Recurrence Relations

Daniel H. Luecking

February 23, 2024

Combinatorics problems that lead to recurrence relations

The chip stacking problem

You have a lot of poker chips (colored disks) all either blue or white. How many ways can you stack n of then so that no white chip is directly touching another white chip?

Combinatorics problems that lead to recurrence relations

The chip stacking problem

You have a lot of poker chips (colored disks) all either blue or white. How many ways can you stack n of then so that no white chip is directly touching another white chip?
An equivalent problem is: how many different bitstrings (strings consisting only of 0 's and 1 's) of length n contain no consecutive 1's?

Let a_{n} be the number of ways to stack n chips with no consecutive white chips.

Let a_{n} be the number of ways to stack n chips with no consecutive white chips. We consider what the top chip might be. It might be white or blue.

Let a_{n} be the number of ways to stack n chips with no consecutive white chips. We consider what the top chip might be. It might be white or blue. If it is blue then below it are any of the a_{n-1} possible ways to stack $n-1$ chips.

Let a_{n} be the number of ways to stack n chips with no consecutive white chips. We consider what the top chip might be. It might be white or blue.
If it is blue then below it are any of the a_{n-1} possible ways to stack $n-1$ chips.
If the top one is a white chip, the one below it must be blue and below that can be any of the a_{n-2} possible ways to stack $n-2$ chips.

Let a_{n} be the number of ways to stack n chips with no consecutive white chips. We consider what the top chip might be. It might be white or blue.
If it is blue then below it are any of the a_{n-1} possible ways to stack $n-1$ chips.
If the top one is a white chip, the one below it must be blue and below that can be any of the a_{n-2} possible ways to stack $n-2$ chips.
That is

$$
\begin{aligned}
& a_{n}=a_{n-1}+a_{n-2}, \quad n \geq 2 \\
& a_{0}=1, \quad a_{1}=2
\end{aligned}
$$

Let a_{n} be the number of ways to stack n chips with no consecutive white chips. We consider what the top chip might be. It might be white or blue.
If it is blue then below it are any of the a_{n-1} possible ways to stack $n-1$ chips.
If the top one is a white chip, the one below it must be blue and below that can be any of the a_{n-2} possible ways to stack $n-2$ chips.
That is

$$
\begin{aligned}
& a_{n}=a_{n-1}+a_{n-2}, \quad n \geq 2 \\
& a_{0}=1, \quad a_{1}=2
\end{aligned}
$$

So the sequence a_{n} looks like $1,2,3,5,8,13, \ldots$

Our next section will give us the tools to find the formula

$$
a_{n}=\frac{5+3 \sqrt{5}}{10}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\frac{5-3 \sqrt{5}}{10}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Linear recurrence relations

The following is a perfectly valid recurrence relation:

$$
a_{n}=a_{n-1} \cdot a_{n-2}
$$

and there are ways to solve problems involving it.

Linear recurrence relations

The following is a perfectly valid recurrence relation:

$$
a_{n}=a_{n-1} \cdot a_{n-2}
$$

and there are ways to solve problems involving it. However we will focus, for the moment, only on recurrence relations like the following

$$
\begin{aligned}
& a_{n}=3 a_{n-1} \\
& a_{n}=2 a_{n-1}-5 n^{2} a_{n-2} \\
& a_{n}=4 a_{n-1}+2 a_{n-2}+5 a_{n-3}
\end{aligned}
$$

Linear recurrence relations

The following is a perfectly valid recurrence relation:

$$
a_{n}=a_{n-1} \cdot a_{n-2}
$$

and there are ways to solve problems involving it. However we will focus, for the moment, only on recurrence relations like the following

$$
\begin{aligned}
& a_{n}=3 a_{n-1} \\
& a_{n}=2 a_{n-1}-5 n^{2} a_{n-2} \\
& a_{n}=4 a_{n-1}+2 a_{n-2}+5 a_{n-3}
\end{aligned}
$$

These are called linear recurrence relations. The definition of linear is that they can be written in the following form (this is for second order):

$$
a_{n}+b(n) a_{n-1}+c(n) a_{n-2}=h(n)
$$

Linear recurrence relations

The following is a perfectly valid recurrence relation:

$$
a_{n}=a_{n-1} \cdot a_{n-2}
$$

and there are ways to solve problems involving it. However we will focus, for the moment, only on recurrence relations like the following

$$
\begin{aligned}
& a_{n}=3 a_{n-1} \\
& a_{n}=2 a_{n-1}-5 n^{2} a_{n-2} \\
& a_{n}=4 a_{n-1}+2 a_{n-2}+5 a_{n-3}
\end{aligned}
$$

These are called linear recurrence relations. The definition of linear is that they can be written in the following form (this is for second order):

$$
a_{n}+b(n) a_{n-1}+c(n) a_{n-2}=h(n)
$$

where b, c and h are explicit functions of n that make no reference to any terms of the unknown sequence a_{k}.

