Extensions of Inclusion-Exclusion

Daniel H. Luecking

January 31, 2024

Inclusion-Exclusion

For m conditions $c_{1}, c_{2}, \ldots, c_{m}$, we let N be the number of object to which these conditions apply, and we define S_{1} through S_{m} by

1. $S_{1}=N\left(c_{1}\right)+N\left(c_{2}\right)+N\left(c_{3}\right)+\cdots+N\left(c_{m}\right)$.
2. $S_{2}=N\left(c_{1} c_{2}\right)+N\left(c_{1} c_{3}\right)+N\left(c_{2} c_{3}\right)+\cdots+N\left(c_{m-1} c_{m}\right)$.
3. $S_{3}=N\left(c_{1} c_{2} c_{3}\right)+\cdots+N\left(c_{m-2} c_{m-1} c_{m}\right)$.
4. $S_{m}=N\left(c_{1} c_{2} \ldots c_{m}\right)$. This is the only combination of all m conditions.

Inclusion-Exclusion

For m conditions $c_{1}, c_{2}, \ldots, c_{m}$, we let N be the number of object to which these conditions apply, and we define S_{1} through S_{m} by

$$
\begin{aligned}
& \text { 1. } S_{1}=N\left(c_{1}\right)+N\left(c_{2}\right)+N\left(c_{3}\right)+\cdots+N\left(c_{m}\right) \text {. } \\
& \text { 2. } S_{2}=N\left(c_{1} c_{2}\right)+N\left(c_{1} c_{3}\right)+N\left(c_{2} c_{3}\right)+\cdots+N\left(c_{m-1} c_{m}\right) \text {. } \\
& \text { 3. } S_{3}=N\left(c_{1} c_{2} c_{3}\right)+\cdots+N\left(c_{m-2} c_{m-1} c_{m}\right) \text {. }
\end{aligned}
$$

4. $S_{m}=N\left(c_{1} c_{2} \ldots c_{m}\right)$. This is the only combination of all m conditions.
In some cases all the numbers in a sum are the same, so it is useful to know that S_{1} has m terms, S_{2} has $C(m, 2)$ terms. In general any S_{k} has $C(m, k)$ terms.

Inclusion-Exclusion

For m conditions $c_{1}, c_{2}, \ldots, c_{m}$, we let N be the number of object to which these conditions apply, and we define S_{1} through S_{m} by

$$
\begin{aligned}
& \text { 1. } S_{1}=N\left(c_{1}\right)+N\left(c_{2}\right)+N\left(c_{3}\right)+\cdots+N\left(c_{m}\right) \text {. } \\
& \text { 2. } S_{2}=N\left(c_{1} c_{2}\right)+N\left(c_{1} c_{3}\right)+N\left(c_{2} c_{3}\right)+\cdots+N\left(c_{m-1} c_{m}\right) \text {. } \\
& \text { 3. } S_{3}=N\left(c_{1} c_{2} c_{3}\right)+\cdots+N\left(c_{m-2} c_{m-1} c_{m}\right) \text {. }
\end{aligned}
$$

4. $S_{m}=N\left(c_{1} c_{2} \ldots c_{m}\right)$. This is the only combination of all m conditions.
In some cases all the numbers in a sum are the same, so it is useful to know that S_{1} has m terms, S_{2} has $C(m, 2)$ terms. In general any S_{k} has $C(m, k)$ terms.
The formula for the number that satisfy at least one condition is

$$
S_{1}-S_{2}+S_{3}-\cdots \pm S_{m}
$$

Inclusion-Exclusion

For m conditions $c_{1}, c_{2}, \ldots, c_{m}$, we let N be the number of object to which these conditions apply, and we define S_{1} through S_{m} by

$$
\begin{aligned}
& \text { 1. } S_{1}=N\left(c_{1}\right)+N\left(c_{2}\right)+N\left(c_{3}\right)+\cdots+N\left(c_{m}\right) \text {. } \\
& \text { 2. } S_{2}=N\left(c_{1} c_{2}\right)+N\left(c_{1} c_{3}\right)+N\left(c_{2} c_{3}\right)+\cdots+N\left(c_{m-1} c_{m}\right) \text {. } \\
& \text { 3. } S_{3}=N\left(c_{1} c_{2} c_{3}\right)+\cdots+N\left(c_{m-2} c_{m-1} c_{m}\right) \text {. }
\end{aligned}
$$

4. $S_{m}=N\left(c_{1} c_{2} \ldots c_{m}\right)$. This is the only combination of all m conditions.
In some cases all the numbers in a sum are the same, so it is useful to know that S_{1} has m terms, S_{2} has $C(m, 2)$ terms. In general any S_{k} has $C(m, k)$ terms.
The formula for the number that satisfy at least one condition is

$$
S_{1}-S_{2}+S_{3}-\cdots \pm S_{m}
$$

and the number that satisfy none of the conditions is

$$
N-S_{1}+S_{2}-S_{3}+\cdots \mp S_{m}
$$

Expanding the concept

There are other questions that one might ask besides how many satisfy no conditions or how many satisfy at least one.

Expanding the concept

There are other questions that one might ask besides how many satisfy no conditions or how many satisfy at least one. Here are some that we can find formulas for.

Expanding the concept

There are other questions that one might ask besides how many satisfy no conditions or how many satisfy at least one. Here are some that we can find formulas for.

- L_{k} is the number of objects that satisfy at least k of the conditions.

Expanding the concept

There are other questions that one might ask besides how many satisfy no conditions or how many satisfy at least one. Here are some that we can find formulas for.

