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The unexpected incident of e in the denominator

If you’ve had Calculus II you may remember the formula

ex =

∞∑
k=0

xk

k!

Putting x = −1, we get

1

e
=

1

0!
− 1

1!
+

1

2!
− 1

3!
+

1

4!
− · · ·

=
1

2!
− 1

3!
+

1

4!
− · · ·

This is is an infinite sum, but we can get a pretty accurate value by
stopping the sum after a relative modest number of terms.

In particular, we get the approximation dn ≈ n! /e and the probability of a
derangement is approximately 1/e. This is accurate to at least 6 decimal
places for n ≥ 10.

2 / 1



The unexpected incident of e in the denominator

If you’ve had Calculus II you may remember the formula

ex =

∞∑
k=0

xk

k!

Putting x = −1, we get

1

e
=

1

0!
− 1

1!
+

1

2!
− 1

3!
+

1

4!
− · · ·

=
1

2!
− 1

3!
+

1

4!
− · · ·

This is is an infinite sum, but we can get a pretty accurate value by
stopping the sum after a relative modest number of terms.

In particular, we get the approximation dn ≈ n! /e and the probability of a
derangement is approximately 1/e. This is accurate to at least 6 decimal
places for n ≥ 10.

2 / 1



The unexpected incident of e in the denominator

If you’ve had Calculus II you may remember the formula

ex =

∞∑
k=0

xk

k!

Putting x = −1, we get

1

e
=

1

0!
− 1

1!
+

1

2!
− 1

3!
+

1

4!
− · · ·

=
1

2!
− 1

3!
+

1

4!
− · · ·

This is is an infinite sum, but we can get a pretty accurate value by
stopping the sum after a relative modest number of terms.

In particular, we get the approximation dn ≈ n! /e and the probability of a
derangement is approximately 1/e. This is accurate to at least 6 decimal
places for n ≥ 10.

2 / 1



The unexpected incident of e in the denominator

If you’ve had Calculus II you may remember the formula

ex =

∞∑
k=0

xk

k!

Putting x = −1, we get

1

e
=

1

0!
− 1

1!
+

1

2!
− 1

3!
+

1

4!
− · · ·

=
1

2!
− 1

3!
+

1

4!
− · · ·

This is is an infinite sum, but we can get a pretty accurate value by
stopping the sum after a relative modest number of terms.

In particular, we get the approximation dn ≈ n! /e and the probability of a
derangement is approximately 1/e. This is accurate to at least 6 decimal
places for n ≥ 10.

2 / 1



Here are some computed values.

• d2 = 1 and the probability of a derangement is 0.5

• d5 = 44 and the probability of a derangement is about 0.366. . .

• d8 = 14833 and the probability of a derangement is about
0.367881944. . .

By comparison 1/e = 0.36787944117144232159552377016146 . . .

Despite the previous discussion, producing the value 10! /e for d10 will not
be accepted as correct, as it is only approximate.

In the analysis of derangements via inclusion-exclusion, when we have n

objects being permuted, we have the formula Sk =
n!

k!
.
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This simple formula for Sk allows us to quickly obtain the number of
permutations that have at least 3 objects in their original place:

L3 = S3 −
(
3

1

)
S4 +

(
4

2

)
S5 − · · · ±

(
n− 1

n− 3

)
Sn

=
n!

3!
− 3

n!

4!
+ 6

n!

5!
− · · · ± (n− 1)!

2! (n− 3)!

n!

n!

However there is an easier way to compute Ek. Since Ek is the number of
permutations with exactly k objects in their original positions, we can
create such permutations in two steps:
1. Pick which k positions to leave the same: C(n, k) ways.
2. Perform a derangement of the remaining n− k objects: dn−k ways.

By the rule of product, Ek = C(n, k)dn−k =
n!

k! (n− k)!
dn−k. Compare

that to the formula

Ek =
n!

k!
−
(
k + 1

1

)
n!

(k + 1)!
+

(
k + 2

2

)
n!

(k + 2)!
− · · · ±

(
n

n− k

)
n!

n!
.
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Examples

Suppose 7 students are asked to deposit their smartphones in a box before
taking a test. Then the phones are returned randomly after the test.

How many ways can they all get the wrong phone? This is a derangement
of the original function associating owner to phone. There are d7 of those
and

d7 = 7!

(
1

2!
− 1

3!
+

1

4!
− 1

5!
+

1

6!
− 1

7!

)
is one way to write the value.

How many ways can at least one student get the right phone?
This is every permutation except the derangements and there are 7! − d7
of these.

How many ways can exactly 3 students get their own phone?

This is E3 = C(7, 3)d4 =
7!

3! 4!
4!

(
1

2!
− 1

3!
+

1

4!

)
.
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An engineer is confronted with 6 cables each of which needs to be plugged
into a specific socket. The engineer has forgotten to label the cables and
sockets. If they are plugged in randomly, how many ways could they all be
wrong?

This is a derangement, so the number of ways is d6. One way to write this
is

d6 =
6!

2!
− 6!

3!
+

6!

4!
− 6!

5!
+

6!

6!
= 6 · 5 · 4 · 3− 6 · 5 · 4 + 6 · 5− 6 + 1

= 6(5(4(3− 1) + 1)− 1) + 1

I wrote the last line to illustrate the most efficient way to calculate d6. In
general, if you need to calculate dn efficiently, a recursive method based on
dn = ndn−1 + (−1)n is probably best. For example d2 = 1, so
d3 = 3 · d2 − 1 = 2, d4 = 4 · d3 + 1 = 9, d5 = 5 · d4 − 1 = 44, and so on.
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How many ways could exactly half of them be wrong?

This means 3 are

correct: E3 = C(6, 3)d3 =
6!

3! 3!
·
(
3!

2!
− 3!

3!

)
= 40.

How many ways could at most half of them be wrong? This means at
least 3 are correct so

L3 =
6!

3!
−
(
3

1

)
6!

4!
+

(
4

2

)
6!

5!
−
(
5

3

)
6!

6!
= 120− 90 + 36− 10 = 56.
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Selections with Forbidden Choices

It is not hard to determine how many ways 4 people can be placed in 7
seats: Pick 4 seats and then assign each to one of the persons. This is a
permutation and so there are P (7, 4) = 7! /(7− 4)! ways.

But suppose some persons refuse to sit in some seats? Here is a visual
representation where a shaded square indicates that the person on the left
refuses to sit in the seat above.

A

B

C

D

1 2 3 4 5 6 7
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Seat assignments with forbidden choices

We pose the problem: how many ways can the 4 people be seated with no
one seated in a forbidden seat?

We can visualize an assignment of seats as a check mark placed in each
row in the square underneath the seat assigned to that person. The
requirements for these marks is that there is only one in each row and at
most one in each column, plus the requirement that none is in a shaded
square.

We will ultimately use inclusion-exclusion to solve this. The conditions are

1. c1: The check mark in the first row is in a shaded square.

2. c2: The check mark in the second row is in a shaded square.

3. c3: The check mark in the third row is in a shaded square.

4. c4: The check mark in the fourth row is in a shaded square.

What we want is N(c1c2c3c4) = N − S1 + S2 − S3 + S4. It turns out that
finding N and S1 are not hard, finding other Sk takes some work.
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2. c2: The check mark in the second row is in a shaded square.

3. c3: The check mark in the third row is in a shaded square.

4. c4: The check mark in the fourth row is in a shaded square.

What we want is N(c1c2c3c4) = N − S1 + S2 − S3 + S4. It turns out that
finding N and S1 are not hard, finding other Sk takes some work.
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