Recurrence Relations

Daniel H. Luecking

February 26, 2024

Our stacked chips example

The recurrence relation was

$$
\begin{aligned}
& a_{n}-a_{n-1}-a_{n-2}=0, \quad n \geq 2 \\
& \quad a_{0}=1, a_{1}=2
\end{aligned}
$$

Our stacked chips example

The recurrence relation was

$$
\begin{aligned}
& a_{n}-a_{n-1}-a_{n-2}=0, \quad n \geq 2 \\
& \quad a_{0}=1, a_{1}=2
\end{aligned}
$$

The characteristic equation is $r^{2}-r-1=0$ which has roots

$$
r=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-1)}}{2(1)}=\frac{1 \pm \sqrt{5}}{2}
$$

Our stacked chips example

The recurrence relation was

$$
\begin{aligned}
& a_{n}-a_{n-1}-a_{n-2}=0, \quad n \geq 2 \\
& \quad a_{0}=1, a_{1}=2
\end{aligned}
$$

The characteristic equation is $r^{2}-r-1=0$ which has roots

$$
r=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-1)}}{2(1)}=\frac{1 \pm \sqrt{5}}{2}
$$

The general solution is

$$
a_{n}=C_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+C_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Our stacked chips example

The recurrence relation was

$$
\begin{aligned}
& a_{n}-a_{n-1}-a_{n-2}=0, \quad n \geq 2 \\
& \quad a_{0}=1, a_{1}=2
\end{aligned}
$$

The characteristic equation is $r^{2}-r-1=0$ which has roots

$$
r=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-1)}}{2(1)}=\frac{1 \pm \sqrt{5}}{2}
$$

The general solution is

$$
a_{n}=C_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+C_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

The initial conditions give

$$
\begin{aligned}
C_{1}+C_{2} & =1 \\
\left(\frac{1+\sqrt{5}}{2}\right) C_{1}+\left(\frac{1-\sqrt{5}}{2}\right) C_{2} & =2
\end{aligned}
$$

Here, the hard part is solving for the C 's The first equation, $C_{1}+C_{2}=1$ is not complicated. The second equation can be rewritten as

$$
\left(C_{1}+C_{2}\right)\left(\frac{1}{2}\right)+\left(C_{1}-C_{2}\right)\left(\frac{\sqrt{5}}{2}\right)=2
$$

Here, the hard part is solving for the C 's The first equation, $C_{1}+C_{2}=1$ is not complicated. The second equation can be rewritten as

$$
\left(C_{1}+C_{2}\right)\left(\frac{1}{2}\right)+\left(C_{1}-C_{2}\right)\left(\frac{\sqrt{5}}{2}\right)=2
$$

Since $\left(C_{1}+C_{2}\right) / 2=1 / 2$ we get

$$
\left(C_{1}-C_{2}\right)\left(\frac{\sqrt{5}}{2}\right)=3 / 2
$$

Here, the hard part is solving for the C 's The first equation, $C_{1}+C_{2}=1$ is not complicated. The second equation can be rewritten as

$$
\left(C_{1}+C_{2}\right)\left(\frac{1}{2}\right)+\left(C_{1}-C_{2}\right)\left(\frac{\sqrt{5}}{2}\right)=2
$$

Since $\left(C_{1}+C_{2}\right) / 2=1 / 2$ we get

$$
\left(C_{1}-C_{2}\right)\left(\frac{\sqrt{5}}{2}\right)=3 / 2
$$

This we can multiply by $2 / \sqrt{5}$ to get

$$
C_{1}-C_{2}=\frac{3}{\sqrt{5}}=\frac{3 \sqrt{5}}{5}
$$

So our system of equations is now

$$
\begin{aligned}
C_{1}+C_{2} & =1 \\
C_{1}-C_{2} & =\frac{3 \sqrt{5}}{5}
\end{aligned}
$$

So our system of equations is now

$$
\begin{aligned}
& C_{1}+C_{2}=1 \\
& C_{1}-C_{2}=\frac{3 \sqrt{5}}{5}
\end{aligned}
$$