- L_{k} is the number of objects that satisfy at least k of the conditions.
- E_{k} is the number that satisfy exactly k of the conditions

Expanding the concept

There are other questions that one might ask besides how many satisfy no conditions or how many satisfy at least one. Here are some that we can find formulas for.

- L_{k} is the number of objects that satisfy at least k of the conditions.
- E_{k} is the number that satisfy exactly k of the conditions

We already know two of these

$$
\begin{gathered}
L_{1}=S_{1}-S_{2}+S_{3}-\cdots \pm S_{m} \\
E_{0}=N-S_{1}+S_{2}-S_{3}+\cdots \mp S_{m}
\end{gathered}
$$

Expanding the concept

There are other questions that one might ask besides how many satisfy no conditions or how many satisfy at least one. Here are some that we can find formulas for.

- L_{k} is the number of objects that satisfy at least k of the conditions.
- E_{k} is the number that satisfy exactly k of the conditions

We already know two of these

$$
\begin{gathered}
L_{1}=S_{1}-S_{2}+S_{3}-\cdots \pm S_{m} \\
E_{0}=N-S_{1}+S_{2}-S_{3}+\cdots \mp S_{m}
\end{gathered}
$$

Another easy one is $L_{0}=N$.

Expanding the concept

There are other questions that one might ask besides how many satisfy no conditions or how many satisfy at least one. Here are some that we can find formulas for.

- L_{k} is the number of objects that satisfy at least k of the conditions.
- E_{k} is the number that satisfy exactly k of the conditions

We already know two of these

$$
\begin{gathered}
L_{1}=S_{1}-S_{2}+S_{3}-\cdots \pm S_{m} \\
E_{0}=N-S_{1}+S_{2}-S_{3}+\cdots \mp S_{m}
\end{gathered}
$$

Another easy one is $L_{0}=N$. We also have $E_{m}=L_{m}=S_{m}=N\left(c_{1} c_{2} \ldots c_{m}\right)$

Expanding the concept

There are other questions that one might ask besides how many satisfy no conditions or how many satisfy at least one. Here are some that we can find formulas for.

- L_{k} is the number of objects that satisfy at least k of the conditions.
- E_{k} is the number that satisfy exactly k of the conditions

We already know two of these

$$
\begin{gathered}
L_{1}=S_{1}-S_{2}+S_{3}-\cdots \pm S_{m} \\
E_{0}=N-S_{1}+S_{2}-S_{3}+\cdots \mp S_{m}
\end{gathered}
$$

Another easy one is $L_{0}=N$. We also have $E_{m}=L_{m}=S_{m}=N\left(c_{1} c_{2} \ldots c_{m}\right)$ and if $k<m, E_{k}=L_{k}-L_{k+1}$.

To illustrate some of the issues involved, if there are 3 conditions we have

$$
E_{1}=N\left(c_{1} \overline{c_{2}} \overline{\overline{c_{3}}}\right)+N\left(\overline{c_{1}} c_{2} \overline{c_{3}}\right)+N\left(\overline{c_{1}} \overline{c_{2}} c_{3}\right)
$$

To illustrate some of the issues involved, if there are 3 conditions we have

$$
E_{1}=N\left(c_{1} \overline{c_{2}} \overline{c_{3}}\right)+N\left(\overline{c_{1}} c_{2} \overline{c_{3}}\right)+N\left(\overline{c_{1}} \overline{c_{2}} c_{3}\right)
$$

If we examine the first term $N\left(c_{1} \overline{c_{2}} \overline{c_{3}}\right)$ we can view this number as asking: Among the set where c_{1} is satisfied, how many satisfy none of the other conditions?

To illustrate some of the issues involved, if there are 3 conditions we have

$$
E_{1}=N\left(c_{1} \overline{c_{2}} \overline{c_{3}}\right)+N\left(\overline{c_{1}} c_{2} \overline{c_{3}}\right)+N\left(\overline{c_{1}} \overline{c_{2}} c_{3}\right)
$$

If we examine the first term $N\left(c_{1} \overline{c_{2}} \overline{c_{3}}\right)$ we can view this number as asking: Among the set where c_{1} is satisfied, how many satisfy none of the other conditions? That is, the containing set has $N\left(c_{1}\right)$ elements and we have 2 conditions c_{2} and c_{3}.

To illustrate some of the issues involved, if there are 3 conditions we have

$$
E_{1}=N\left(c_{1} \overline{c_{2}} \overline{\overline{c_{3}}}\right)+N\left(\overline{c_{1}} c_{2} \overline{c_{3}}\right)+N\left(\overline{c_{1}} \overline{c_{2}} c_{3}\right)
$$

If we examine the first term $N\left(c_{1} \overline{c_{2}} \overline{c_{3}}\right)$ we can view this number as asking: Among the set where c_{1} is satisfied, how many satisfy none of the other conditions? That is, the containing set has $N\left(c_{1}\right)$ elements and we have 2 conditions c_{2} and c_{3}. Using the rule of sum for two sets we get

$$
N\left(c_{1} \overline{c_{2}} \overline{c_{3}}\right)=N\left(c_{1}\right)-N\left(c_{1} c_{2}\right)-N\left(c_{1} c_{3}\right)+N\left(c_{1} c_{2} c_{3}\right)
$$

To illustrate some of the issues involved, if there are 3 conditions we have

$$
E_{1}=N\left(c_{1} \overline{c_{2}} \overline{\overline{c_{3}}}\right)+N\left(\overline{c_{1}} c_{2} \overline{c_{3}}\right)+N\left(\overline{c_{1}} \overline{c_{2}} c_{3}\right)
$$

