Recurrence Relations

Daniel H. Luecking

March 4, 2024

Right side	form of particular solution
5	A
$(5) 3^{n}$	$A 3^{n}$
$n-2$	$A n+B$
$2 n^{3}+3 n$	$A n^{3}+B n^{2}+C n+D$
$3 n 2^{n}$	$(A n+B) 2^{n}$
$\left(n^{3}+2\right) 5^{n}$	$\left(A n^{3}+B n^{2}+C n+D\right) 5^{n}$

We covered this type of recurrence relation in the first section of the chapter:

$$
\begin{aligned}
& a_{n}-a_{n-1}=n^{2}, \quad n \geq 1 \\
& \quad a_{0}=1 .
\end{aligned}
$$

We covered this type of recurrence relation in the first section of the chapter:

$$
\begin{aligned}
& a_{n}-a_{n-1}=n^{2}, \quad n \geq 1 \\
& \quad a_{0}=1 .
\end{aligned}
$$

I said I would accept, and expect, the solution $a_{n}=1+1^{2}+2^{2}+\cdots+n^{2}$. However, $a_{n}=1+\left(2 n^{3}+3 n^{2}+n\right) / 6$ is a more compact formula. How can we get this?

We covered this type of recurrence relation in the first section of the chapter:

$$
\begin{aligned}
& a_{n}-a_{n-1}=n^{2}, \quad n \geq 1 \\
& \quad a_{0}=1 .
\end{aligned}
$$

I said I would accept, and expect, the solution $a_{n}=1+1^{2}+2^{2}+\cdots+n^{2}$. However, $a_{n}=1+\left(2 n^{3}+3 n^{2}+n\right) / 6$ is a more compact formula. How can we get this?
Using the techniques for nonhomogeneous equations, here is how one could obtain that result.

We covered this type of recurrence relation in the first section of the chapter:

$$
\begin{aligned}
& a_{n}-a_{n-1}=n^{2}, \quad n \geq 1 \\
& \quad a_{0}=1 .
\end{aligned}
$$

I said I would accept, and expect, the solution $a_{n}=1+1^{2}+2^{2}+\cdots+n^{2}$. However, $a_{n}=1+\left(2 n^{3}+3 n^{2}+n\right) / 6$ is a more compact formula. How can we get this?
Using the techniques for nonhomogeneous equations, here is how one could obtain that result. The homogeneous equation is $a_{n}-a_{n-1}=0$, which has characteristic equation $r-1=0$ and the root $r=1$ for a homogeneous solution $a_{n}^{(h)}=C_{1}$.

We covered this type of recurrence relation in the first section of the chapter:

$$
\begin{aligned}
& a_{n}-a_{n-1}=n^{2}, \quad n \geq 1 \\
& \quad a_{0}=1 .
\end{aligned}
$$

I said I would accept, and expect, the solution $a_{n}=1+1^{2}+2^{2}+\cdots+n^{2}$. However, $a_{n}=1+\left(2 n^{3}+3 n^{2}+n\right) / 6$ is a more compact formula. How can we get this?
Using the techniques for nonhomogeneous equations, here is how one could obtain that result. The homogeneous equation is $a_{n}-a_{n-1}=0$, which has characteristic equation $r-1=0$ and the root $r=1$ for a homogeneous solution $a_{n}^{(h)}=C_{1}$.
The table leads us to try a particular solution of the form $a_{n}=A n^{2}+B n+C$.

But $a_{n}=A n^{2}+B n+C$ won't work because the last term is a solution of the homogeneous recurrence relation.

But $a_{n}=A n^{2}+B n+C$ won't work because the last term is a solution of the homogeneous recurrence relation. We need $a_{n}=A n^{3}+B n^{2}+C n$.

But $a_{n}=A n^{2}+B n+C$ won't work because the last term is a solution of the homogeneous recurrence relation. We need $a_{n}=A n^{3}+B n^{2}+C n$. Let's precompute a_{n-1} :

$$
\begin{aligned}
a_{n-1} & =A(n-1)^{3}+B(n-1)^{2}+C(n-1) \\
& =\left[A n^{3}-3 A n^{2}+3 A n-A\right]+\left[B n^{2}-2 B n+B\right]+[C n-C] \\
& =A n^{3}+(-3 A+B) n^{2}+(3 A-2 B+C) n+(-A+B-C)
\end{aligned}
$$