We get C_{1} by adding these and dividing by 2 :

$$
C_{1}=\frac{1}{2}+\frac{3 \sqrt{5}}{10}
$$

So our system of equations is now

$$
\begin{aligned}
C_{1}+C_{2} & =1 \\
C_{1}-C_{2} & =\frac{3 \sqrt{5}}{5}
\end{aligned}
$$

We get C_{1} by adding these and dividing by 2 :

$$
C_{1}=\frac{1}{2}+\frac{3 \sqrt{5}}{10}
$$

and C_{2} we get by subtracting and dividing by 2 :

$$
C_{2}=\frac{1}{2}-\frac{3 \sqrt{5}}{10}
$$

A third order example:

$$
\begin{aligned}
a_{n}-7 a_{n-2}-6 a_{n-3} & =0, \quad n \geq 3 \\
a_{0}=0, a_{1}=1, a_{2} & =1
\end{aligned}
$$

A third order example:

$$
\begin{aligned}
a_{n}-7 a_{n-2}-6 a_{n-3} & =0, \quad n \geq 3 \\
a_{0}=0, a_{1}=1, a_{2} & =1
\end{aligned}
$$

$r^{3}+0 r^{2}-7 r-6=0$ has roots $r=-1,-2,3$

A third order example:

$$
\begin{aligned}
a_{n}-7 a_{n-2}-6 a_{n-3} & =0, \quad n \geq 3 \\
a_{0}=0, a_{1}=1, a_{2} & =1
\end{aligned}
$$

$r^{3}+0 r^{2}-7 r-6=0$ has roots $r=-1,-2,3$ and general solution $a_{n}=C_{1}(-1)^{n}+C_{2}(-2)^{n}+C_{3} 3^{n}$.

A third order example:

$$
\begin{aligned}
a_{n}-7 a_{n-2}-6 a_{n-3} & =0, \quad n \geq 3 \\
a_{0}=0, a_{1}=1, a_{2} & =1
\end{aligned}
$$

$r^{3}+0 r^{2}-7 r-6=0$ has roots $r=-1,-2,3$ and general solution $a_{n}=C_{1}(-1)^{n}+C_{2}(-2)^{n}+C_{3} 3^{n}$.
Finding the C 's:

$$
\begin{array}{r}
C_{1}+C_{2}+C_{3}=0 \\
-C_{1}-2 C_{2}+3 C_{3}=1 \\
C_{1}+4 C_{2}+9 C_{3}=1
\end{array}
$$

A third order example:

$$
\begin{aligned}
a_{n}-7 a_{n-2}-6 a_{n-3} & =0, \quad n \geq 3 \\
a_{0}=0, a_{1}=1, a_{2} & =1
\end{aligned}
$$

$r^{3}+0 r^{2}-7 r-6=0$ has roots $r=-1,-2,3$ and general solution $a_{n}=C_{1}(-1)^{n}+C_{2}(-2)^{n}+C_{3} 3^{n}$.
Finding the C 's:

$$
\begin{array}{r}
C_{1}+C_{2}+C_{3}=0 \\
-C_{1}-2 C_{2}+3 C_{3}=1 \\
C_{1}+4 C_{2}+9 C_{3}=1
\end{array}
$$

Solving gives $C_{1}=0, C_{2}=-1 / 5, C_{3}=1 / 5$ so $a_{n}=(-1 / 5)(-2)^{n}+(1 / 5) 3^{n}$

A problem occurs with the method if the characteristic equation has an insufficient number of roots.

A problem occurs with the method if the characteristic equation has an insufficient number of roots. For example:

$$
\begin{aligned}
& a_{n}-6 a_{n-1}+9 a_{n-2}=0, \quad n \geq 2 \\
& \quad a_{0}=1, a_{1}=4
\end{aligned}
$$

A problem occurs with the method if the characteristic equation has an insufficient number of roots. For example:

$$
\begin{aligned}
& a_{n}-6 a_{n-1}+9 a_{n-2}=0, \quad n \geq 2 \\
& \quad a_{0}=1, a_{1}=4
\end{aligned}
$$

We get $r^{2}-6 r+9=0$. Factoring gives us $(r-3)(r-3)=0$ and so there is only one root, $r=3$.