If we examine the first term $N\left(c_{1} \overline{c_{2}} \overline{c_{3}}\right)$ we can view this number as asking: Among the set where c_{1} is satisfied, how many satisfy none of the other conditions? That is, the containing set has $N\left(c_{1}\right)$ elements and we have 2 conditions c_{2} and c_{3}. Using the rule of sum for two sets we get

$$
N\left(c_{1} \overline{c_{2}} \overline{c_{3}}\right)=N\left(c_{1}\right)-N\left(c_{1} c_{2}\right)-N\left(c_{1} c_{3}\right)+N\left(c_{1} c_{2} c_{3}\right)
$$

A similar formula can be found for the other 2 terms in E_{1} and when we add them we get

$$
E_{1}=S_{1}-2 S_{2}+3 S_{3}
$$

To illustrate some of the issues involved, if there are 3 conditions we have

$$
E_{1}=N\left(c_{1} \overline{c_{2}} \overline{\overline{c_{3}}}\right)+N\left(\overline{c_{1}} c_{2} \overline{c_{3}}\right)+N\left(\overline{c_{1}} \overline{c_{2}} c_{3}\right)
$$

If we examine the first term $N\left(c_{1} \overline{c_{2}} \overline{c_{3}}\right)$ we can view this number as asking: Among the set where c_{1} is satisfied, how many satisfy none of the other conditions? That is, the containing set has $N\left(c_{1}\right)$ elements and we have 2 conditions c_{2} and c_{3}. Using the rule of sum for two sets we get

$$
N\left(c_{1} \overline{c_{2}} \overline{c_{3}}\right)=N\left(c_{1}\right)-N\left(c_{1} c_{2}\right)-N\left(c_{1} c_{3}\right)+N\left(c_{1} c_{2} c_{3}\right)
$$

A similar formula can be found for the other 2 terms in E_{1} and when we add them we get

$$
E_{1}=S_{1}-2 S_{2}+3 S_{3}
$$

This extends to any number of conditions

$$
E_{1}=S_{1}-2 S_{2}+3 S_{3}-4 S_{4}+\cdots \pm m S_{m}
$$

Formulas for the others

Formulas for the others
If there are m conditions and $0 \leq k \leq m$ then

$$
\begin{aligned}
E_{k} & =S_{k}-\binom{k+1}{1} S_{k+1}+\binom{k+2}{2} S_{k+2}-\cdots \pm\binom{ m}{m-k} S_{m} \\
& =S_{k}-\binom{k+1}{k} S_{k+1}+\binom{k+2}{k} S_{k+2}-\cdots \pm\binom{ m}{k} S_{m}
\end{aligned}
$$

(for $k=0, S_{0}=N$)

Formulas for the others

If there are m conditions and $0 \leq k \leq m$ then

$$
\begin{aligned}
E_{k} & =S_{k}-\binom{k+1}{1} S_{k+1}+\binom{k+2}{2} S_{k+2}-\cdots \pm\binom{ m}{m-k} S_{m} \\
& =S_{k}-\binom{k+1}{k} S_{k+1}+\binom{k+2}{k} S_{k+2}-\cdots \pm\binom{ m}{k} S_{m}
\end{aligned}
$$

(for $k=0, S_{0}=N$) and

$$
\begin{aligned}
L_{k} & =S_{k}-\binom{k}{1} S_{k+1}+\binom{k+1}{2} S_{k+2}-\cdots \pm\binom{ m-1}{m-k} S_{m} \\
& =S_{k}-\binom{k}{k-1} S_{k+1}+\binom{k+1}{k-1} S_{k+2}-\cdots \pm\binom{ m-1}{k-1} S_{m}
\end{aligned}
$$

Formulas for the others

If there are m conditions and $0 \leq k \leq m$ then

$$
\begin{aligned}
E_{k} & =S_{k}-\binom{k+1}{1} S_{k+1}+\binom{k+2}{2} S_{k+2}-\cdots \pm\binom{ m}{m-k} S_{m} \\
& =S_{k}-\binom{k+1}{k} S_{k+1}+\binom{k+2}{k} S_{k+2}-\cdots \pm\binom{ m}{k} S_{m}
\end{aligned}
$$

(for $k=0, S_{0}=N$) and

$$
\begin{aligned}
L_{k} & =S_{k}-\binom{k}{1} S_{k+1}+\binom{k+1}{2} S_{k+2}-\cdots \pm\binom{ m-1}{m-k} S_{m} \\
& =S_{k}-\binom{k}{k-1} S_{k+1}+\binom{k+1}{k-1} S_{k+2}-\cdots \pm\binom{ m-1}{k-1} S_{m}
\end{aligned}
$$

For example, with 3 conditions $E_{2}=S_{2}-3 S_{3}$ and $L_{2}=S_{2}-2 S_{3}$

With 3 conditions $E_{2}=S_{2}-3 S_{3}$ and $L_{2}=S_{2}-2 S_{3}$

Examples

Problem: (a) How many permutations of "MODERNIST" contain exactly one of the substrings "DO", "RE" or "MI"?

Examples

Problem: (a) How many permutations of "MODERNIST" contain exactly one of the substrings "DO", "RE" or "MI"? (b) How many contain exactly 2?

