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Modular arithmetic (aka “clock” arithmetic).

In the twenty-four hour system of telling time the hours go from 0 at
midnight to 23 at one hour before midnight.

Suppose the current time is
20 and my shift ends in 8 hours, then at the end of my shift the time
won’t be 28 but rather 4. This gives us a system where 20 ‘+’ 8 = 4.
Similarly, 17 ‘+’ 7 = 0.

In higher mathematics we study systems that consist of a set on which one
or more binary operations are defined. The above description gives us a
set, namely {0, 1, 2, 3, . . . , 23} and an operation ‘+’. The operation is
analogous to addition, but is not the usual operation of addition of
integers. Let us call it +̂ (temporarily). Its formal definition is

For any x and y in {0, 1, 2, . . . , 23}, let x +̂ y = (x+ y) mod 24.

To make sense of this we need to know what mod means.
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If k and n is are positive integers then there exist unique positive integers
q and r where 0 ≤ r < n and

k = qn+ r

The number q is called the integer quotient of dividing k by n and r is the
remainder. Then, by definition k mod n is the remainder r. Some authors
and most computer languages use ‘%’ instead of ‘mod’: k % n = r.

For example, Since 28 = 1 · 24 + 4, then for k = 28 and n = 24 we have
28 mod 24 = 4. Similarly. 71 = 2 · 24 + 23 so 71 mod 24 = 23 and
72 mod 24 = 0.

By definition, we always have 0 ≤ k mod n ≤ n− 1. We can obtain
k mod m by second grade divison: To find, for example 68 mod 9 = 5 we
say “9 goes into 68 seven times (for 63) with a remainder of 5.” Here’s an
example computing 721 mod 101 = 14:

7 R 14
101 721

707
14
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We can do modular arithmetic in any ‘base’: Define
Zn = {0, 1, 2, · · · , n− 1} and define ‘addition’ on Zn by
x +̂ y = (x+ y) mod n.

We can also define multiplication this way:
x ·̂ y = (xy) mod n. The xy is ordinary multiplication.

So in Z6 = {0, 1, 2, 3, 4, 5} we have 5 +̂ 4 = 3 (because 9 mod 6 = 3) and
4 ·̂ 5 = 2 (because 20 mod 6 = 2). For small values of n one can find
k mod n by subtracting n from k (repeatedly, if necessary) until a
nonnegative number less than n is obtained. For example, to get
20 mod 6: 20− 6 = 14 (too big), 14− 6 = 8 (too big), 8− 6 = 2 (okay).

These operations (+̂ and ·̂) on Zn share a lot of the algebraic properties of
addition and multiplication of integers. It is usual to write Z for the set of
all integers (positive negative and 0).

There is a concept called congruence. It uses the notation

a ≡ b (mod n)

This means that a− b is evenly divisible by n. The notation we will are
using: a = (b mod n) or a = (b% n) means two things

a ≡ b (mod n) and 0 ≤ a < n .
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A ring is a set R along with two binary operations (traditionally the
symbols + and · are used) that satisfy the following properties.

C1 If x and y are in R then x+ y is in R.

C2 If x and y are in R then x · y is in R.

A1 If x and y are in R then x+ y = y + x.

A2 If x, y and z are in R then (x+ y) + z = x+ (y + z).

A3 There exists a special element 0 in R satisfying x+ 0 = x for every x
in R. This element is called the ‘zero’ of R.

A4 If x is in R there is an associated element in R called the negative of
x and written −x that satisfies x+−x = 0.

A5 If x, y and z are in R then (x · y) · z = x · (y · z).
A6 If x, y and z are in R then x · (y + z) = x · y + x · z and

(y + z) · x = y · x+ z · x.

The sets Zn with the operations of ‘addition modulo n’ and ‘multiplication
modulo n’ are all examples of rings. Notice that in Z24 we saw that
17 +̂ 7 = 0. By part A4, that means that −17 = 7 and −7 = 17.
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There are a number of other properties that can be proved from A1–A6.