A problem occurs with the method if the characteristic equation has an insufficient number of roots. For example:

$$
\begin{aligned}
& a_{n}-6 a_{n-1}+9 a_{n-2}=0, \quad n \geq 2 \\
& \quad a_{0}=1, a_{1}=4
\end{aligned}
$$

We get $r^{2}-6 r+9=0$. Factoring gives us $(r-3)(r-3)=0$ and so there is only one root, $r=3$. (Because both factors lead to the same value, this is referred to as a double root or a repeated root.)

A problem occurs with the method if the characteristic equation has an insufficient number of roots. For example:

$$
\begin{aligned}
& a_{n}-6 a_{n-1}+9 a_{n-2}=0, \quad n \geq 2 \\
& \quad a_{0}=1, a_{1}=4
\end{aligned}
$$

We get $r^{2}-6 r+9=0$. Factoring gives us $(r-3)(r-3)=0$ and so there is only one root, $r=3$. (Because both factors lead to the same value, this is referred to as a double root or a repeated root.)
The theory requires two basic solutions and we have only the one: $a_{n}=3^{n}$.

A problem occurs with the method if the characteristic equation has an insufficient number of roots. For example:

$$
\begin{aligned}
& a_{n}-6 a_{n-1}+9 a_{n-2}=0, \quad n \geq 2 \\
& a_{0}=1, a_{1}=4
\end{aligned}
$$

We get $r^{2}-6 r+9=0$. Factoring gives us $(r-3)(r-3)=0$ and so there is only one root, $r=3$. (Because both factors lead to the same value, this is referred to as a double root or a repeated root.)
The theory requires two basic solutions and we have only the one: $a_{n}=3^{n}$. To see that this is insufficient, suppose we tried $a_{n}=C_{1} 3^{n}$. Then the initial conditions give us

$$
a_{0}=1=C_{1} \quad \text { and } \quad a_{1}=4=3 C_{1} .
$$

A problem occurs with the method if the characteristic equation has an insufficient number of roots. For example:

$$
\begin{aligned}
& a_{n}-6 a_{n-1}+9 a_{n-2}=0, \quad n \geq 2 \\
& a_{0}=1, a_{1}=4
\end{aligned}
$$

We get $r^{2}-6 r+9=0$. Factoring gives us $(r-3)(r-3)=0$ and so there is only one root, $r=3$. (Because both factors lead to the same value, this is referred to as a double root or a repeated root.)

The theory requires two basic solutions and we have only the one: $a_{n}=3^{n}$. To see that this is insufficient, suppose we tried $a_{n}=C_{1} 3^{n}$. Then the initial conditions give us

$$
a_{0}=1=C_{1} \quad \text { and } \quad a_{1}=4=3 C_{1} .
$$

But C_{1} cannot be both 1 and $4 / 3$.

If we tried $a_{n}=C_{1} 3^{n}+C_{2} 3^{n}$ then we would get

$$
a_{0}=C_{1}+C_{2}=1 \quad \text { and } \quad a_{1}=3 C_{1}+3 C_{2}=4
$$

If we tried $a_{n}=C_{1} 3^{n}+C_{2} 3^{n}$ then we would get

$$
a_{0}=C_{1}+C_{2}=1 \quad \text { and } \quad a_{1}=3 C_{1}+3 C_{2}=4
$$

The first says $C_{1}+C_{2}=1$ and the second says $C_{1}+C_{2}=4 / 3$, which cannot both be true.

If we tried $a_{n}=C_{1} 3^{n}+C_{2} 3^{n}$ then we would get

$$
a_{0}=C_{1}+C_{2}=1 \quad \text { and } \quad a_{1}=3 C_{1}+3 C_{2}=4
$$

The first says $C_{1}+C_{2}=1$ and the second says $C_{1}+C_{2}=4 / 3$, which cannot both be true.