Examples

Problem: (a) How many permutations of "MODERNIST" contain exactly one of the substrings "DO", "RE" or "MI"? (b) How many contain exactly 2? (c) How many contain at least 2?
Solution: As before we let $c_{1}=$ 'contains "DO"' $c_{2}=$ 'contains "RE"' $c_{3}=$ 'contains "MI"'.

Examples

Problem: (a) How many permutations of "MODERNIST" contain exactly one of the substrings "DO", "RE" or "MI"? (b) How many contain exactly 2? (c) How many contain at least 2?
Solution: As before we let $c_{1}=$ 'contains "DO"' $c_{2}=$ 'contains "RE"' $c_{3}=$ 'contains "MI"'. Again $N\left(c_{1}\right)=N\left(c_{2}\right)=N\left(c_{3}\right)=8$! so $S_{1}=3 \cdot 8$!,

Examples

Problem: (a) How many permutations of "MODERNIST" contain exactly one of the substrings "DO", "RE" or "MI"? (b) How many contain exactly 2? (c) How many contain at least 2?
Solution: As before we let $c_{1}=$ 'contains "DO"' $c_{2}=$ 'contains "RE"' $c_{3}=$ 'contains "MI"'. Again $N\left(c_{1}\right)=N\left(c_{2}\right)=N\left(c_{3}\right)=8$! so $S_{1}=3 \cdot 8$!, and $N\left(c_{1} c_{2}\right)=N\left(c_{1} c_{3}\right)=N\left(c_{2} c_{3}\right)=7$! so $S_{2}=3 \cdot 7$!,

Examples

Problem: (a) How many permutations of "MODERNIST" contain exactly one of the substrings "DO", "RE" or "MI"? (b) How many contain exactly 2? (c) How many contain at least 2?
Solution: As before we let $c_{1}=$ 'contains "DO"' $c_{2}=$ 'contains "RE"' $c_{3}=$ 'contains "MI"'. Again $N\left(c_{1}\right)=N\left(c_{2}\right)=N\left(c_{3}\right)=8$! so $S_{1}=3 \cdot 8$!, and $N\left(c_{1} c_{2}\right)=N\left(c_{1} c_{3}\right)=N\left(c_{2} c_{3}\right)=7$! so $S_{2}=3 \cdot 7$!, and $S_{3}=N\left(c_{1} c_{2} c_{3}\right)=6!$. Then

Examples

Problem: (a) How many permutations of "MODERNIST" contain exactly one of the substrings "DO", "RE" or "MI"? (b) How many contain exactly 2? (c) How many contain at least 2?
Solution: As before we let $c_{1}=$ 'contains "DO"' $c_{2}=$ 'contains "RE"' $c_{3}=$ 'contains "MI"'. Again $N\left(c_{1}\right)=N\left(c_{2}\right)=N\left(c_{3}\right)=8$! so $S_{1}=3 \cdot 8$!, and $N\left(c_{1} c_{2}\right)=N\left(c_{1} c_{3}\right)=N\left(c_{2} c_{3}\right)=7$! so $S_{2}=3 \cdot 7$!, and $S_{3}=N\left(c_{1} c_{2} c_{3}\right)=6!$. Then
(a) $E_{1}=S_{1}-2 S_{2}+3 S_{3}=3 \cdot 8$! $-2 \cdot 3 \cdot 7!+3 \cdot 6$! $=92,880$.

Examples

Problem: (a) How many permutations of "MODERNIST" contain exactly one of the substrings "DO", "RE" or "MI"? (b) How many contain exactly 2? (c) How many contain at least 2?
Solution: As before we let $c_{1}=$ 'contains "DO"' $c_{2}=$ 'contains "RE"' $c_{3}=$ 'contains "MI"'. Again $N\left(c_{1}\right)=N\left(c_{2}\right)=N\left(c_{3}\right)=8$! so $S_{1}=3 \cdot 8$!, and $N\left(c_{1} c_{2}\right)=N\left(c_{1} c_{3}\right)=N\left(c_{2} c_{3}\right)=7$! so $S_{2}=3 \cdot 7$!, and $S_{3}=N\left(c_{1} c_{2} c_{3}\right)=6!$. Then
(a) $E_{1}=S_{1}-2 S_{2}+3 S_{3}=3 \cdot 8$! $-2 \cdot 3 \cdot 7!+3 \cdot 6!=92,880$.
(b) $E_{2}=S_{2}-3 S_{3}=3 \cdot 7!-3 \cdot 6!=12,960$.

Examples

Problem: (a) How many permutations of "MODERNIST" contain exactly one of the substrings "DO", "RE" or "MI"? (b) How many contain exactly 2? (c) How many contain at least 2?
Solution: As before we let $c_{1}=$ 'contains "DO"' $c_{2}=$ 'contains "RE"' $c_{3}=$ 'contains "MI"'. Again $N\left(c_{1}\right)=N\left(c_{2}\right)=N\left(c_{3}\right)=8$! so $S_{1}=3 \cdot 8$!, and $N\left(c_{1} c_{2}\right)=N\left(c_{1} c_{3}\right)=N\left(c_{2} c_{3}\right)=7$! so $S_{2}=3 \cdot 7$!, and $S_{3}=N\left(c_{1} c_{2} c_{3}\right)=6$!. Then
(a) $E_{1}=S_{1}-2 S_{2}+3 S_{3}=3 \cdot 8$! $-2 \cdot 3 \cdot 7$! $+3 \cdot 6$! $=92,880$.
(b) $E_{2}=S_{2}-3 S_{3}=3 \cdot 7!-3 \cdot 6!=12,960$.
(c) $L_{2}=S_{2}-2 S_{3}=3 \cdot 7!-2 \cdot 6!=13,680$.

