More Rook Polynomials

Daniel H. Luecking

February 7, 2024

Let's use these tools to complete the solution to our seating problem.

Let's use these tools to complete the solution to our seating problem. Here is the seating diagram:

Let's use these tools to complete the solution to our seating problem. Here is the seating diagram:

Let's use these tools to complete the solution to our seating problem. Here is the seating diagram:

	1	3	2	4	5	6	7
A							
or B							
C							
D							

Here are the relevant chessboards

Let's use these tools to complete the solution to our seating problem. Here is the seating diagram:

	1	13	2	4	5	6	7
A							
or B							
C	C						
D	,						

Here are the relevant chessboards

We can use the product formula on C_{e} and C_{s} to get

$$
\begin{aligned}
& r\left(C_{e}, x\right)=\left(1+3 x+x^{2}\right)\left(1+3 x+2 x^{2}\right)=1+6 x+12 x^{2}+9 x^{3}+2 x^{4} \\
& r\left(C_{s}, x\right)=(1+2 x)(1+x)=1+3 x+2 x^{2}
\end{aligned}
$$

So the formula gives us

$$
r(C, x)=r\left(C_{e}, x\right)+x \cdot r\left(C_{s}, x\right)=1+7 x+15 x^{2}+11 x^{3}+2 x^{4}
$$

So the formula gives us

$$
r(C, x)=r\left(C_{e}, x\right)+x \cdot r\left(C_{s}, x\right)=1+7 x+15 x^{2}+11 x^{3}+2 x^{4}
$$

The inclusion-exclusion method requires us to find $N=P(7,4), S_{1}=7 P(6,3)$,
$S_{2}=15 P(5,2), S_{3}=11 P(4,1)$ and $S_{4}=2 P(3,0)$

So the formula gives us

$$
r(C, x)=r\left(C_{e}, x\right)+x \cdot r\left(C_{s}, x\right)=1+7 x+15 x^{2}+11 x^{3}+2 x^{4}
$$

The inclusion-exclusion method requires us to find
$N=P(7,4), S_{1}=7 P(6,3)$,
$S_{2}=15 P(5,2), S_{3}=11 P(4,1)$ and
$S_{4}=2 P(3,0)$

	1		2	3	4	5	6
	1						
	A						

Then

$$
\begin{aligned}
N\left(\overline{c_{1}} \overline{c_{2}} \overline{c_{3}} \overline{c_{4}}\right) & =N-S_{1}+S_{2}-S_{3}+S_{4} \\
& =P(7,4)-7 P(6,3)+15 P(5,2)-11 P(4,1)+2 P(3,0) \\
& =\frac{7!}{3!}-7 \frac{6!}{3!}+15 \frac{5!}{3!}-11 \frac{4!}{3!}+2 \frac{3!}{3!}=258
\end{aligned}
$$

Examples of finding rook polynoials

This chessboard is from page 405 of the textbook, but l've chosen a different square to mark.

Examples of finding rook polynoials

This chessboard is from page 405 of the textbook, but l've chosen a different square to mark.

Examples of finding rook polynoials

This chessboard is from page 405 of the textbook, but l've chosen a different square to mark.

Examples of finding rook polynoials

This chessboard is from page 405 of the textbook, but l've chosen a different square to mark.

C_{e} also has a square marked because we'll be using the square-removal formula for C_{e} as well.

Examples of finding rook polynoials

This chessboard is from page 405 of the textbook, but l've chosen a different square to mark.

C_{e} also has a square marked because we'll be using the square-removal formula for C_{e} as well.
Thus, $r\left(C_{e}, x\right)=\left(1+4 x+2 x^{2}\right)(1+2 x)+x(1+2 x)(1+x)$ and $r\left(C_{s}, x\right)=1+3 x+x^{2}$.
Finally, $r(C, x)=r\left(C_{e}, x\right)+x \cdot r\left(C_{s}, x\right)=1+8 x+16 x^{2}+7 x^{3}$.

This next example illustrates how we can exchange rows (or columns). This is never necessary, but it can help visualize the rest of the problem.

This next example illustrates how we can exchange rows (or columns). This is never necessary, but it can help visualize the rest of the problem.

This next example illustrates how we can exchange rows (or columns). This is never necessary, but it can help visualize the rest of the problem.

This next example illustrates how we can exchange rows (or columns). This is never necessary, but it can help visualize the rest of the problem.

Then we can apply the product formula twice to get

$$
\begin{aligned}
r\left(C^{\prime}, x\right) & =(1+x)\left(1+3 x+x^{2}\right)(1+x) \\
& =1+5 x+8 x^{2}+5 x^{3}+x^{4}
\end{aligned}
$$

This next example illustrates how we can exchange rows (or columns). This is never necessary, but it can help visualize the rest of the problem.

Then we can apply the product formula twice to get

$$
\begin{aligned}
r\left(C^{\prime}, x\right) & =(1+x)\left(1+3 x+x^{2}\right)(1+x) \\
& =1+5 x+8 x^{2}+5 x^{3}+x^{4}
\end{aligned}
$$

Sometimes it is easiest to just find all the rook numbers separately.