But $a_{n}=A n^{2}+B n+C$ won't work because the last term is a solution of the homogeneous recurrence relation. We need $a_{n}=A n^{3}+B n^{2}+C n$. Let's precompute a_{n-1} :

$$
\begin{aligned}
a_{n-1} & =A(n-1)^{3}+B(n-1)^{2}+C(n-1) \\
& =\left[A n^{3}-3 A n^{2}+3 A n-A\right]+\left[B n^{2}-2 B n+B\right]+[C n-C] \\
& =A n^{3}+(-3 A+B) n^{2}+(3 A-2 B+C) n+(-A+B-C)
\end{aligned}
$$

Then the recurrence relation $a_{n}-a_{n-1}=n^{2}$ gives

$$
3 A n^{2}+(-3 A+2 B) n+A-B+C=n^{2}
$$

But $a_{n}=A n^{2}+B n+C$ won't work because the last term is a solution of the homogeneous recurrence relation. We need $a_{n}=A n^{3}+B n^{2}+C n$. Let's precompute a_{n-1} :

$$
\begin{aligned}
a_{n-1} & =A(n-1)^{3}+B(n-1)^{2}+C(n-1) \\
& =\left[A n^{3}-3 A n^{2}+3 A n-A\right]+\left[B n^{2}-2 B n+B\right]+[C n-C] \\
& =A n^{3}+(-3 A+B) n^{2}+(3 A-2 B+C) n+(-A+B-C)
\end{aligned}
$$

Then the recurrence relation $a_{n}-a_{n-1}=n^{2}$ gives

$$
3 A n^{2}+(-3 A+2 B) n+A-B+C=n^{2}
$$

This leads to

$$
\begin{aligned}
3 A & =1 & & A=1 / 3 \\
-3 A+2 B & =0 & & B=1 / 2 \\
A-B+C & =0 & & C=1 / 6
\end{aligned}
$$

But $a_{n}=A n^{2}+B n+C$ won't work because the last term is a solution of the homogeneous recurrence relation. We need $a_{n}=A n^{3}+B n^{2}+C n$. Let's precompute a_{n-1} :

$$
\begin{aligned}
a_{n-1} & =A(n-1)^{3}+B(n-1)^{2}+C(n-1) \\
& =\left[A n^{3}-3 A n^{2}+3 A n-A\right]+\left[B n^{2}-2 B n+B\right]+[C n-C] \\
& =A n^{3}+(-3 A+B) n^{2}+(3 A-2 B+C) n+(-A+B-C)
\end{aligned}
$$

Then the recurrence relation $a_{n}-a_{n-1}=n^{2}$ gives

$$
3 A n^{2}+(-3 A+2 B) n+A-B+C=n^{2}
$$

This leads to

$$
\begin{array}{rlrl}
3 A & =1 & & A=1 / 3 \\
-3 A+2 B & =0 & B & B 1 / 2 \\
A-B+C & =0 & & C=1 / 6
\end{array}
$$

So, $a_{n}^{(p)}=(1 / 3) n^{3}+(1 / 2) n^{2}+(1 / 6) n$

Or simplified: $a_{n}^{(p)}=\left(2 n^{3}+3 n^{2}+n\right) / 6$. The general solution is $a_{n}=C_{1}+\left(2 n^{3}+3 n^{2}+n\right) / 6$ and the initial condition gives us $C_{1}=1$.

Or simplified: $a_{n}^{(p)}=\left(2 n^{3}+3 n^{2}+n\right) / 6$. The general solution is $a_{n}=C_{1}+\left(2 n^{3}+3 n^{2}+n\right) / 6$ and the initial condition gives us $C_{1}=1$.
One might believe that the solution $a_{n}=1+\left(2 n^{3}+3 n^{2}+n\right) / 6$ is better than $a_{n}=1+1^{2}+2^{2}+\cdots+n^{2}$, but \ldots

Or simplified: $a_{n}^{(p)}=\left(2 n^{3}+3 n^{2}+n\right) / 6$. The general solution is $a_{n}=C_{1}+\left(2 n^{3}+3 n^{2}+n\right) / 6$ and the initial condition gives us $C_{1}=1$.
One might believe that the solution $a_{n}=1+\left(2 n^{3}+3 n^{2}+n\right) / 6$ is better than $a_{n}=1+1^{2}+2^{2}+\cdots+n^{2}$, but \ldots that actually depends on how we intend to use the solution. It is certainly easier to obtain the second one.

Generating functions

If a_{n} satisfies a recurrence relation, this says a lot about its generating function $\sum_{n=0}^{\infty} a_{n} x^{n}$.