Going back to the math majors and their classes, where we had $S_{1}=105$, $S_{2}=35$ and $S_{3}=5$, we can ask the same three questions:

Going back to the math majors and their classes, where we had $S_{1}=105$, $S_{2}=35$ and $S_{3}=5$, we can ask the same three questions:
(a) How many math major were taking exactly 1 of the 3 classes?
$E_{1}=S_{1}-2 S_{2}+3 S_{3}=105-2(35)+3(5)=50$

Going back to the math majors and their classes, where we had $S_{1}=105$, $S_{2}=35$ and $S_{3}=5$, we can ask the same three questions:
(a) How many math major were taking exactly 1 of the 3 classes?
$E_{1}=S_{1}-2 S_{2}+3 S_{3}=105-2(35)+3(5)=50$
(b) How many math major were taking exactly 2 of the 3 classes?
$E_{2}=S_{2}-3 S_{3}=35-3(5)=20$

Going back to the math majors and their classes, where we had $S_{1}=105$, $S_{2}=35$ and $S_{3}=5$, we can ask the same three questions:
(a) How many math major were taking exactly 1 of the 3 classes?
$E_{1}=S_{1}-2 S_{2}+3 S_{3}=105-2(35)+3(5)=50$
(b) How many math major were taking exactly 2 of the 3 classes?
$E_{2}=S_{2}-3 S_{3}=35-3(5)=20$
(c) How many math major were taking at least 2 of the 3 classes?
$L_{2}=S_{2}-2 S_{3}=35-2(5)=25$

Returning to the arrangements of "BOOKBINDING" with conditions $c_{1}=$ 'contains "BB"', $c_{2}=$ 'contains "OO"', $c_{3}=$ 'contains "II"', and $c_{4}=$ 'contains "NN"'.

Returning to the arrangements of "BOOKBINDING" with conditions $c_{1}=$ 'contains "BB"', $c_{2}=$ 'contains "00"', $c_{3}=$ 'contains "II"', and $c_{4}=$ 'contains "NN"'. We obtained $S_{1}=4 \frac{10!}{2!2!2!}, S_{2}=6 \frac{9!}{2!2!}$,
$S_{3}=4 \frac{8!}{2!}$, and $S_{4}=7!$. Then

Returning to the arrangements of "BOOKBINDING" with conditions $c_{1}=$ 'contains "BB"', $c_{2}=$ 'contains "OO"', $c_{3}=$ 'contains "II"', and $c_{4}=$ 'contains "NN"'. We obtained $S_{1}=4 \frac{10!}{2!2!2!}, S_{2}=6 \frac{9!}{2!2!}$,
$S_{3}=4 \frac{8!}{2!}$, and $S_{4}=7!$. Then
(a) How many contain exactly 2 of those substrings? Looking up
$E_{2}=S_{2}-\binom{3}{1} S_{3}+\binom{4}{2} S_{4}=S_{2}-3 S_{3}+6 S_{4}=6 \frac{9!}{2!2!}-3 \cdot 4 \frac{8!}{2!}+6 \cdot 7!$

Returning to the arrangements of "BOOKBINDING" with conditions $c_{1}=$ 'contains "BB"', $c_{2}=$ 'contains "OO"', $c_{3}=$ 'contains "II"', and $c_{4}=$ 'contains "NN"'. We obtained $S_{1}=4 \frac{10!}{2!2!2!}, S_{2}=6 \frac{9!}{2!2!}$,
$S_{3}=4 \frac{8!}{2!}$, and $S_{4}=7!$. Then
(a) How many contain exactly 2 of those substrings? Looking up
$E_{2}=S_{2}-\binom{3}{1} S_{3}+\binom{4}{2} S_{4}=S_{2}-3 S_{3}+6 S_{4}=6 \frac{9!}{2!2!}-3 \cdot 4 \frac{8!}{2!}+6 \cdot 7$!
(b) How many contain exactly 3 of those substrings? Looking up $E_{3}=S_{3}-\binom{4}{1} S_{4}=S_{3}-4 S_{4}=4 \frac{8!}{2!}-4 \cdot 7!$

Returning to the arrangements of "BOOKBINDING" with conditions $c_{1}=$ 'contains "BB"', $c_{2}=$ 'contains "OO"', $c_{3}=$ 'contains "II"', and $c_{4}=$ 'contains "NN"'. We obtained $S_{1}=4 \frac{10!}{2!2!2!}, S_{2}=6 \frac{9!}{2!2!}$,
$S_{3}=4 \frac{8!}{2!}$, and $S_{4}=7!$. Then
(a) How many contain exactly 2 of those substrings? Looking up
$E_{2}=S_{2}-\binom{3}{1} S_{3}+\binom{4}{2} S_{4}=S_{2}-3 S_{3}+6 S_{4}=6 \frac{9!}{2!2!}-3 \cdot 4 \frac{8!}{2!}+6 \cdot 7$!
(b) How many contain exactly 3 of those substrings? Looking up
$E_{3}=S_{3}-\binom{4}{1} S_{4}=S_{3}-4 S_{4}=4 \frac{8!}{2!}-4 \cdot 7!$
(c) At least 2: $L_{2}=S_{2}-\binom{2}{1} S_{3}+\binom{3}{2} S_{4}=6 \frac{9!}{2!2!}-2 \cdot 4 \frac{8!}{2!}+3 \cdot 7$!