Linear recurrence relations

The following is a perfectly valid recurrence relation:

$$
a_{n}=a_{n-1} \cdot a_{n-2}
$$

and there are ways to solve problems involving it. However we will focus, for the moment, only on recurrence relations like the following

$$
\begin{aligned}
& a_{n}=3 a_{n-1} \\
& a_{n}=2 a_{n-1}-5 n^{2} a_{n-2} \\
& a_{n}=4 a_{n-1}+2 a_{n-2}+5 a_{n-3}
\end{aligned}
$$

These are called linear recurrence relations. The definition of linear is that they can be written in the following form (this is for second order):

$$
a_{n}+b(n) a_{n-1}+c(n) a_{n-2}=h(n)
$$

where b, c and h are explicit functions of n that make no reference to any terms of the unknown sequence a_{k}. If the function $h(n)$ on the right side is just 0 , the recurrence relation is called homogeneous.

There is a theory of linear recurrence relations that helps us build solutions out of simpler parts.

There is a theory of linear recurrence relations that helps us build solutions out of simpler parts. For this discussion we will refer to $a_{n}=f(n)$ as a solution if it just satisfies the recurrence equation, ignoring any initial condition(s).

There is a theory of linear recurrence relations that helps us build solutions out of simpler parts. For this discussion we will refer to $a_{n}=f(n)$ as a solution if it just satisfies the recurrence equation, ignoring any initial condition(s).

Theorem

If $a_{n}=f(n)$ is a solutions of a homogeneous linear recurrence relation, then for any constant C so is $a_{n}=C f(n)$. If $a_{n}=g(n)$ is also a solution, then so is $a_{n}=f(n)+g(n)$.

There is a theory of linear recurrence relations that helps us build solutions out of simpler parts. For this discussion we will refer to $a_{n}=f(n)$ as a solution if it just satisfies the recurrence equation, ignoring any initial condition(s).

Theorem

If $a_{n}=f(n)$ is a solutions of a homogeneous linear recurrence relation, then for any constant C so is $a_{n}=C f(n)$. If $a_{n}=g(n)$ is also a solution, then so is $a_{n}=f(n)+g(n)$.

For example, consider

$$
a_{n}-5 a_{n-1}+6 a_{n-2}=0
$$

which is homogeneous and linear.

There is a theory of linear recurrence relations that helps us build solutions out of simpler parts. For this discussion we will refer to $a_{n}=f(n)$ as a solution if it just satisfies the recurrence equation, ignoring any initial condition(s).

Theorem

If $a_{n}=f(n)$ is a solutions of a homogeneous linear recurrence relation, then for any constant C so is $a_{n}=C f(n)$. If $a_{n}=g(n)$ is also a solution, then so is $a_{n}=f(n)+g(n)$.

For example, consider

$$
a_{n}-5 a_{n-1}+6 a_{n-2}=0
$$

which is homogeneous and linear. Let us check that both $a_{n}=3^{n}$ and $a_{n}=2^{n}$ are solutions.

For the first, we simply put

$$
a_{n}=3^{n}, \quad a_{n-1}=3^{n-1}, \quad a_{n-2}=3^{n-2}
$$

into the recurrence relation to get

$$
3^{n}-5 \cdot 3^{n-1}+6 \cdot 3^{n-2}=0
$$

For the first, we simply put

$$
a_{n}=3^{n}, \quad a_{n-1}=3^{n-1}, \quad a_{n-2}=3^{n-2}
$$

into the recurrence relation to get

$$
3^{n}-5 \cdot 3^{n-1}+6 \cdot 3^{n-2}=0
$$

We can rearrange the left side:

$$
\left(3^{2}-5 \cdot 3^{1}+6\right) 3^{n-2}=0 \quad \text { or } \quad(9-5 \cdot 3+6) 3^{n-2}=0
$$

and clearly the last one says $0 \cdot 3^{n-2}=0$, which is true for every $n \geq 2$.

