Combinations with Repetition

Daniel H. Luecking

Jan 26, 2024

Combinations versus permutations

Suppose a contest awards 4 prizes and there are 10 contestants. We want to know how many possible outcomes there are.

Combinations versus permutations

Suppose a contest awards 4 prizes and there are 10 contestants. We want to know how many possible outcomes there are. Let's analyze four possibilities.

Combinations versus permutations

Suppose a contest awards 4 prizes and there are 10 contestants. We want to know how many possible outcomes there are. Let's analyze four possibilities.

- Case 1. The prizes are different and no contestant can receive more than 1.

Combinations versus permutations

Suppose a contest awards 4 prizes and there are 10 contestants. We want to know how many possible outcomes there are. Let's analyze four possibilities.

- Case 1. The prizes are different and no contestant can receive more than 1 . This is a permutation: $P(10,4)=10$! /6! possible outcomes.

Combinations versus permutations

Suppose a contest awards 4 prizes and there are 10 contestants. We want to know how many possible outcomes there are. Let's analyze four possibilities.

- Case 1. The prizes are different and no contestant can receive more than 1. This is a permutation: $P(10,4)=10$! $/ 6$! possible outcomes.
- Case 2. The prizes are different but a contestant can receive any or all of them.

Combinations versus permutations

Suppose a contest awards 4 prizes and there are 10 contestants. We want to know how many possible outcomes there are. Let's analyze four possibilities.

- Case 1. The prizes are different and no contestant can receive more than 1 . This is a permutation: $P(10,4)=10$! /6! possible outcomes.
- Case 2. The prizes are different but a contestant can receive any or all of them. We can use the rule of product:

Combinations versus permutations

Suppose a contest awards 4 prizes and there are 10 contestants. We want to know how many possible outcomes there are. Let's analyze four possibilities.

- Case 1. The prizes are different and no contestant can receive more than 1 . This is a permutation: $P(10,4)=10$! /6! possible outcomes.
- Case 2. The prizes are different but a contestant can receive any or all of them. We can use the rule of product: select a contestant for one prize: 10 ways,

Combinations versus permutations

Suppose a contest awards 4 prizes and there are 10 contestants. We want to know how many possible outcomes there are. Let's analyze four possibilities.

- Case 1. The prizes are different and no contestant can receive more than 1 . This is a permutation: $P(10,4)=10$! /6! possible outcomes.
- Case 2. The prizes are different but a contestant can receive any or all of them. We can use the rule of product: select a contestant for one prize: 10 ways, repeat 3 more times.

Combinations versus permutations

Suppose a contest awards 4 prizes and there are 10 contestants. We want to know how many possible outcomes there are. Let's analyze four possibilities.

- Case 1. The prizes are different and no contestant can receive more than 1 . This is a permutation: $P(10,4)=10$! $/ 6$! possible outcomes.
- Case 2. The prizes are different but a contestant can receive any or all of them. We can use the rule of product: select a contestant for one prize: 10 ways, repeat 3 more times. There are 10^{4} possible outcomes.

Combinations versus permutations

Suppose a contest awards 4 prizes and there are 10 contestants. We want to know how many possible outcomes there are. Let's analyze four possibilities.

- Case 1. The prizes are different and no contestant can receive more than 1 . This is a permutation: $P(10,4)=10$! $/ 6$! possible outcomes.
- Case 2. The prizes are different but a contestant can receive any or all of them. We can use the rule of product: select a contestant for one prize: 10 ways, repeat 3 more times. There are 10^{4} possible outcomes.
- Case3. The prizes are identical and no contestant can receive more than 1.

Combinations versus permutations

Suppose a contest awards 4 prizes and there are 10 contestants. We want to know how many possible outcomes there are. Let's analyze four possibilities.

- Case 1. The prizes are different and no contestant can receive more than 1 . This is a permutation: $P(10,4)=10$! $/ 6$! possible outcomes.
- Case 2. The prizes are different but a contestant can receive any or all of them. We can use the rule of product: select a contestant for one prize: 10 ways, repeat 3 more times. There are 10^{4} possible outcomes.
- Case3. The prizes are identical and no contestant can receive more than 1 . This is a combination: $C(10,4)=10!/(4!6!)$ possible outcomes.

Combinations versus permutations

Suppose a contest awards 4 prizes and there are 10 contestants. We want to know how many possible outcomes there are. Let's analyze four possibilities.