Returning to the arrangements of "BOOKBINDING" with conditions $c_{1}=$ 'contains "BB"', $c_{2}=$ 'contains "OO"', $c_{3}=$ 'contains "II"', and $c_{4}=$ 'contains "NN"'. We obtained $S_{1}=4 \frac{10!}{2!2!2!}, S_{2}=6 \frac{9!}{2!2!}$, $S_{3}=4 \frac{8!}{2!}$, and $S_{4}=7!$. Then
(a) How many contain exactly 2 of those substrings? Looking up
$E_{2}=S_{2}-\binom{3}{1} S_{3}+\binom{4}{2} S_{4}=S_{2}-3 S_{3}+6 S_{4}=6 \frac{9!}{2!2!}-3 \cdot 4 \frac{8!}{2!}+6 \cdot 7$!
(b) How many contain exactly 3 of those substrings? Looking up
$E_{3}=S_{3}-\binom{4}{1} S_{4}=S_{3}-4 S_{4}=4 \frac{8!}{2!}-4 \cdot 7!$
(c) At least 2: $L_{2}=S_{2}-\binom{2}{1} S_{3}+\binom{3}{2} S_{4}=6 \frac{9!}{2!2!}-2 \cdot 4 \frac{8!}{2!}+3 \cdot 7$!
(d) At least 3: $L_{3}=S_{3}-\binom{3}{1} S_{4}=4 \frac{8!}{2!}-3 \cdot 7$!

Arrangements of the string "VETERINARIAN" with 5 conditions about containing substrings "EE", "RR", "II", "NN", "AA".

Arrangements of the string "VETERINARIAN" with 5 conditions about containing substrings "EE", "RR", "II", "NN", "AA".
We found previously that $S_{1}=5 \frac{11!}{2!2!2!2!}, S_{2}=10 \frac{10!}{2!2!2!}, S_{3}=10 \frac{9!}{2!2!}$,
$S_{4}=5 \frac{8!}{2!}$, and $S_{5}=7!$.

Arrangements of the string "VETERINARIAN" with 5 conditions about containing substrings "EE", "RR", "II", "NN", "AA".
We found previously that $S_{1}=5 \frac{11!}{2!2!2!2!}, S_{2}=10 \frac{10!}{2!2!2!}, S_{3}=10 \frac{9!}{2!2!}$,
$S_{4}=5 \frac{8!}{2!}$, and $S_{5}=7$!.
(a) How many contain exactly 2 of those substrings? Looking up
$E_{2}=S_{2}-\binom{3}{1} S_{3}+\binom{4}{2} S_{4}-\binom{5}{3} S_{5}=S_{2}-3 S_{3}+6 S_{4}-10 S_{5}=$
$10 \frac{10!}{2!2!2!}-3 \cdot 10 \frac{9!}{2!2!}+6 \cdot 5 \frac{8!}{2!}-10 \cdot 7$!

Arrangements of the string "VETERINARIAN" with 5 conditions about containing substrings "EE", "RR", "II", "NN", "AA".
We found previously that $S_{1}=5 \frac{11!}{2!2!2!2!}, S_{2}=10 \frac{10!}{2!2!2!}, S_{3}=10 \frac{9!}{2!2!}$,
$S_{4}=5 \frac{8!}{2!}$, and $S_{5}=7!$.
(a) How many contain exactly 2 of those substrings? Looking up
$E_{2}=S_{2}-\binom{3}{1} S_{3}+\binom{4}{2} S_{4}-\binom{5}{3} S_{5}=S_{2}-3 S_{3}+6 S_{4}-10 S_{5}=$
$10 \frac{10!}{2!2!2!}-3 \cdot 10 \frac{9!}{2!2!}+6 \cdot 5 \frac{8!}{2!}-10 \cdot 7$!
(c) At least 3?
$L_{3}=S_{3}-\binom{3}{1} S_{4}+\binom{4}{2} S_{5}=S_{3}-3 S_{4}+6 S_{5}=10 \frac{9!}{2!2!}-3 \cdot 5 \frac{8!}{2!}+6 \cdot 7!$

Derangements

When permuting the elements of a set, the set itself usually has no order to it.

Derangements

When permuting the elements of a set, the set itself usually has no order to it. But we can often start with some special permutation, and ask how other permutations differ from it.

Derangements

When permuting the elements of a set, the set itself usually has no order to it. But we can often start with some special permutation, and ask how other permutations differ from it.

Example: How many permutations of the letters of the alphabet have every letter in a position other than its alphabetical order?

Derangements

When permuting the elements of a set, the set itself usually has no order to it. But we can often start with some special permutation, and ask how other permutations differ from it.
Example: How many permutations of the letters of the alphabet have every letter in a position other than its alphabetical order? That is, ' A ' is not in first position, ' B ' is not in second position, etc.

Derangements

When permuting the elements of a set, the set itself usually has no order to it. But we can often start with some special permutation, and ask how other permutations differ from it.
Example: How many permutations of the letters of the alphabet have every letter in a position other than its alphabetical order? That is, ' A ' is not in first position, ' B ' is not in second position, etc.
Here we are starting with all the letters in alphabetical order and ask how many permutations differ from it in every position.

Derangements

When permuting the elements of a set, the set itself usually has no order to it. But we can often start with some special permutation, and ask how other permutations differ from it.
Example: How many permutations of the letters of the alphabet have every letter in a position other than its alphabetical order? That is, ' A ' is not in first position, ' B ' is not in second position, etc.
Here we are starting with all the letters in alphabetical order and ask how many permutations differ from it in every position.