This next example illustrates how we can exchange rows (or columns). This is never necessary, but it can help visualize the rest of the problem.

Then we can apply the product formula twice to get

$$
\begin{aligned}
r\left(C^{\prime}, x\right) & =(1+x)\left(1+3 x+x^{2}\right)(1+x) \\
& =1+5 x+8 x^{2}+5 x^{3}+x^{4}
\end{aligned}
$$

Sometimes it is easiest to just find all the rook numbers separately. For example, for a 4×6 rectangle we have $r_{k}=C(4, k) P(6, k)$

This next example illustrates how we can exchange rows (or columns). This is never necessary, but it can help visualize the rest of the problem.

Then we can apply the product formula twice to get

$$
\begin{aligned}
r\left(C^{\prime}, x\right) & =(1+x)\left(1+3 x+x^{2}\right)(1+x) \\
& =1+5 x+8 x^{2}+5 x^{3}+x^{4}
\end{aligned}
$$

Sometimes it is easiest to just find all the rook numbers separately. For example, for a 4×6 rectangle we have $r_{k}=C(4, k) P(6, k)$ so $r_{2}=C(4,2) P(6,2)=180, \quad r_{3}=C(4,3) P(6,3)=480$ and $r_{4}=C(4,4) P(6,4)=360$.

This next example illustrates how we can exchange rows (or columns). This is never necessary, but it can help visualize the rest of the problem.

Then we can apply the product formula twice to get

$$
\begin{aligned}
r\left(C^{\prime}, x\right) & =(1+x)\left(1+3 x+x^{2}\right)(1+x) \\
& =1+5 x+8 x^{2}+5 x^{3}+x^{4}
\end{aligned}
$$

Sometimes it is easiest to just find all the rook numbers separately. For example, for a 4×6 rectangle we have $r_{k}=C(4, k) P(6, k)$ so $r_{2}=C(4,2) P(6,2)=180, \quad r_{3}=C(4,3) P(6,3)=480$ and $r_{4}=C(4,4) P(6,4)=360$. and $r(C, x)=1+24 x+180 x^{2}+480 x^{3}+360 x^{4}$.

Final example: $C=$

Final example: $C=$

We can apply the product rule 4 times to get $r(C, x)=(1+x)^{5}$

Final example: $C=$

We can apply the product rule 4 times to get $r(C, x)=(1+x)^{5}$ or we can argue that, since no two squares are in the same row or column, r_{k} is just the number of ways to pick k squares out of 5 :

Final example: $C=$

We can apply the product rule 4 times to get $r(C, x)=(1+x)^{5}$ or we can argue that, since no two squares are in the same row or column, r_{k} is just the number of ways to pick k squares out of $5: r_{k}=C(5, k)$.

Final example: $C=$

We can apply the product rule 4 times to get $r(C, x)=(1+x)^{5}$ or we can argue that, since no two squares are in the same row or column, r_{k} is just the number of ways to pick k squares out of $5: r_{k}=C(5, k)$. Either way we get

$$
\begin{aligned}
r(C, x) & =\binom{5}{0}+\binom{5}{1} x+\binom{5}{2} x^{2}+\binom{5}{3} x^{3}+\binom{5}{4} x^{4}+\binom{5}{5} x^{5} \\
& =1+5 x+10 x^{2}+10 x^{3}+5 x^{4}+x^{5}
\end{aligned}
$$

Derangements revisited

Suppose 5 people initially sat in the seats indicated by the shaded squares, and then they all decided they wanted a different seat.

Derangements revisited

Suppose 5 people initially sat in the seats indicated by the shaded squares, and then they all decided they wanted a different seat.

That would be a derangement.

Derangements revisited

Suppose 5 people initially sat in the seats indicated by the shaded squares, and then they all decided they wanted a different seat.

That would be a derangement. We have a formula for the number of derangements, but we could find the number of ways by solving this seating problem with a rook polynomial.

Derangements revisited

Suppose 5 people initially sat in the seats indicated by the shaded squares, and then they all decided they wanted a different seat.

That would be a derangement. We have a formula for the number of derangements, but we could find the number of ways by solving this seating problem with a rook polynomial.
The rook polynomial of the shaded chessboard is

$$
(1+x)^{5}=1+5 x+\binom{5}{2} x^{2}+\binom{5}{3} x^{3}+\binom{5}{4} x^{4}+\binom{5}{5} x^{5}
$$

The formula for the number of ways to seat the people is
$P(5,5)-5 P(4,4)+\binom{5}{2} P(3,3)-\binom{5}{3} P(2,2)+\binom{5}{4} P(1,1)-\binom{5}{5} P(0,0)$
Filling in the numbers:

$$
5!-5 \cdot 4!+\frac{5!}{2!}-\frac{5!}{3!}+\frac{5!}{4!}-\frac{5!}{5!}
$$