For the first, we simply put

$$
a_{n}=3^{n}, \quad a_{n-1}=3^{n-1}, \quad a_{n-2}=3^{n-2}
$$

into the recurrence relation to get

$$
3^{n}-5 \cdot 3^{n-1}+6 \cdot 3^{n-2}=0
$$

We can rearrange the left side:

$$
\left(3^{2}-5 \cdot 3^{1}+6\right) 3^{n-2}=0 \quad \text { or } \quad(9-5 \cdot 3+6) 3^{n-2}=0
$$

and clearly the last one says $0 \cdot 3^{n-2}=0$, which is true for every $n \geq 2$. Similar calculations with $a_{n}=2^{n}$ lead to

$$
\left(2^{2}-5 \cdot 2+6\right) 2^{n-2}=0
$$

which is also true for every $n \geq 2$.

For the first, we simply put

$$
a_{n}=3^{n}, \quad a_{n-1}=3^{n-1}, \quad a_{n-2}=3^{n-2}
$$

into the recurrence relation to get

$$
3^{n}-5 \cdot 3^{n-1}+6 \cdot 3^{n-2}=0
$$

We can rearrange the left side:

$$
\left(3^{2}-5 \cdot 3^{1}+6\right) 3^{n-2}=0 \quad \text { or } \quad(9-5 \cdot 3+6) 3^{n-2}=0
$$

and clearly the last one says $0 \cdot 3^{n-2}=0$, which is true for every $n \geq 2$. Similar calculations with $a_{n}=2^{n}$ lead to

$$
\left(2^{2}-5 \cdot 2+6\right) 2^{n-2}=0
$$

which is also true for every $n \geq 2$.
With these solutions we can build new solutions: $a_{n}=2\left(3^{n}\right)$ and $a_{n}=-\left(2^{n}\right)$ and $a_{n}=2\left(3^{n}\right)-\left(2^{n}\right)$.

For the first, we simply put

$$
a_{n}=3^{n}, \quad a_{n-1}=3^{n-1}, \quad a_{n-2}=3^{n-2}
$$

into the recurrence relation to get

$$
3^{n}-5 \cdot 3^{n-1}+6 \cdot 3^{n-2}=0
$$

We can rearrange the left side:

$$
\left(3^{2}-5 \cdot 3^{1}+6\right) 3^{n-2}=0 \quad \text { or } \quad(9-5 \cdot 3+6) 3^{n-2}=0
$$

and clearly the last one says $0 \cdot 3^{n-2}=0$, which is true for every $n \geq 2$. Similar calculations with $a_{n}=2^{n}$ lead to

$$
\left(2^{2}-5 \cdot 2+6\right) 2^{n-2}=0
$$

which is also true for every $n \geq 2$.
With these solutions we can build new solutions: $a_{n}=2\left(3^{n}\right)$ and $a_{n}=-\left(2^{n}\right)$ and $a_{n}=2\left(3^{n}\right)-\left(2^{n}\right)$. Note that if we add initial conditions $a_{0}=1$ and $a_{1}=4$, then only the last of these satisfies them both.

A further part of the theory of recurrence relations is the following

Theorem

For any homogeneous linear recurrence relation of order k there exist a basic set of solutions $a_{n}=f_{1}(n), a_{n}=f_{2}(n), \ldots, a_{n}=f_{k}(n)$

A further part of the theory of recurrence relations is the following

Theorem

For any homogeneous linear recurrence relation of order k there exist a basic set of solutions $a_{n}=f_{1}(n), a_{n}=f_{2}(n), \ldots, a_{n}=f_{k}(n)$ such that every solution has the form

$$
a_{n}=C_{1} f_{1}(n)+C_{2} f_{2}(n)+\cdots+C_{k} f_{k}(n)
$$

for some constants $C_{1}, C_{2}, \ldots C_{k}$.

A further part of the theory of recurrence relations is the following

Theorem

For any homogeneous linear recurrence relation of order k there exist a basic set of solutions $a_{n}=f_{1}(n), a_{n}=f_{2}(n), \ldots, a_{n}=f_{k}(n)$ such that every solution has the form

$$
a_{n}=C_{1} f_{1}(n)+C_{2} f_{2}(n)+\cdots+C_{k} f_{k}(n)
$$

for some constants $C_{1}, C_{2}, \ldots C_{k}$.
For our example $a_{n}-5 a_{n-1}+6 a_{n-2}$ the basic solutions are $a_{n}=3^{n}$ and $a_{n}=2^{n}$.