Derangements

When permuting the elements of a set, the set itself usually has no order to it. But we can often start with some special permutation, and ask how other permutations differ from it.
Example: How many permutations of the letters of the alphabet have every letter in a position other than its alphabetical order? That is, ' A ' is not in first position, ' B ' is not in second position, etc.
Here we are starting with all the letters in alphabetical order and ask how many permutations differ from it in every position.
If we have a given permutation of all the elements of a set, then the permutations that are different from it in every position are called derangements of that permutation.

Another way to look at permutations is as one-to-one functions.

Another way to look at permutations is as one-to-one functions. Then another way to define a derangement is to start with two equal-sized sets A and B and a given one-to-one function f from A to B.

Another way to look at permutations is as one-to-one functions. Then another way to define a derangement is to start with two equal-sized sets A and B and a given one-to-one function f from A to B. A derangement of f is another one-to-one function that has a different value from f at every element of A.

Another way to look at permutations is as one-to-one functions. Then another way to define a derangement is to start with two equal-sized sets A and B and a given one-to-one function f from A to B. A derangement of f is another one-to-one function that has a different value from f at every element of A.
The classic example in derangements is part of a probability problem.

Another way to look at permutations is as one-to-one functions. Then another way to define a derangement is to start with two equal-sized sets A and B and a given one-to-one function f from A to B. A derangement of f is another one-to-one function that has a different value from f at every element of A.
The classic example in derangements is part of a probability problem.
Suppose 15 men enter a club at one time and check their hats.

Another way to look at permutations is as one-to-one functions. Then another way to define a derangement is to start with two equal-sized sets A and B and a given one-to-one function f from A to B. A derangement of f is another one-to-one function that has a different value from f at every element of A.
The classic example in derangements is part of a probability problem. Suppose 15 men enter a club at one time and check their hats. The hat-check person just tosses the hats in a pile and when the 15 men leave, they are handed back their hats at random.

Another way to look at permutations is as one-to-one functions. Then another way to define a derangement is to start with two equal-sized sets A and B and a given one-to-one function f from A to B. A derangement of f is another one-to-one function that has a different value from f at every element of A.
The classic example in derangements is part of a probability problem. Suppose 15 men enter a club at one time and check their hats. The hat-check person just tosses the hats in a pile and when the 15 men leave, they are handed back their hats at random. What is the probability that none of the men gets his own hat?

Another way to look at permutations is as one-to-one functions. Then another way to define a derangement is to start with two equal-sized sets A and B and a given one-to-one function f from A to B. A derangement of f is another one-to-one function that has a different value from f at every element of A.
The classic example in derangements is part of a probability problem. Suppose 15 men enter a club at one time and check their hats. The hat-check person just tosses the hats in a pile and when the 15 men leave, they are handed back their hats at random. What is the probability that none of the men gets his own hat?
If A is the set of men and B is the set of hats we have the original function assigning to each man his own hat.

Another way to look at permutations is as one-to-one functions. Then another way to define a derangement is to start with two equal-sized sets A and B and a given one-to-one function f from A to B. A derangement of f is another one-to-one function that has a different value from f at every element of A.
The classic example in derangements is part of a probability problem.
Suppose 15 men enter a club at one time and check their hats. The hat-check person just tosses the hats in a pile and when the 15 men leave, they are handed back their hats at random. What is the probability that none of the men gets his own hat?
If A is the set of men and B is the set of hats we have the original function assigning to each man his own hat. Afterwards we have the new function that assigns to each man the hat he is handed.

Another way to look at permutations is as one-to-one functions. Then another way to define a derangement is to start with two equal-sized sets A and B and a given one-to-one function f from A to B. A derangement of f is another one-to-one function that has a different value from f at every element of A.
The classic example in derangements is part of a probability problem.
Suppose 15 men enter a club at one time and check their hats. The hat-check person just tosses the hats in a pile and when the 15 men leave, they are handed back their hats at random. What is the probability that none of the men gets his own hat?
If A is the set of men and B is the set of hats we have the original function assigning to each man his own hat. Afterwards we have the new function that assigns to each man the hat he is handed. To compute the probability we need to divide the number of derangements by the number of all one-to-one functions.

We attack the problem with inclusion exclusion. Let's number the men from 1 to 15 and let $c_{j}=$ 'man number j gets his own hat'. Note that N is the total number of permutations so $N=15$!.

We attack the problem with inclusion exclusion. Let's number the men from 1 to 15 and let $c_{j}=$ 'man number j gets his own hat'. Note that N is the total number of permutations so $N=15$!.
Then a derangement is a permutation (i.e., an assignment of hats to men) that satisfies none of these conditions.

We attack the problem with inclusion exclusion. Let's number the men from 1 to 15 and let $c_{j}=$ 'man number j gets his own hat'. Note that N is the total number of permutations so $N=15$!.
Then a derangement is a permutation (i.e., an assignment of hats to men) that satisfies none of these conditions.
We can compute $N\left(c_{j}\right)$ as follows: it is the number of permutations where man j gets his own hat. By the rule of product this is 14 ! because we can build such a permutation in 2 steps:

We attack the problem with inclusion exclusion. Let's number the men from 1 to 15 and let $c_{j}=$ 'man number j gets his own hat'. Note that N is the total number of permutations so $N=15$!.
Then a derangement is a permutation (i.e., an assignment of hats to men) that satisfies none of these conditions.