- Case 1. The prizes are different and no contestant can receive more than 1. This is a permutation: $P(10,4)=10$! $/ 6$! possible outcomes.
- Case 2. The prizes are different but a contestant can receive any or all of them. We can use the rule of product: select a contestant for one prize: 10 ways, repeat 3 more times. There are 10^{4} possible outcomes.
- Case3. The prizes are identical and no contestant can receive more than 1 . This is a combination: $C(10,4)=10!/(4!6!)$ possible outcomes.
- Case 4. The prizes are identical and a contestant can receive any or all of them. We'll see that there are $C(13,4)$ possible outcomes, but it is not so obvious why.

Combinations with repetition
The last case allows repetition.

Combinations with repetition

The last case allows repetition. It could be analysed by breaking it down into 5 mutually exclusive cases:

Combinations with repetition

The last case allows repetition. It could be analysed by breaking it down into 5 mutually exclusive cases:

- one person receives all 4 prizes (10 ways),

Combinations with repetition

The last case allows repetition. It could be analysed by breaking it down into 5 mutually exclusive cases:

- one person receives all 4 prizes (10 ways),
- two persons each get 2 prizes ($C(10,2)$ ways),

Combinations with repetition

The last case allows repetition. It could be analysed by breaking it down into 5 mutually exclusive cases:

- one person receives all 4 prizes (10 ways),
- two persons each get 2 prizes ($C(10,2)$ ways),
- two persons, one getting 3 prizes $(C(10,2) \cdot 2$ ways),

Combinations with repetition

The last case allows repetition. It could be analysed by breaking it down into 5 mutually exclusive cases:

- one person receives all 4 prizes (10 ways),
- two persons each get 2 prizes ($C(10,2)$ ways),
- two persons, one getting 3 prizes $(C(10,2) \cdot 2$ ways),
- three persons split the 4 prizes $(C(10,3) \cdot 3$ ways $)$,

Combinations with repetition

The last case allows repetition. It could be analysed by breaking it down into 5 mutually exclusive cases:

- one person receives all 4 prizes (10 ways),
- two persons each get 2 prizes ($C(10,2)$ ways),
- two persons, one getting 3 prizes $(C(10,2) \cdot 2$ ways),
- three persons split the 4 prizes $(C(10,3) \cdot 3$ ways $)$,
- four persons get one prize each $(C(10,4)$ ways).

Combinations with repetition

The last case allows repetition. It could be analysed by breaking it down into 5 mutually exclusive cases:

- one person receives all 4 prizes (10 ways),
- two persons each get 2 prizes ($C(10,2)$ ways),
- two persons, one getting 3 prizes $(C(10,2) \cdot 2$ ways),
- three persons split the 4 prizes $(C(10,3) \cdot 3$ ways $)$,
- four persons get one prize each $(C(10,4)$ ways).

This gets unwieldy when the number of prizes grows, so we will use a different approach.

Combinations with repetition

The last case allows repetition. It could be analysed by breaking it down into 5 mutually exclusive cases:

- one person receives all 4 prizes (10 ways),
- two persons each get 2 prizes $(C(10,2)$ ways),
- two persons, one getting 3 prizes $(C(10,2) \cdot 2$ ways),
- three persons split the 4 prizes $(C(10,3) \cdot 3$ ways $)$,
- four persons get one prize each $(C(10,4)$ ways).

This gets unwieldy when the number of prizes grows, so we will use a different approach.
To illustrate this approach, let's reduce the number of contestants to 4 and increase the number of prizes to 5 .

Combinations with repetition

The last case allows repetition. It could be analysed by breaking it down into 5 mutually exclusive cases:

- one person receives all 4 prizes (10 ways),
- two persons each get 2 prizes $(C(10,2)$ ways),
- two persons, one getting 3 prizes $(C(10,2) \cdot 2$ ways $)$,
- three persons split the 4 prizes $(C(10,3) \cdot 3$ ways $)$,
- four persons get one prize each $(C(10,4)$ ways).

This gets unwieldy when the number of prizes grows, so we will use a different approach.
To illustrate this approach, let's reduce the number of contestants to 4 and increase the number of prizes to 5 .
In the following picture we imagine a box for each contestant and a marble for each prize. A marble in a box means a prize for that contestant:

This means we can encode an outcome by a string of o's and |'s. Since the sequence always starts and ends with a | we can omit these and the above outcome looks like oo|oo\| | o. The case where A gets all 5 prizes would correspond to $00000 \| \mid$.