A further part of the theory of recurrence relations is the following

Theorem

For any homogeneous linear recurrence relation of order k there exist a basic set of solutions $a_{n}=f_{1}(n), a_{n}=f_{2}(n), \ldots, a_{n}=f_{k}(n)$ such that every solution has the form

$$
a_{n}=C_{1} f_{1}(n)+C_{2} f_{2}(n)+\cdots+C_{k} f_{k}(n)
$$

for some constants $C_{1}, C_{2}, \ldots C_{k}$.
For our example $a_{n}-5 a_{n-1}+6 a_{n-2}$ the basic solutions are $a_{n}=3^{n}$ and $a_{n}=2^{n}$. Thus, all solutions look like $a_{n}=C_{1} 3^{n}+C_{2} 2^{n}$.

A further part of the theory of recurrence relations is the following

Theorem

For any homogeneous linear recurrence relation of order k there exist a basic set of solutions $a_{n}=f_{1}(n), a_{n}=f_{2}(n), \ldots, a_{n}=f_{k}(n)$ such that every solution has the form

$$
a_{n}=C_{1} f_{1}(n)+C_{2} f_{2}(n)+\cdots+C_{k} f_{k}(n)
$$

for some constants $C_{1}, C_{2}, \ldots C_{k}$.
For our example $a_{n}-5 a_{n-1}+6 a_{n-2}$ the basic solutions are $a_{n}=3^{n}$ and $a_{n}=2^{n}$. Thus, all solutions look like $a_{n}=C_{1} 3^{n}+C_{2} 2^{n}$. This is called a general solution: It satisfies the recurrence relation for any choice of C_{1} and C_{2}, but satisfies any given initial condition for only one choice.

If the general solution is $a_{n}=C_{1} 3^{n}+C_{2} 2^{n}$ and the initial conditions are $a_{0}=1$ and $a_{1}=4$ then putting $n=0$ and $n=1$ into the solution gives us

$$
\begin{aligned}
& a_{0}=1=C_{1}+C_{2} \\
& a_{1}=4=3 C_{1}+2 C_{2}
\end{aligned}
$$

If the general solution is $a_{n}=C_{1} 3^{n}+C_{2} 2^{n}$ and the initial conditions are $a_{0}=1$ and $a_{1}=4$ then putting $n=0$ and $n=1$ into the solution gives us

$$
\begin{aligned}
& a_{0}=1=C_{1}+C_{2} \\
& a_{1}=4=3 C_{1}+2 C_{2}
\end{aligned}
$$

Solving this for C_{1} and C_{2} gives $C_{1}=2, C_{2}=-1$.

If the general solution is $a_{n}=C_{1} 3^{n}+C_{2} 2^{n}$ and the initial conditions are $a_{0}=1$ and $a_{1}=4$ then putting $n=0$ and $n=1$ into the solution gives us

$$
\begin{aligned}
& a_{0}=1=C_{1}+C_{2} \\
& a_{1}=4=3 C_{1}+2 C_{2}
\end{aligned}
$$

Solving this for C_{1} and C_{2} gives $C_{1}=2, C_{2}=-1$.
This gives us the general scheme for solving homogeneous linear recurrence relations:

- Find the basic set of solutions.

If the general solution is $a_{n}=C_{1} 3^{n}+C_{2} 2^{n}$ and the initial conditions are $a_{0}=1$ and $a_{1}=4$ then putting $n=0$ and $n=1$ into the solution gives us

$$
\begin{aligned}
& a_{0}=1=C_{1}+C_{2} \\
& a_{1}=4=3 C_{1}+2 C_{2}
\end{aligned}
$$

Solving this for C_{1} and C_{2} gives $C_{1}=2, C_{2}=-1$.
This gives us the general scheme for solving homogeneous linear recurrence relations:

- Find the basic set of solutions.
- Build the general solution from them.

If the general solution is $a_{n}=C_{1} 3^{n}+C_{2} 2^{n}$ and the initial conditions are $a_{0}=1$ and $a_{1}=4$ then putting $n=0$ and $n=1$ into the solution gives us

$$
\begin{aligned}
& a_{0}=1=C_{1}+C_{2} \\
& a_{1}=4=3 C_{1}+2 C_{2}
\end{aligned}
$$

Solving this for C_{1} and C_{2} gives $C_{1}=2, C_{2}=-1$.
This gives us the general scheme for solving homogeneous linear recurrence relations:

- Find the basic set of solutions.
- Build the general solution from them.
- Solve for the constants using the initial conditions.