Generating functions

If a_{n} satisfies a recurrence relation, this says a lot about its generating function $\sum_{n=0}^{\infty} a_{n} x^{n}$. In fact, we can use the recurrence relation to find the generating function. In some cases, we can solve the recurrence relation that way.

Generating functions

If a_{n} satisfies a recurrence relation, this says a lot about its generating function $\sum_{n=0}^{\infty} a_{n} x^{n}$. In fact, we can use the recurrence relation to find the generating function. In some cases, we can solve the recurrence relation that way. Let's start small, with a first order example:

$$
\begin{aligned}
& a_{n}-a_{n-1}=2(n+1), \quad n \geq 1 \\
& \quad a_{0}=1
\end{aligned}
$$

Generating functions

If a_{n} satisfies a recurrence relation, this says a lot about its generating function $\sum_{n=0}^{\infty} a_{n} x^{n}$. In fact, we can use the recurrence relation to find the generating function. In some cases, we can solve the recurrence relation that way. Let's start small, with a first order example:

$$
\begin{aligned}
& a_{n}-a_{n-1}=2(n+1), \quad n \geq 1 \\
& \quad a_{0}=1
\end{aligned}
$$

Start by multiplying the equation by x^{n} :

$$
a_{n} x^{n}-a_{n-1} x^{n}=2(n+1) x^{n}, \quad n \geq 1 .
$$

Generating functions

If a_{n} satisfies a recurrence relation, this says a lot about its generating function $\sum_{n=0}^{\infty} a_{n} x^{n}$. In fact, we can use the recurrence relation to find the generating function. In some cases, we can solve the recurrence relation that way. Let's start small, with a first order example:

$$
\begin{aligned}
& a_{n}-a_{n-1}=2(n+1), \quad n \geq 1 \\
& \quad a_{0}=1
\end{aligned}
$$

Start by multiplying the equation by x^{n} :

$$
a_{n} x^{n}-a_{n-1} x^{n}=2(n+1) x^{n}, \quad n \geq 1 .
$$

and then adding all the equations together, starting with $n=1$:

$$
\begin{aligned}
& \left(a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots\right)-\left(a_{0} x+a_{1} x^{2}+a_{2} x^{3}+\cdots\right)= \\
& 2(1+1) x^{1}+2(2+1) x^{2}+2(3+1) x^{3}+\cdots
\end{aligned}
$$

Or, more concisely

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} x^{n}-\sum_{n=1}^{\infty} a_{n-1} x^{n}=2 \sum_{n=1}^{\infty}(n+1) x^{n} \tag{*}
\end{equation*}
$$

Or, more concisely

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} x^{n}-\sum_{n=1}^{\infty} a_{n-1} x^{n}=2 \sum_{n=1}^{\infty}(n+1) x^{n} \tag{*}
\end{equation*}
$$

If $F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots$ is the generating function, then The first sum in $(*)$ is $F(x)-a_{0}=F(x)-1$.

Or, more concisely

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} x^{n}-\sum_{n=1}^{\infty} a_{n-1} x^{n}=2 \sum_{n=1}^{\infty}(n+1) x^{n} \tag{*}
\end{equation*}
$$

If $F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots$ is the generating function, then The first sum in $(*)$ is $F(x)-a_{0}=F(x)-1$. The second sum is $x F(x)$

Or, more concisely

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} x^{n}-\sum_{n=1}^{\infty} a_{n-1} x^{n}=2 \sum_{n=1}^{\infty}(n+1) x^{n} \tag{*}
\end{equation*}
$$

If $F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots$ is the generating function, then The first sum in $(*)$ is $F(x)-a_{0}=F(x)-1$. The second sum is $x F(x)$ and the right-hand side is

$$
2\left(2 x+3 x^{2}+4 x^{3}+\cdots\right)=2\left(\frac{1}{(1-x)^{2}}-1\right) .
$$

With these substitutions

$$
\begin{aligned}
F(x)-1-x F(x) & =\frac{2}{(1-x)^{2}}-2 \\
(1-x) F(x) & =\frac{2}{(1-x)^{2}}-1 \\
F(x) & =\frac{2}{(1-x)^{3}}-\frac{1}{1-x}
\end{aligned}
$$

With these substitutions

$$
\begin{aligned}
F(x)-1-x F(x) & =\frac{2}{(1-x)^{2}}-2 \\
(1-x) F(x) & =\frac{2}{(1-x)^{2}}-1 \\
F(x) & =\frac{2}{(1-x)^{3}}-\frac{1}{1-x}
\end{aligned}
$$