This means we can encode an outcome by a string of o's and |'s. Since the sequence always starts and ends with a | we can omit these and the above outcome looks like oo|oo\|o. The case where A gets all 5 prizes would correspond to $0000 \circ||\mid$.
This sets up a one-to-one correspondence between prize outcomes and arrangements of 5 o's and $3 \mid$'s, and there are $C(8,5)$ of these.

This means we can encode an outcome by a string of o's and |'s. Since the sequence always starts and ends with a | we can omit these and the above outcome looks like oo|oo\|o. The case where A gets all 5 prizes would correspond to $0000 \circ||\mid$.
This sets up a one-to-one correspondence between prize outcomes and arrangements of 5 o's and $3 \mid$'s, and there are $C(8,5)$ of these.
In general, if we are selecting k times with repetition from a set of size n, then we get k marbles (o's) and $n-1$ box separations (|'s).

This means we can encode an outcome by a string of o's and |'s. Since the sequence always starts and ends with a | we can omit these and the above outcome looks like oo|oo\|o. The case where A gets all 5 prizes would correspond to $00000 \| \mid$.
This sets up a one-to-one correspondence between prize outcomes and arrangements of 5 o's and $3 \mid$'s, and there are $C(8,5)$ of these. In general, if we are selecting k times with repetition from a set of size n, then we get k marbles (o's) and $n-1$ box separations (|'s). Then we need the number of arrangements of a string of length $k+n-1$ with ' 0 ' repeated k times and '|' repeated $n-1$ times.

This means we can encode an outcome by a string of o's and |'s. Since the sequence always starts and ends with a | we can omit these and the above outcome looks like oo|oo\|o. The case where A gets all 5 prizes would correspond to $000 \circ \circ \|| |$.
This sets up a one-to-one correspondence between prize outcomes and arrangements of 5 o's and $3 \mid$'s, and there are $C(8,5)$ of these.
In general, if we are selecting k times with repetition from a set of size n, then we get k marbles (o's) and $n-1$ box separations (|'s). Then we need the number of arrangements of a string of length $k+n-1$ with ' 0 ' repeated k times and '|' repeated $n-1$ times. The number of ways to do this is

$$
\frac{(k+n-1)!}{k!(n-1)!}=C(k+n-1, k)
$$

This means we can encode an outcome by a string of o's and |'s. Since the sequence always starts and ends with a | we can omit these and the above outcome looks like oo|oo\|o. The case where A gets all 5 prizes would correspond to $00000 \| \mid$.
This sets up a one-to-one correspondence between prize outcomes and arrangements of 5 o's and $3 \mid$'s, and there are $C(8,5)$ of these.
In general, if we are selecting k times with repetition from a set of size n, then we get k marbles (o's) and $n-1$ box separations (|'s). Then we need the number of arrangements of a string of length $k+n-1$ with ' 0 ' repeated k times and '|' repeated $n-1$ times. The number of ways to do this is

$$
\frac{(k+n-1)!}{k!(n-1)!}=C(k+n-1, k)
$$

Returning to our original problem (4 identical prizes divided among 10 contestants, with repetition): Case 4 can be done in $C(4+10-1,4)=13$! /(4! 9!) ways.

Another way to look at it

Let's go back to the problem of 5 identical prizes for 4 people.

Another way to look at it

Let's go back to the problem of 5 identical prizes for 4 people.
If we let p_{1} be the number of prizes A receives, p_{2} the number of prizes B receives, p_{3} the number of prizes C receives, and p_{4} the number of prizes D receives. We have

$$
p_{1}+p_{2}+p_{3}+p_{4}=5 .
$$

Another way to look at it

Let's go back to the problem of 5 identical prizes for 4 people.
If we let p_{1} be the number of prizes A receives, p_{2} the number of prizes B receives, p_{3} the number of prizes C receives, and p_{4} the number of prizes D receives. We have

$$
p_{1}+p_{2}+p_{3}+p_{4}=5 .
$$

Any solution of this equation with nonnegative integer values corresponds to an assignment of 5 identical prizes to 4 people. Conversely, any such assignment corresponds to a solution of his equation. Thus, the number of solutions is $C(5+4-1,5)$.

Another way to look at it

Let's go back to the problem of 5 identical prizes for 4 people.
If we let p_{1} be the number of prizes A receives, p_{2} the number of prizes B receives, p_{3} the number of prizes C receives, and p_{4} the number of prizes D receives. We have

$$
p_{1}+p_{2}+p_{3}+p_{4}=5 .
$$

Any solution of this equation with nonnegative integer values corresponds to an assignment of 5 identical prizes to 4 people. Conversely, any such assignment corresponds to a solution of his equation. Thus, the number of solutions is $C(5+4-1,5)$.
In general if an equation has has n variables and their sum equals k, then the number of (nonnegative integer) solutions is $C(k+n-1, k)$.