Finding the basic solutions: We will do this completely only for second order equations with constant coefficients.

Finding the basic solutions: We will do this completely only for second order equations with constant coefficients. This means the recurrence relation looks like $a_{n}+b a_{n-1}+c a_{n-2}=0$, with constants b and c.

Finding the basic solutions: We will do this completely only for second order equations with constant coefficients. This means the recurrence relation looks like $a_{n}+b a_{n-1}+c a_{n-2}=0$, with constants b and c.
For a first order equation: $a_{n}-b a_{n-1}=0$, the basic solution is $a_{n}=b^{n}$ and the general solution is $C_{1} b^{n}$.

Finding the basic solutions: We will do this completely only for second order equations with constant coefficients. This means the recurrence relation looks like $a_{n}+b a_{n-1}+c a_{n-2}=0$, with constants b and c. For a first order equation: $a_{n}-b a_{n-1}=0$, the basic solution is $a_{n}=b^{n}$ and the general solution is $C_{1} b^{n}$. The constant is determined by the initial condition.

Finding the basic solutions: We will do this completely only for second order equations with constant coefficients. This means the recurrence relation looks like $a_{n}+b a_{n-1}+c a_{n-2}=0$, with constants b and c.
For a first order equation: $a_{n}-b a_{n-1}=0$, the basic solution is $a_{n}=b^{n}$ and the general solution is $C_{1} b^{n}$. The constant is determined by the initial condition.

For higher order equations one might speculate that one or more of the basic solutions has a similar structure.

Finding the basic solutions: We will do this completely only for second order equations with constant coefficients. This means the recurrence relation looks like $a_{n}+b a_{n-1}+c a_{n-2}=0$, with constants b and c.

For a first order equation: $a_{n}-b a_{n-1}=0$, the basic solution is $a_{n}=b^{n}$ and the general solution is $C_{1} b^{n}$. The constant is determined by the initial condition.

For higher order equations one might speculate that one or more of the basic solutions has a similar structure. That is, we might suppose that one solution is a geometric series $a_{n}=r^{n}$ for some r.

That can be checked: put $a_{n}=r^{n}$ in the equation (as usual also $a_{n-1}=r^{n-1}$ and $a_{n-2}=r^{n-2}$).

That can be checked: put $a_{n}=r^{n}$ in the equation (as usual also $a_{n-1}=r^{n-1}$ and $a_{n-2}=r^{n-2}$). This gives

$$
r^{n}+b r^{n-1}+c r^{n-2}=0 \quad \text { or } \quad\left(r^{2}+b r+c\right) r^{n-2}=0
$$

That can be checked: put $a_{n}=r^{n}$ in the equation (as usual also $a_{n-1}=r^{n-1}$ and $a_{n-2}=r^{n-2}$). This gives

$$
r^{n}+b r^{n-1}+c r^{n-2}=0 \quad \text { or } \quad\left(r^{2}+b r+c\right) r^{n-2}=0
$$

Now if $r=0$ the solution $a_{n}=0$ gives us nothing to work with, so we assume $r \neq 0$.

That can be checked: put $a_{n}=r^{n}$ in the equation (as usual also $a_{n-1}=r^{n-1}$ and $a_{n-2}=r^{n-2}$). This gives

$$
r^{n}+b r^{n-1}+c r^{n-2}=0 \quad \text { or } \quad\left(r^{2}+b r+c\right) r^{n-2}=0
$$

Now if $r=0$ the solution $a_{n}=0$ gives us nothing to work with, so we assume $r \neq 0$. Then we can divide the last equation by r^{n-2} to get the charactristic equation

$$
r^{2}+b r+c=0
$$

That can be checked: put $a_{n}=r^{n}$ in the equation (as usual also $a_{n-1}=r^{n-1}$ and $a_{n-2}=r^{n-2}$). This gives

$$
r^{n}+b r^{n-1}+c r^{n-2}=0 \quad \text { or } \quad\left(r^{2}+b r+c\right) r^{n-2}=0
$$

Now if $r=0$ the solution $a_{n}=0$ gives us nothing to work with, so we assume $r \neq 0$. Then we can divide the last equation by r^{n-2} to get the charactristic equation

$$
r^{2}+b r+c=0
$$

If $a_{n}=r^{n}$ is to be a solution then r must be a root of this equation:

$$
\begin{equation*}
r=\frac{-b \pm \sqrt{b^{2}-4 c}}{2} \tag{1}
\end{equation*}
$$

Here's an example:

$$
a_{n}-a_{n-1}-6 a_{n-2}=0 .
$$

Here's an example:

$$
a_{n}-a_{n-1}-6 a_{n-2}=0
$$

The above process gives us the characteristic equation

$$
r^{2}-r-6=0
$$

Which has roots $r=3$ and $r=-2$.