From the formulas in Chapter 9, we get

$$
F(x)=2 \sum_{n=0}^{\infty}\binom{n+2}{n} x^{n}-\sum_{n=0}^{\infty} x^{n}=\sum_{n=0}^{\infty}\left[2\binom{n+2}{n}-1\right] x^{n}
$$

With these substitutions

$$
\begin{aligned}
F(x)-1-x F(x) & =\frac{2}{(1-x)^{2}}-2 \\
(1-x) F(x) & =\frac{2}{(1-x)^{2}}-1 \\
F(x) & =\frac{2}{(1-x)^{3}}-\frac{1}{1-x}
\end{aligned}
$$

From the formulas in Chapter 9, we get

$$
F(x)=2 \sum_{n=0}^{\infty}\binom{n+2}{n} x^{n}-\sum_{n=0}^{\infty} x^{n}=\sum_{n=0}^{\infty}\left[2\binom{n+2}{n}-1\right] x^{n}
$$

From this

$$
a_{n}=2\binom{n+2}{n}-1=(n+2)(n+1)-1=n^{2}+3 n+1
$$

With these substitutions

$$
\begin{aligned}
F(x)-1-x F(x) & =\frac{2}{(1-x)^{2}}-2 \\
(1-x) F(x) & =\frac{2}{(1-x)^{2}}-1 \\
F(x) & =\frac{2}{(1-x)^{3}}-\frac{1}{1-x}
\end{aligned}
$$

From the formulas in Chapter 9, we get

$$
F(x)=2 \sum_{n=0}^{\infty}\binom{n+2}{n} x^{n}-\sum_{n=0}^{\infty} x^{n}=\sum_{n=0}^{\infty}\left[2\binom{n+2}{n}-1\right] x^{n}
$$

From this

$$
a_{n}=2\binom{n+2}{n}-1=(n+2)(n+1)-1=n^{2}+3 n+1
$$

A second order example

$$
\begin{aligned}
& a_{n}-4 a_{n-1}+4 a_{n-2}=2^{n}, \quad n \geq 2 \\
& \quad a_{0}=1, a_{1}=3
\end{aligned}
$$

Multiply $a_{n}-4 a_{n-1}+4 a_{n-2}=2^{n}$ by x^{n} :

$$
a_{n} x^{n}-4 a_{n-1} x^{n}+4 a_{n-2} x^{n}=2^{n} x^{n}, \quad n \geq 2
$$

Multiply $a_{n}-4 a_{n-1}+4 a_{n-2}=2^{n}$ by x^{n} :

$$
a_{n} x^{n}-4 a_{n-1} x^{n}+4 a_{n-2} x^{n}=2^{n} x^{n}, \quad n \geq 2
$$

and add them all up

$$
\sum_{n=2}^{\infty} a_{n} x^{n}-4 \sum_{n=2}^{\infty} a_{n-1} x^{n}+4 \sum_{n=2}^{\infty} a_{n-2} x^{n}=\sum_{n=2}^{\infty}(2 x)^{n}
$$

Multiply $a_{n}-4 a_{n-1}+4 a_{n-2}=2^{n}$ by x^{n} :

$$
a_{n} x^{n}-4 a_{n-1} x^{n}+4 a_{n-2} x^{n}=2^{n} x^{n}, \quad n \geq 2
$$

and add them all up

$$
\sum_{n=2}^{\infty} a_{n} x^{n}-4 \sum_{n=2}^{\infty} a_{n-1} x^{n}+4 \sum_{n=2}^{\infty} a_{n-2} x^{n}=\sum_{n=2}^{\infty}(2 x)^{n}
$$

If $F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is the generating function, Then the first sum is

$$
\sum_{n=2}^{\infty} a_{n} x^{n}=F(x)-a_{0}-a_{1} x
$$

Multiply $a_{n}-4 a_{n-1}+4 a_{n-2}=2^{n}$ by x^{n} :

$$
a_{n} x^{n}-4 a_{n-1} x^{n}+4 a_{n-2} x^{n}=2^{n} x^{n}, \quad n \geq 2
$$

and add them all up

$$
\sum_{n=2}^{\infty} a_{n} x^{n}-4 \sum_{n=2}^{\infty} a_{n-1} x^{n}+4 \sum_{n=2}^{\infty} a_{n-2} x^{n}=\sum_{n=2}^{\infty}(2 x)^{n}
$$