For example.

• There is only one element that satisfies A3. In fact if any elements of
R satisfy x+ y = x then y must be zero.

• For any x in R, 0 · x = 0 = x · 0.
• There is only one negative for any element x in R. That is, if

x+ y = 0, then y = −x.
• Laws of signs: −0 = 0, −(−x) = x, x · (−y) = −(x · y) = (−x) · y

and (−x) · (−y) = x · y.
• We can extend A1 and A2 to any number of elements. That is

x1 + x2 + · · ·+ xn gives the same result however they are grouped or
reordered.

• A5 can be extended to any number of elements: how they are
grouped does not change the result of the multiplication.

• A6 applies to any length of the sum:

x · (y1 + y2 + · · ·+ yn) = x · y1 + x · y2 + · · ·+ x · yn

and the same for multiplying on the right.

6 / 1



There are a number of other properties that can be proved from A1–A6.
For example.

• There is only one element that satisfies A3. In fact if any elements of
R satisfy x+ y = x then y must be zero.

• For any x in R, 0 · x = 0 = x · 0.
• There is only one negative for any element x in R. That is, if

x+ y = 0, then y = −x.
• Laws of signs: −0 = 0, −(−x) = x, x · (−y) = −(x · y) = (−x) · y

and (−x) · (−y) = x · y.
• We can extend A1 and A2 to any number of elements. That is

x1 + x2 + · · ·+ xn gives the same result however they are grouped or
reordered.

• A5 can be extended to any number of elements: how they are
grouped does not change the result of the multiplication.

• A6 applies to any length of the sum:

x · (y1 + y2 + · · ·+ yn) = x · y1 + x · y2 + · · ·+ x · yn

and the same for multiplying on the right.

6 / 1



There are a number of other properties that can be proved from A1–A6.
For example.

• There is only one element that satisfies A3. In fact if any elements of
R satisfy x+ y = x then y must be zero.

• For any x in R, 0 · x = 0 = x · 0.

• There is only one negative for any element x in R. That is, if
x+ y = 0, then y = −x.

• Laws of signs: −0 = 0, −(−x) = x, x · (−y) = −(x · y) = (−x) · y
and (−x) · (−y) = x · y.

• We can extend A1 and A2 to any number of elements. That is
x1 + x2 + · · ·+ xn gives the same result however they are grouped or
reordered.

• A5 can be extended to any number of elements: how they are
grouped does not change the result of the multiplication.

• A6 applies to any length of the sum:

x · (y1 + y2 + · · ·+ yn) = x · y1 + x · y2 + · · ·+ x · yn

and the same for multiplying on the right.

6 / 1



There are a number of other properties that can be proved from A1–A6.
For example.

• There is only one element that satisfies A3. In fact if any elements of
R satisfy x+ y = x then y must be zero.

• For any x in R, 0 · x = 0 = x · 0.
• There is only one negative for any element x in R. That is, if

x+ y = 0, then y = −x.

• Laws of signs: −0 = 0, −(−x) = x, x · (−y) = −(x · y) = (−x) · y
and (−x) · (−y) = x · y.

• We can extend A1 and A2 to any number of elements. That is
x1 + x2 + · · ·+ xn gives the same result however they are grouped or
reordered.

• A5 can be extended to any number of elements: how they are
grouped does not change the result of the multiplication.

• A6 applies to any length of the sum:

x · (y1 + y2 + · · ·+ yn) = x · y1 + x · y2 + · · ·+ x · yn

and the same for multiplying on the right.

6 / 1



There are a number of other properties that can be proved from A1–A6.
For example.

• There is only one element that satisfies A3. In fact if any elements of
R satisfy x+ y = x then y must be zero.

• For any x in R, 0 · x = 0 = x · 0.
• There is only one negative for any element x in R. That is, if

x+ y = 0, then y = −x.
• Laws of signs: −0 = 0, −(−x) = x, x · (−y) = −(x · y) = (−x) · y
and (−x) · (−y) = x · y.