Here's an example:

$$
a_{n}-a_{n-1}-6 a_{n-2}=0 .
$$

The above process gives us the characteristic equation

$$
r^{2}-r-6=0
$$

Which has roots $r=3$ and $r=-2$. That means both $a_{n}=3^{n}$ and $a_{n}=(-2)^{n}$ are solutions and the general solution is $a_{n}=C_{1} 3^{n}+C_{2}(-2)^{n}$.

Here's an example:

$$
a_{n}-a_{n-1}-6 a_{n-2}=0
$$

The above process gives us the characteristic equation

$$
r^{2}-r-6=0
$$

Which has roots $r=3$ and $r=-2$. That means both $a_{n}=3^{n}$ and $a_{n}=(-2)^{n}$ are solutions and the general solution is
$a_{n}=C_{1} 3^{n}+C_{2}(-2)^{n}$.
[Note that $(-2)^{n}$ is not -2^{n}. The sequence $(-2)^{n}$ is $1,-2,4,-8,16, \ldots$ while -2^{n} is $-1,-2,-4,-8,-16, \ldots$]

Continuing with the same example, let's give it initial conditions:

$$
\begin{aligned}
& a_{n}-a_{n-1}-6 a_{n-2}=0, \quad n \geq 2 \\
& \quad a_{0}=0, a_{1}=5
\end{aligned}
$$

Continuing with the same example, let's give it initial conditions:

$$
\begin{aligned}
& a_{n}-a_{n-1}-6 a_{n-2}=0, \quad n \geq 2 \\
& \quad a_{0}=0, a_{1}=5
\end{aligned}
$$

From the general solution $a_{n}=C_{1} 3^{n}+C_{2}(-2)^{n}$ and the initial conditions we get equations for C_{1} and C_{2} :

$$
\begin{array}{r}
C_{1}+C_{2}=0 \\
3 C_{1}-2 C_{2}=5
\end{array}
$$

Continuing with the same example, let's give it initial conditions:

$$
\begin{aligned}
& a_{n}-a_{n-1}-6 a_{n-2}=0, \quad n \geq 2 \\
& \quad a_{0}=0, a_{1}=5
\end{aligned}
$$

From the general solution $a_{n}=C_{1} 3^{n}+C_{2}(-2)^{n}$ and the initial conditions we get equations for C_{1} and C_{2} :

$$
\begin{array}{r}
C_{1}+C_{2}=0 \\
3 C_{1}-2 C_{2}=5
\end{array}
$$

which gives $C_{1}=1$ and $C_{2}=-1$ so that $a_{n}=3^{n}-(-2)^{n}$ is the solution to the initial value problem.

A second example:

$$
\begin{array}{r}
a_{n}-4 a_{n-2}=0 \\
a_{0}=1, a_{1}=1
\end{array}
$$

A second example:

$$
\begin{array}{r}
a_{n}-4 a_{n-2}=0 \\
a_{0}=1, a_{1}=1
\end{array}
$$

Here we get $r^{2}-4=0$ and roots 2 and -2 .

A second example:

$$
\begin{array}{r}
a_{n}-4 a_{n-2}=0 \\
a_{0}=1, a_{1}=1
\end{array}
$$

Here we get $r^{2}-4=0$ and roots 2 and -2 . The general solution is $a_{n}=C_{1} 2^{n}+C_{2}(-2)^{n}$.

A second example:

$$
\begin{array}{r}
a_{n}-4 a_{n-2}=0 \\
a_{0}=1, a_{1}=1
\end{array}
$$

Here we get $r^{2}-4=0$ and roots 2 and -2 . The general solution is $a_{n}=C_{1} 2^{n}+C_{2}(-2)^{n}$. From

$$
\begin{aligned}
C_{1}+C_{2} & =1 \\
2 C_{1}-2 C_{2} & =1
\end{aligned}
$$

we get $C_{1}=3 / 4$ and $C_{2}=1 / 4$ so that $a_{n}=(3 / 4) 2^{n}+(1 / 4)(-2)^{n}$.