If $F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is the generating function, Then the first sum is

$$
\sum_{n=2}^{\infty} a_{n} x^{n}=F(x)-a_{0}-a_{1} x
$$

the second is

$$
\sum_{n=2}^{\infty} a_{n-1} x^{n}=x \sum_{n=2}^{\infty} a_{n-1} x^{n-1}=x\left(a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots\right)=x\left(F(x)-a_{0}\right)
$$

$$
\sum_{n=2}^{\infty} a_{n-2} x^{n}=x^{2} \sum_{n=2}^{\infty} a_{n-2} x^{n-2}=x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right)=x^{2} F(x)
$$

the third is

$$
\sum_{n=2}^{\infty} a_{n-2} x^{n}=x^{2} \sum_{n=2}^{\infty} a_{n-2} x^{n-2}=x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right)=x^{2} F(x)
$$

Thus the equation for $F(x)$ is

$$
\left[F(x)-a_{0}-a_{1} x\right]-4\left[x\left(F(x)-a_{0}\right)\right]+4\left[x^{2} F(x)\right]=\sum_{n=2}^{\infty}(2 x)^{n}
$$

the third is

$$
\sum_{n=2}^{\infty} a_{n-2} x^{n}=x^{2} \sum_{n=2}^{\infty} a_{n-2} x^{n-2}=x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right)=x^{2} F(x)
$$

Thus the equation for $F(x)$ is

$$
\left[F(x)-a_{0}-a_{1} x\right]-4\left[x\left(F(x)-a_{0}\right)\right]+4\left[x^{2} F(x)\right]=\sum_{n=2}^{\infty}(2 x)^{n}
$$

The right side is

$$
\begin{aligned}
\sum_{n=2}^{\infty}(2 x)^{n} & =(2 x)^{2}+(2 x)^{3}+(2 x)^{4}+\cdots \\
& =\frac{(2 x)^{2}}{1-2 x}
\end{aligned}
$$

the third is

$$
\sum_{n=2}^{\infty} a_{n-2} x^{n}=x^{2} \sum_{n=2}^{\infty} a_{n-2} x^{n-2}=x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right)=x^{2} F(x)
$$

Thus the equation for $F(x)$ is

$$
\left[F(x)-a_{0}-a_{1} x\right]-4\left[x\left(F(x)-a_{0}\right)\right]+4\left[x^{2} F(x)\right]=\sum_{n=2}^{\infty}(2 x)^{n}
$$

The right side is

$$
\begin{aligned}
\sum_{n=2}^{\infty}(2 x)^{n} & =(2 x)^{2}+(2 x)^{3}+(2 x)^{4}+\cdots \\
& =\frac{(2 x)^{2}}{1-2 x}
\end{aligned}
$$

Finally, with $a_{0}=1$ and $a_{1}=3$ we get

$$
F(x)-1-3 x-4 x(F(x)-1)+4 x^{2} F(x)=\frac{(2 x)^{2}}{1-2 x}
$$

Or

$$
\begin{aligned}
\left(1-4 x+4 x^{2}\right) F(x)-1-3 x+4 x & =\frac{4 x^{2}}{1-2 x} \\
\left(1-4 x+4 x^{2}\right) F(x) & =1-x+\frac{4 x^{2}}{1-2 x} \\
F(x) & =\frac{1-x+4 x^{2} /(1-2 x)}{1-4 x+4 x^{2}} \\
F(x) & =\frac{1-3 x+6 x^{2}}{(1-2 x)^{3}}
\end{aligned}
$$

If the sequence a_{n} satisfies the following recurrence relation and initial condition, find its generating function without solving the recurrence relation.

$$
\begin{aligned}
& a_{n}-5 a_{n-1}+6 a_{n-2}=5, \quad n \geq 2 \\
& \quad a_{0}=1, a_{1}=5
\end{aligned}
$$

If the sequence a_{n} satisfies the following recurrence relation and initial condition, find its generating function without solving the recurrence relation.

$$
\begin{aligned}
& a_{n}-5 a_{n-1}+6 a_{n-2}=5, \quad n \geq 2 \\
& \quad a_{0}=1, a_{1}=5
\end{aligned}
$$

Equation for the generating function:

$$
\begin{aligned}
F(x)-1-5 x-5 x(F(x)-1)+6 x^{2} F(x) & =5 \sum_{n=2}^{\infty} x^{n} \\
F(x)-1-5 x-5 x F(x)+5 x+6 x^{2} F(x) & =\frac{5 x^{2}}{1-x} \\
\left(1-5 x+6 x^{2}\right) F(x) & =1+\frac{5 x^{2}}{1-x} \\
F(x) & =\frac{1+5 x^{2} /(1-x)}{1-5 x+6 x^{2}} \\
F(x) & =\frac{1-x+5 x^{2}}{(1-x)(1-2 x)(1-3 x)}
\end{aligned}
$$