Example: A small business has $\$ 1500$ to divide among 8 employees for bonuses. If these are awarded in multiples of $\$ 100$, what is the number of ways this can be done?

Example: A small business has $\$ 1500$ to divide among 8 employees for bonuses. If these are awarded in multiples of $\$ 100$, what is the number of ways this can be done?
Answer: If we let $b_{1}, b_{2}, \ldots, b_{8}$ be the number of $\$ 100$ amounts each employee gets, we have

$$
b_{1}+b_{2}+b_{3}+b_{4}+b_{5}+b_{6}+b_{7}+b_{8}=15
$$

Example: A small business has $\$ 1500$ to divide among 8 employees for bonuses. If these are awarded in multiples of $\$ 100$, what is the number of ways this can be done?
Answer: If we let $b_{1}, b_{2}, \ldots, b_{8}$ be the number of $\$ 100$ amounts each employee gets, we have

$$
b_{1}+b_{2}+b_{3}+b_{4}+b_{5}+b_{6}+b_{7}+b_{8}=15
$$

The number of solutions is $C(15+8-1,15)=22!/(15!7!)=170,544$.

Example: A small business has $\$ 1500$ to divide among 8 employees for bonuses. If these are awarded in multiples of $\$ 100$, what is the number of ways this can be done?
Answer: If we let $b_{1}, b_{2}, \ldots, b_{8}$ be the number of $\$ 100$ amounts each employee gets, we have

$$
b_{1}+b_{2}+b_{3}+b_{4}+b_{5}+b_{6}+b_{7}+b_{8}=15
$$

The number of solutions is $C(15+8-1,15)=22!/(15!7!)=170,544$. Alternatively, we are selecting 15 times, with repetition from a set of size 8 .

Example: A small business has $\$ 1500$ to divide among 8 employees for bonuses. If these are awarded in multiples of $\$ 100$, what is the number of ways this can be done?
Answer: If we let $b_{1}, b_{2}, \ldots, b_{8}$ be the number of $\$ 100$ amounts each employee gets, we have

$$
b_{1}+b_{2}+b_{3}+b_{4}+b_{5}+b_{6}+b_{7}+b_{8}=15
$$

The number of solutions is $C(15+8-1,15)=22!/(15!7!)=170,544$.
Alternatively, we are selecting 15 times, with repetition from a set of size 8 .
Suppose I want each employee to get at least $\$ 100$. If we want, say $b_{1} \geq 1$, then $b_{1}=q_{1}+1$, where $q_{1} \geq 0$. So the equation for the b 's becomes the following equation for the q 's:

$$
q_{1}+q_{2}+q_{3}+q_{4}+q_{5}+q_{6}+q_{7}+q_{8}=7
$$

and this has $C(7+8-1,7)=14!/(7!7!)=3432$ solutons.

Example: A small business has $\$ 1500$ to divide among 8 employees for bonuses. If these are awarded in multiples of $\$ 100$, what is the number of ways this can be done?
Answer: If we let $b_{1}, b_{2}, \ldots, b_{8}$ be the number of $\$ 100$ amounts each employee gets, we have

$$
b_{1}+b_{2}+b_{3}+b_{4}+b_{5}+b_{6}+b_{7}+b_{8}=15
$$

The number of solutions is $C(15+8-1,15)=22!/(15!7!)=170,544$.
Alternatively, we are selecting 15 times, with repetition from a set of size 8 .
Suppose I want each employee to get at least $\$ 100$. If we want, say $b_{1} \geq 1$, then $b_{1}=q_{1}+1$, where $q_{1} \geq 0$. So the equation for the b 's becomes the following equation for the q 's:

$$
q_{1}+q_{2}+q_{3}+q_{4}+q_{5}+q_{6}+q_{7}+q_{8}=7
$$

and this has $C(7+8-1,7)=14!/(7!7!)=3432$ solutons.
Alternatively, just give everyone $\$ 100$ and then select 7 times, with repetition from a set of size 8 .

Voting methods

Suppose there are 10 candidates for office.

Voting methods

Suppose there are 10 candidates for office. How many ways can you vote for them if the instructions for voting are

- Put a check next to 4 candidates.