It turns out (there are ways to prove that this always works) that when the characteristic equation has a double root, then multiplying the solution that comes from it by n gives another solution.

If we tried $a_{n}=C_{1} 3^{n}+C_{2} 3^{n}$ then we would get

$$
a_{0}=C_{1}+C_{2}=1 \quad \text { and } \quad a_{1}=3 C_{1}+3 C_{2}=4
$$

The first says $C_{1}+C_{2}=1$ and the second says $C_{1}+C_{2}=4 / 3$, which cannot both be true.
It turns out (there are ways to prove that this always works) that when the characteristic equation has a double root, then multiplying the solution that comes from it by n gives another solution. That is, for this problem the general solution is

$$
a_{n}=C_{1} 3^{n}+C_{2} n 3^{n}
$$

[For order 3 recurrence relation it is possible to have triple roots (and still higher repetitions for higher orders). In that case, multiply by n again to get basic solutions $r^{n}, n r^{n}$ and $n^{2} r^{n}$ (if r is a triple root).]

The initial conditions then produce

$$
\begin{aligned}
& C_{1}+0 C_{2}=1, \\
& \text { for } n=0 \\
& 3 C_{1}+3 C_{2}=4,
\end{aligned} \text { for } n=1
$$

The initial conditions then produce

$$
\begin{aligned}
& C_{1}+0 C_{2}=1, \\
& 3 C_{1}+3 C_{2}=4, \\
& \text { for } n=0 \\
& \text { for } n=1
\end{aligned}
$$

and solving this produces $C_{1}=1, C_{2}=1 / 3$. So, $a_{n}=3^{n}+(1 / 3) n 3^{n}$.

The initial conditions then produce

$$
\begin{aligned}
& C_{1}+0 C_{2}=1, \\
& 3 C_{1}+3 C_{2}=4, \\
& \text { for } n=0 \\
& \text { for } n=1
\end{aligned}
$$

and solving this produces $C_{1}=1, C_{2}=1 / 3$. So, $a_{n}=3^{n}+(1 / 3) n 3^{n}$. Here is another example:

$$
\begin{aligned}
& a_{n}-2 a_{n-1}+a_{n-2}=0, \quad n \geq 2 \\
& \quad a_{0}=2, a_{1}=5
\end{aligned}
$$

The initial conditions then produce

$$
\begin{aligned}
C_{1}+0 C_{2}=1, & \text { for } n=0 \\
3 C_{1}+3 C_{2}=4, & \text { for } n=1
\end{aligned}
$$

and solving this produces $C_{1}=1, C_{2}=1 / 3$. So, $a_{n}=3^{n}+(1 / 3) n 3^{n}$. Here is another example:

$$
\begin{aligned}
& a_{n}-2 a_{n-1}+a_{n-2}=0, \quad n \geq 2 \\
& \quad a_{0}=2, a_{1}=5
\end{aligned}
$$

Then $r^{2}-2 r+1$ gives $(r-1)^{2}=0$ so there is a double root $r=1$.

The initial conditions then produce

$$
\begin{aligned}
C_{1}+0 C_{2}=1, & \text { for } n=0 \\
3 C_{1}+3 C_{2}=4, & \text { for } n=1
\end{aligned}
$$

and solving this produces $C_{1}=1, C_{2}=1 / 3$. So, $a_{n}=3^{n}+(1 / 3) n 3^{n}$. Here is another example:

$$
\begin{aligned}
& a_{n}-2 a_{n-1}+a_{n-2}=0, \quad n \geq 2 \\
& \quad a_{0}=2, a_{1}=5
\end{aligned}
$$

Then $r^{2}-2 r+1$ gives $(r-1)^{2}=0$ so there is a double root $r=1$. This gives the general solution

$$
a_{n}=C_{1} 1^{n}+C_{2} n 1^{n}=C_{1}+C_{2} n
$$

The equations for the C 's are

$$
\begin{aligned}
& C_{1}=2 \\
& C_{1}+C_{2}=5
\end{aligned}
$$

The equations for the C 's are

$$
\begin{aligned}
& C_{1}=2 \\
& C_{1}+C_{2}=5
\end{aligned}
$$

so $C_{1}=2$ and $C_{2}=3$ giving $a_{n}=2+3 n$.