If the sequence a_{n} satisfies the following recurrence relation and initial condition, find its generating function without solving the recurrence relation.

$$
\begin{aligned}
& a_{n}-2 a_{n-1}+5 a_{n-2}=(-1)^{n}, \quad n \geq 2 \\
& \quad a_{0}=1, a_{1}=1
\end{aligned}
$$

If the sequence a_{n} satisfies the following recurrence relation and initial condition, find its generating function without solving the recurrence relation.

$$
\begin{aligned}
& a_{n}-2 a_{n-1}+5 a_{n-2}=(-1)^{n}, \quad n \geq 2 \\
& \quad a_{0}=1, a_{1}=1
\end{aligned}
$$

Equation for the generating function:

$$
\begin{aligned}
F(x)-1-x-2 x(F(x)-1)+5 x^{2} F(x) & =\sum_{n=2}^{\infty}(-x)^{n} \\
F(x)-1-x-2 x F(x)+2 x+5 x^{2} F(x) & =\frac{x^{2}}{1+x} \\
\left(1-2 x+5 x^{2}\right) F(x) & =1-x+\frac{x^{2}}{1+x} \\
F(x) & =\frac{1-x+x^{2} /(1+x)}{1-2 x+5 x^{2}} \\
F(x) & =\frac{1}{(1+x)\left(1-2 x+5 x^{2}\right)}
\end{aligned}
$$

General solutions

Sometimes one would like a "general" generating function, where the initial conditions are not yet specified.

General solutions

Sometimes one would like a "general" generating function, where the initial conditions are not yet specified. Take the previous example:

$$
a_{n}-2 a_{n-1}+5 a_{n-2}=(-1)^{n}, \quad n \geq 2
$$

General solutions

Sometimes one would like a "general" generating function, where the initial conditions are not yet specified. Take the previous example:

$$
a_{n}-2 a_{n-1}+5 a_{n-2}=(-1)^{n}, \quad n \geq 2
$$

Equation for the generating function:

$$
\begin{gathered}
F(x)-a_{0}-a_{1} x-2 x\left(F(x)-a_{0}\right)+5 x^{2} F(x)=\sum_{n=2}^{\infty}(-x)^{n} . \\
F(x)-a_{0}+\left(2 a_{0}-a_{1}\right) x-2 x F(x)+5 x^{2} F(x)=\frac{x^{2}}{1+x} \\
\left(1-2 x+5 x^{2}\right) F(x)=a_{0}-\left(2 a_{0}-a_{1}\right) x+\frac{x^{2}}{1+x} \\
F(x)=\frac{a_{0}-\left(2 a_{0}-a_{1}\right) x+x^{2} /(1+x)}{1-2 x+5 x^{2}}
\end{gathered}
$$

Third order equation:

$$
\begin{aligned}
& a_{n}-5 a_{n-1}+2 a_{n-2}+2 a_{n-3}=1, \quad n \geq 3 \\
& \quad a_{0}=1, a_{1}=1, a_{2}=3
\end{aligned}
$$

Third order equation:

$$
\begin{aligned}
& a_{n}-5 a_{n-1}+2 a_{n-2}+2 a_{n-3}=1, \quad n \geq 3 \\
& \quad a_{0}=1, a_{1}=1, a_{2}=3
\end{aligned}
$$

The sum goes from $n=3$ to ∞, so we get for the generating function:

$$
\begin{gathered}
F(x)-1-x-3 x^{2}-5 x(F(x)-1-x)+2 x^{2}(F(x)-1)+2 x^{3} F(x) \\
=\sum_{n=3}^{\infty} x^{n} \\
F(x)-1+4 x-5 x F(x)+2 x^{2} F(x)+2 x^{3} F(x)=\frac{x^{3}}{1-x} \\
\left(1-5 x+2 x^{2}+2 x^{3}\right) F(x)=1-4 x+\frac{x^{3}}{1-x} \\
F(x)=\frac{1-4 x+x^{3} /(1-x)}{1-5 x+2 x^{2}+2 x^{3}} \\
=\frac{1-5 x+4 x^{2}}{(1-x)^{2}\left(1-4 x-2 x^{2}\right)}
\end{gathered}
$$