• We can extend A1 and A2 to any number of elements. That is
x1 + x2 + · · ·+ xn gives the same result however they are grouped or
reordered.

• A5 can be extended to any number of elements: how they are
grouped does not change the result of the multiplication.

• A6 applies to any length of the sum:
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Some rings have additional properties

In the definition of a ring we required x+ y = y + x but did not require
x · y = y · x.

The reason for this is that matrices are very important in
mathematics and matrix multiplication doesn’t satisfy this.

We also note that for the ring of all integers (Z,+, ·) the only way one
gets x · y = 0 is if either x = 0 or y = 0. However, this is not true for all
rings. For example, in Z6 we have 2 · 3 = 0 as well as 4 · 3 = 0. (From now
on I will use normal + and · for the operations in any Zn.)

The ring of integers has a special element, the number 1, that satisfies
1 · x = x for every element x. This not always true: the set of even
integers with the usual operations of addition and multiplication is a ring,
but has no such element.
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Definition

Let (R,+, ·) be a ring

• if every pair of elements in R satisfies x · y = y · x we call R a
commutative ring

• If there exists an element u ̸= 0 of R that satisfies u · x = x = x · u
for every x in R, then u is called a unity or a multiplicative identity
(or just ‘the identity’) and we say R is a ring with unity .

• An element x ̸= 0 of a commutative ring R is called a proper zero
divisor if there is another element y ̸= 0 such that x · y = 0.

Definition

Let (R,+, ·) be a ring with unity u. If x is in R and there is an element y
in R such that x · y = u = y · x we call y the multiplicative inverse of x.
In that case we say that x is a unit (or is invertible) and we call its
multiplicative inverse x−1.
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Examples

The rings Zn are all commutative rings and rings with unity. The unity is
the element 1.

If n is prime (cannot be factored into a product of smaller
numbers) then Zn has no proper zero divisors.

It can be shown that a ring has at most one unity.

In Z6 we have 1 for the unity. The elements 1 and 5 are units: since
1 · 1 = 1 and 5 · 5 = 1 it follows that each is its own multiplicative inverse.

In Z15 we have units 2 and 8 (inverses of each other), 7 and 13 (inverses
of each other) and also 1, 4, 11 and 14 (each is its own inverse).
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The simplest ring is {0}, with the operations defined 0 + 0 = 0 and
0 · 0 = 0. It it trivially commutative, has no proper zero divisors, and has
no unity.

The next simplest might be Z2. In applications, 0 often represents ‘false’
and 1 represents ‘true’. Then multiplication represents the and operation
and addition represents xor (the ‘exclusive or’ operation). This is a
commutative ring with unity with no proper zero divisors.

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

Addition and multiplication tables for Z2
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The set of units in a ring is a useful system of its own that has the
following properties

Theorem

If R is a ring with unity u then

1. the unity u is always a unit and is its own inverse;

2. if x is a unit so are −x and x−1: the inverse of −x is −x−1 and the
inverse of x−1 is x.

3. if x and y are units then so is x · y: the inverse of x · y is y−1 · x−1.

Proof: If u is the unity then u · u = u.

If we multiply (−x) · (−x−1) we get x · x−1 = u (law of signs). The other
order is similar.
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If x and y are units consider (x · y) · (y−1 · x−1).

Regroup this as

(x · (y · y−1)) · x−1 = (x · u) · x−1

= x · x−1 = u.

Similar steps show that (y−1 · x−1) · (x · y) = u. qed

Some examples: we saw that in Z15, 7 is invertible and 7−1 = 13.
Therefore 13 is invertible with 13−1 = 7. Also, −7 is invertible and
(−7)−1 = 8−1 = 2 = −13 = −7−1. Finally, as an example of inverses of
products 7 · 4 = 13 is invertible and 4−1 · 7−1 = 4 · 13 = 7 = 13−1.

We can do repeated multiplications as well: the inverse of 8 · 13 · 13 = 2 is
7 · 7 · 2 = 8.
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