The equations for the C 's are

$$
\begin{aligned}
& C_{1}=2 \\
& C_{1}+C_{2}=5
\end{aligned}
$$

so $C_{1}=2$ and $C_{2}=3$ giving $a_{n}=2+3 n$.
Things can get worse: there can be no roots (or at least no real roots).

The equations for the C 's are

$$
\begin{aligned}
& C_{1}=2 \\
& C_{1}+C_{2}=5
\end{aligned}
$$

so $C_{1}=2$ and $C_{2}=3$ giving $a_{n}=2+3 n$.
Things can get worse: there can be no roots (or at least no real roots). For example

$$
\begin{gathered}
a_{n}-6 a_{n-1}+10 a_{n-2}=0, \quad n \geq 2 \\
a_{0}=1, a_{1}=5
\end{gathered}
$$

The equations for the C 's are

$$
\begin{aligned}
& C_{1}=2 \\
& C_{1}+C_{2}=5
\end{aligned}
$$

so $C_{1}=2$ and $C_{2}=3$ giving $a_{n}=2+3 n$.
Things can get worse: there can be no roots (or at least no real roots).
For example

$$
\begin{gathered}
a_{n}-6 a_{n-1}+10 a_{n-2}=0, \quad n \geq 2 \\
a_{0}=1, a_{1}=5
\end{gathered}
$$

From $r^{2}-6 r+10=0$ the quadratic formula gives

$$
\begin{aligned}
r & =\frac{6 \pm \sqrt{6^{2}-4(10)}}{2}=\frac{6 \pm \sqrt{-4}}{2} \\
& =\frac{6 \pm \sqrt{4(-1)}}{2}=\frac{6 \pm 2 \sqrt{-1}}{2} \\
& =3 \pm i
\end{aligned}
$$

There is no real number whose square is negative, so $i=\sqrt{-1}$ is called the imaginary unit.

There is no real number whose square is negative, so $i=\sqrt{-1}$ is called the imaginary unit. There is no problem computing with it. One just has to remember that i^{2} can always be replaced by -1 to simplify expressions.

There is no real number whose square is negative, so $i=\sqrt{-1}$ is called the imaginary unit. There is no problem computing with it. One just has to remember that i^{2} can always be replaced by -1 to simplify expressions. For example $(3+i)^{2}=3^{2}+6 i+i^{2}=8+6 i$.

There is no real number whose square is negative, so $i=\sqrt{-1}$ is called the imaginary unit. There is no problem computing with it. One just has to remember that i^{2} can always be replaced by -1 to simplify expressions. For example $(3+i)^{2}=3^{2}+6 i+i^{2}=8+6 i$.
So we can just use these roots as we would any real roots and get the general solution

$$
a_{n}=C_{1}(3+i)^{n}+C_{2}(3-i)^{n}
$$

There is no real number whose square is negative, so $i=\sqrt{-1}$ is called the imaginary unit. There is no problem computing with it. One just has to remember that i^{2} can always be replaced by -1 to simplify expressions. For example $(3+i)^{2}=3^{2}+6 i+i^{2}=8+6 i$.
So we can just use these roots as we would any real roots and get the general solution

$$
a_{n}=C_{1}(3+i)^{n}+C_{2}(3-i)^{n}
$$

$\sqrt{-1}$ is no different than other square roots in computations.