We can compute $N\left(c_{j}\right)$ as follows: it is the number of permutations where man j gets his own hat. By the rule of product this is 14 ! because we can build such a permutation in 2 steps:

1. give man j his hat: there is only one way to do this.

We attack the problem with inclusion exclusion. Let's number the men from 1 to 15 and let $c_{j}=$ 'man number j gets his own hat'. Note that N is the total number of permutations so $N=15$!.
Then a derangement is a permutation (i.e., an assignment of hats to men) that satisfies none of these conditions.
We can compute $N\left(c_{j}\right)$ as follows: it is the number of permutations where man j gets his own hat. By the rule of product this is 14 ! because we can build such a permutation in 2 steps:

1. give man j his hat: there is only one way to do this.
2. form a permutation of the rest of the hats: there are 14 ! ways to do this.

We attack the problem with inclusion exclusion. Let's number the men from 1 to 15 and let $c_{j}=$ 'man number j gets his own hat'. Note that N is the total number of permutations so $N=15$!.
Then a derangement is a permutation (i.e., an assignment of hats to men) that satisfies none of these conditions.
We can compute $N\left(c_{j}\right)$ as follows: it is the number of permutations where man j gets his own hat. By the rule of product this is 14 ! because we can build such a permutation in 2 steps:

1. give man j his hat: there is only one way to do this.
2. form a permutation of the rest of the hats: there are 14 ! ways to do this.
Since we get the same number 14 ! for every $N\left(c_{j}\right)$, we get the sum $S_{1}=15 \cdot 14!=15$!.

We attack the problem with inclusion exclusion. Let's number the men from 1 to 15 and let $c_{j}=$ 'man number j gets his own hat'. Note that N is the total number of permutations so $N=15$!.
Then a derangement is a permutation (i.e., an assignment of hats to men) that satisfies none of these conditions.
We can compute $N\left(c_{j}\right)$ as follows: it is the number of permutations where man j gets his own hat. By the rule of product this is 14 ! because we can build such a permutation in 2 steps:

1. give man j his hat: there is only one way to do this.
2. form a permutation of the rest of the hats: there are 14 ! ways to do this.
Since we get the same number 14 ! for every $N\left(c_{j}\right)$, we get the sum $S_{1}=15 \cdot 14!=15$!.
By a similar argument, for any two conditions $N\left(c_{j} c_{k}\right)=13$!. If we take the sum of all these (there are $C(15,2)$ terms) we get
$S_{2}=\binom{15}{2} 13!=\frac{15!}{2!13!} 13!=\frac{15!}{2!}$.

Then S_{3} is a sum of $C(15,3)$ terms each equal to 12 ! so $S_{3}=\frac{15!}{3!}$.

Then S_{3} is a sum of $C(15,3)$ terms each equal to 12 ! so $S_{3}=\frac{15!}{3!}$.
The formula for each: $S_{k}=\frac{15!}{k!}$ and so the number of derangements is

Then S_{3} is a sum of $C(15,3)$ terms each equal to 12 ! so $S_{3}=\frac{15!}{3!}$.
The formula for each: $S_{k}=\frac{15!}{k!}$ and so the number of derangements is

$$
\begin{aligned}
N\left(\overline{c_{1}} \overline{c_{2}} \ldots \overline{c_{15}}\right) & =N-S_{1}+S_{2}-S_{3}+S_{4}-\cdots-S_{15} \\
& =15!-15!+\frac{15!}{2!}-\frac{15!}{3!}+\frac{15!}{4!}-\cdots-\frac{15!}{15!} \\
& =15!\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\cdots-\frac{1}{15!}\right)
\end{aligned}
$$

Then S_{3} is a sum of $C(15,3)$ terms each equal to 12 ! so $S_{3}=\frac{15!}{3!}$.
The formula for each: $S_{k}=\frac{15!}{k!}$ and so the number of derangements is

$$
\begin{aligned}
N\left(\overline{c_{1}} \overline{c_{2}} \ldots \overline{c_{15}}\right) & =N-S_{1}+S_{2}-S_{3}+S_{4}-\cdots-S_{15} \\
& =15!-15!+\frac{15!}{2!}-\frac{15!}{3!}+\frac{15!}{4!}-\cdots-\frac{15!}{15!} \\
& =15!\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\cdots-\frac{1}{15!}\right)
\end{aligned}
$$

So the probability of a derangement is $\frac{1}{2!}-\frac{1}{3!}+\cdots-\frac{1}{15!}$ which is approximately 0.36788 .

Then S_{3} is a sum of $C(15,3)$ terms each equal to 12 ! so $S_{3}=\frac{15!}{3!}$.
The formula for each: $S_{k}=\frac{15!}{k!}$ and so the number of derangements is

$$
\begin{aligned}
N\left(\overline{c_{1}} \overline{c_{2}} \ldots \overline{c_{15}}\right) & =N-S_{1}+S_{2}-S_{3}+S_{4}-\cdots-S_{15} \\
& =15!-15!+\frac{15!}{2!}-\frac{15!}{3!}+\frac{15!}{4!}-\cdots-\frac{15!}{15!} \\
& =15!\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\cdots-\frac{1}{15!}\right)
\end{aligned}
$$

So the probability of a derangement is $\frac{1}{2!}-\frac{1}{3!}+\cdots-\frac{1}{15!}$ which is approximately 0.36788 .
The general formula for the number of derangements of a permutation with length n is

$$
d_{n}=\frac{n!}{2!}-\frac{n!}{3!}+\frac{n!}{4!}-\cdots \pm \frac{n!}{n!}
$$

