z911 has ϕ(911) = 910 units and 911− 910− 1 = 0 proper zero divisors.

(911 is prime so ϕ(911) = 911

(
1− 1

911

)
= 911− 1 = 910.)
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One more way to create a new ring

Theorem

Suppose (R,+.·) is a ring and (Y,+, ·) is a set with operations of + and ·. If there is a
function h from R to Y such that

1. For every pair x, y in R, h(x+ y) = h(x) + h(y).

2. For every pair x, y in R, h(x · y) = h(x) · h(y).
3. Y = {h(x) : x ∈ R}. (We say h is ‘onto’ or ‘surjective’.)

Then (Y,+, ·) is also a ring.

An example of this is the function from Z to Zn defined by h(x) = x mod n. Checking
the three conditions of the theorem is not particularly difficult.

Proving the theorem is maybe a little tricky but not particularly long. The first two
conditions are the definition of h being a homomorphism.
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The ‘Chinese Remainder’ Theorem

If the homomorphism is also one-to-one, it is called an isomorphism.

In this case the
inverse h−1 from Y to R is also a homomorphism. Then the two rings share all
properties that can be defined by multiplication and addition. For example”

• h is a one-to-one correspondence between the units in R and the units in Y .

• h is a one-to-one correspondence between proper zero divisors in R and the
proper zero divisors in Y .

• If R has a unity 1, so does Y and h(1) is the unity of Y . Also if x ∈ R is a unit
then h(x−1) = h(x)−1.

• h(0) = 0 and h(−x) = −h(x) for all x ∈ R.

Theorem

If n = lm then h defined by h(k) = (k mod l, k mod m) is a homomorphism from Zn

to Zl × Zm. If gcd(l,m) = 1 then this is an isomorphism, otherwise it is not.

A special case is n = pq where p and q are different primes.
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