There is no real number whose square is negative, so $i=\sqrt{-1}$ is called the imaginary unit. There is no problem computing with it. One just has to remember that i^{2} can always be replaced by -1 to simplify expressions. For example $(3+i)^{2}=3^{2}+6 i+i^{2}=8+6 i$.
So we can just use these roots as we would any real roots and get the general solution

$$
a_{n}=C_{1}(3+i)^{n}+C_{2}(3-i)^{n}
$$

$\sqrt{-1}$ is no different than other square roots in computations. To see this, lets find the values of C_{1} and C_{2} from the initial conditions $a_{0}=1$ and $a_{1}=5$:

$$
\begin{array}{r}
C_{1}+C_{2}=1 \\
(3+i) C_{1}+(3-i) C_{2}=5
\end{array}
$$

There is no real number whose square is negative, so $i=\sqrt{-1}$ is called the imaginary unit. There is no problem computing with it. One just has to remember that i^{2} can always be replaced by -1 to simplify expressions. For example $(3+i)^{2}=3^{2}+6 i+i^{2}=8+6 i$.
So we can just use these roots as we would any real roots and get the general solution

$$
a_{n}=C_{1}(3+i)^{n}+C_{2}(3-i)^{n}
$$

$\sqrt{-1}$ is no different than other square roots in computations. To see this, lets find the values of C_{1} and C_{2} from the initial conditions $a_{0}=1$ and $a_{1}=5$:

$$
\begin{array}{r}
C_{1}+C_{2}=1 \\
(3+i) C_{1}+(3-i) C_{2}=5
\end{array}
$$

The second equation can be rearranged into

$$
3\left(C_{1}+C_{2}\right)+\left(C_{1}-C_{2}\right) i=5
$$

There is no real number whose square is negative, so $i=\sqrt{-1}$ is called the imaginary unit. There is no problem computing with it. One just has to remember that i^{2} can always be replaced by -1 to simplify expressions. For example $(3+i)^{2}=3^{2}+6 i+i^{2}=8+6 i$.
So we can just use these roots as we would any real roots and get the general solution

$$
a_{n}=C_{1}(3+i)^{n}+C_{2}(3-i)^{n}
$$

$\sqrt{-1}$ is no different than other square roots in computations. To see this, lets find the values of C_{1} and C_{2} from the initial conditions $a_{0}=1$ and $a_{1}=5$:

$$
\begin{aligned}
C_{1}+C_{2} & =1 \\
(3+i) C_{1}+(3-i) C_{2} & =5
\end{aligned}
$$

The second equation can be rearranged into

$$
3\left(C_{1}+C_{2}\right)+\left(C_{1}-C_{2}\right) i=5
$$

Since $3\left(C_{1}+C_{2}\right)=3$, this gives us

$$
\left(C_{1}-C_{2}\right) i=2 \quad \text { or } \quad C_{1}-C_{2}=2 / i
$$

So the system of equations becomes

$$
\begin{aligned}
& C_{1}+C_{2}=1 \\
& C_{1}-C_{2}=2 / i
\end{aligned}
$$

which has solution $C_{1}=(1+2 / i) / 2, C_{2}=(1-2 / i) / 2$,

So the system of equations becomes

$$
\begin{aligned}
& C_{1}+C_{2}=1 \\
& C_{1}-C_{2}=2 / i
\end{aligned}
$$

which has solution $C_{1}=(1+2 / i) / 2, C_{2}=(1-2 / i) / 2$, and our final solution is

$$
a_{n}=\frac{1+2 / i}{2}(3+i)^{n}+\frac{1-2 / i}{2}(3-i)^{n}
$$

So the system of equations becomes

$$
\begin{aligned}
& C_{1}+C_{2}=1 \\
& C_{1}-C_{2}=2 / i
\end{aligned}
$$

which has solution $C_{1}=(1+2 / i) / 2, C_{2}=(1-2 / i) / 2$, and our final solution is

$$
a_{n}=\frac{1+2 / i}{2}(3+i)^{n}+\frac{1-2 / i}{2}(3-i)^{n}
$$

Since $(-i)(i)=1$ we have $1 / i=-i$ and so the above solution can be rewritten in the more standard form

$$
a_{n}=(1 / 2-i)(3+i)^{n}+(1 / 2+i)(3-i)^{n}
$$

