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The following is an example of a recurrence relation problem

an = an−1 + 1, n ≥ 1,

a0 = 0.

This should be understood as follows:

1. There is some unknown sequence a0, a1, a2 . . . , an, . . . .

2. ‘a0 = 0’ means that sequence starts with 0.

3. ‘an = an−1 + 1, n ≥ 1’ means that every term in the sequence,
starting with n = 1, is 1 more than the one before it.

Notice that the third item could equally well be expressed by
‘an+1 = an + 1, n ≥ 0.’ Or even ‘an−1 = an−2 + 1, n ≥ 2

The ‘problem’ is to find a formula for an as a function of n.

It should be clear that a1 = a0 + 1 = 0 + 1 = 1, a2 = a1 + 1 = 1 + 1 = 2,
and so on. We can guess that an = n for all n.
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That guess seems very (very) likely to be correct but, in general, how do
we check that it is?

First, any formula should satisfy the initial condition(s)

a0 = 0.

If an = n for all n then, substituting n = 0 gives a0 = 0, so that checks.

Second, any formula should satisfy the recurrence relation

an = an−1 + 1, n ≥ 1,

If we substitute n− 1 for n in the formula
an = n, we get
an−1 = n− 1

Putting these 2 into the recurrence relation
an = an−1 + 1 gives
n = n− 1 + 1, which is true for all n ≥ 1.
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Another example:

an = 2an−1 + 3, n ≥ 1

a0 = 2.

I claim the solution is an = 5(2n)− 3. To see this, first check the initial
condition:

a0 = 5(20)− 3 = 2, so that checks.
Then check the the recurrence relation. Since an−1 = 5(2n−1)− 3, we
have to see if

5(2n)− 3 = 2(5(2n−1)− 3) + 3.
Since the right side simplifies to 5(2n)− 6 + 3, they are equal.

As we learn techniques for solving recurrence relations, keep in mind that a
single recurrence relation like an = 2an−1 + 3 is, in reality, an infinite
sequence of equations.
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That infinite sequence of equations is, counting the initial condition,

a0 = 2

a1 = 2a0 + 3

a2 = 2a1 + 3

a3 = 2a2 + 3

...

It is impossible to find a number for every an, but it is often possible to
find a formula for them all.

Every recurrence can be programmed into a loop that will generate some
of the values. For example

numeric a[];

a[0] = 2;

for n = 1 upto 1000:

a[n] := 2*a[n-1] + 3;

endfor
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A better program might take the desired position in the sequence as input
(say in the variable M) and replace the second line with

for n = 1 upto M:

With the formula that we have, we can just do a1000 = 5(21000)− 3,
a2000 = 5(22000)− 3, and so on for any position.

Here is another example:

an = nan−1, n ≥ 1

a0 = 2.

It is easy to get a1 = 2, a2 = 4, a3 = 12, a4 = 48 and so on.

The formula is actually an = 2 · n! . Because putting this and
an−1 = 2(n− 1)! into the recurrence relation gives:

2(n! ) = n(2(n− 1)! ),
which is correct for every n ≥ 1 and the initial condition

a0 = 2 · 0! = 2
is correct.
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The order of a recurrence relation is the largest difference between the
subscipts on the variables an.

The three examples so far have all had order
1. Some higher order examples:

an = an−1 + an−2, n ≥ 2 order 2

an+4 = an+3an+2 + 2an, n ≥ 0 order 4

an =
∑n−1

j=0 aj , n ≥ 1 order ∞

Many infinite order recurrence relations can be modified to become a finite
order relation for a related sequence. For example, if we let

sn =
n∑

j=0

aj so that an = sn − sn−1,

then the last relation above can be written sn − sn−1 = sn−1, which has
order 1.
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Some special first-order recurrence relations

The recurrence relation

an = an−1 + 5, n ≥ 1

a0 = 3

has solution an = 3 + 5n.

In general, if c and d are any numbers then

an = an−1 + d, n ≥ 1

a0 = c

is an arithmetic progression with solution an = c+ dn. Note that
an − an−1 = d, and so an arithmetic progression is one where the
difference between successive terms is constant.
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The recurrence relation

an = 3an−1, n ≥ 1

a0 = 4

has solution an = 4(3n).

In general, if c and r are nonzero numbers then

an = ran−1, n ≥ 1

a0 = c

is a geometric progression with solution an = c(rn). Note that
an/an−1 = r, and so a geometric progression is one where the ratio
between successive terms is a constant.
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More special first-order recurrence relations

An example like an = an−1 + n, n ≥ 1, with initial condition a0 = 1, is
similar to an arithmetic progression, but the difference is not constant.

a1 = a0 + 1 = 2
a2 = a1 + 2 = 4
a3 = a2 + 3 = 7
a4 = a3 + 4 = 11

We can solve it as follows: imagine all the equations between the first and
the nth:

a1 = a0 + 1

a2 = a1 + 2

...

an = an−1 + n

Now imagine adding these together. . .
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a1 + a2 + · · ·+ an = a0 + a1 + · · ·+ an−1 + 1 + 2 + · · ·+ n

Now cancel common terms from both sides (a1 through an−1) to get

an = a0 + (1 + 2 + · · ·+ n) = 1 + n(n+1)
2 .

In general, a recurrence relation of the form

an = an−1 + f(n), n ≥ 1

Can be solved similarly: add the following

a1 = a0 + f(1)

a2 = a1 + f(2)

...

an = an−1 + f(n)

to get a1 + a2 + · · ·+ an = a0 + a1 + · · ·+ an−1 +
∑n

j=1 f(j). Then
cancel to get an = a0 +

∑n
j=1 f(j). Then fill in the initial condition.
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An example like an = 2n−1an−1, n ≥ 1, with initial condition a0 = 3, is
similar to an geometric progression, but the ratios are not constant.

a1 = 20a0 = 3
a2 = 21a1 = 6
a3 = 22a2 = 24
a4 = 23a3 = 192

But we can solve it as follows: imagine all the equations between the first
and the nth:

a1 = 20a0

a2 = 21a1
...

an = 2n−1an−1

Now imagine multiplying these together. . .
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a1a2 · · · an = 2021 · · · 2n−1a0a1 · · · an−1

Now cancel common factors from both sides (a1 through an−1) to get
an = 2021 · · · 2n−1a0 = 2n(n−1)/23

In general, a recurrence relation of the form

an = f(n)an−1, n ≥ 1

Can be solved similarly: multiply the following

a1 = f(1)a0

a2 = f(2)a1
...

an = f(n)an−1

to get a1a2 · · · an = a0a1 · · · an−1f(1)f(2) · · · f(n). Then cancel to get
an = a0f(1)f(2) · · · f(n), then fill in the initial condition.
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A couple more examples

an = an−1 + 3n, n ≥ 1

a0 = 1

has solution
an = 1 + 3 + 32 + · · ·+ 3n.

an = 2n2an−1, n ≥ 1

a0 = 5

has solution
an = 2(12) 2(22) 2(32) · · · 2(n2) 5.

Sometimes we can simplify these further (and sometimes we can’t). I will
never expect you to simplify such answers.
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