Voting methods

Suppose there are 10 candidates for office. How many ways can you vote for them if the instructions for voting are

- Put a check next to 4 candidates. You merely select 4 out of 10 : $C(10,4)$ ways.

Voting methods

Suppose there are 10 candidates for office. How many ways can you vote for them if the instructions for voting are

- Put a check next to 4 candidates. You merely select 4 out of 10 : $C(10,4)$ ways.
- Place 4 checks. Multiple checks in front of candidates are permitted.

Voting methods

Suppose there are 10 candidates for office. How many ways can you vote for them if the instructions for voting are

- Put a check next to 4 candidates. You merely select 4 out of 10 : $C(10,4)$ ways.
- Place 4 checks. Multiple checks in front of candidates are permitted. Selection with repetition, $C(4+10-1,4)$ ways.

Voting methods

Suppose there are 10 candidates for office. How many ways can you vote for them if the instructions for voting are

- Put a check next to 4 candidates. You merely select 4 out of 10 : $C(10,4)$ ways.
- Place 4 checks. Multiple checks in front of candidates are permitted. Selection with repetition, $C(4+10-1,4)$ ways.
- Choose 4 candidates and rank them 1st through 4th.

Voting methods

Suppose there are 10 candidates for office. How many ways can you vote for them if the instructions for voting are

- Put a check next to 4 candidates. You merely select 4 out of 10 : $C(10,4)$ ways.
- Place 4 checks. Multiple checks in front of candidates are permitted. Selection with repetition, $C(4+10-1,4)$ ways.
- Choose 4 candidates and rank them 1st through 4th. Select, 4, then label them: $P(10,4)$ ways.

Voting methods

Suppose there are 10 candidates for office. How many ways can you vote for them if the instructions for voting are

- Put a check next to 4 candidates. You merely select 4 out of 10 : $C(10,4)$ ways.
- Place 4 checks. Multiple checks in front of candidates are permitted. Selection with repetition, $C(4+10-1,4)$ ways.
- Choose 4 candidates and rank them 1st through 4th. Select, 4, then label them: $P(10,4)$ ways.

While this does not involve permutations or combinations, another voting system is the following: Vote for all candidates you deem acceptable.

Voting methods

Suppose there are 10 candidates for office. How many ways can you vote for them if the instructions for voting are

- Put a check next to 4 candidates. You merely select 4 out of 10 : $C(10,4)$ ways.
- Place 4 checks. Multiple checks in front of candidates are permitted. Selection with repetition, $C(4+10-1,4)$ ways.
- Choose 4 candidates and rank them 1st through 4th. Select, 4, then label them: $P(10,4)$ ways.

While this does not involve permutations or combinations, another voting system is the following: Vote for all candidates you deem acceptable. This can be analysed as 10 tasks with 2 ways to do each: decide to vote or not vote for each candidate. By the rule of product, there are 2^{10} ways to do this.

Voting methods

Suppose there are 10 candidates for office. How many ways can you vote for them if the instructions for voting are

- Put a check next to 4 candidates. You merely select 4 out of 10 : $C(10,4)$ ways.
- Place 4 checks. Multiple checks in front of candidates are permitted. Selection with repetition, $C(4+10-1,4)$ ways.
- Choose 4 candidates and rank them 1st through 4th. Select, 4, then label them: $P(10,4)$ ways.

While this does not involve permutations or combinations, another voting system is the following: Vote for all candidates you deem acceptable.
This can be analysed as 10 tasks with 2 ways to do each: decide to vote or not vote for each candidate. By the rule of product, there are 2^{10} ways to do this.
A voting system where you rate each candidate with 'disapprove', 'approve' or 'no opinion' would yield 3^{10} possible outcomes.

Strings with substrings, revisited
Consider the version of the rule of sum that says $|A \cup B|=|A|+|B|-|A \cap B|$.

Strings with substrings, revisited

Consider the version of the rule of sum that says
$|A \cup B|=|A|+|B|-|A \cap B|$. Let us suppose that A and B are subsets of U and we want to know how many elements of U are not in either A or B.

Strings with substrings, revisited

Consider the version of the rule of sum that says
$|A \cup B|=|A|+|B|-|A \cap B|$. Let us suppose that A and B are subsets of U and we want to know how many elements of U are not in either A or B. The answer is $|U|-|A \cup B|=|U|-|A|-|B|+|A \cap B|$. Let's apply this to the following problem.

Strings with substrings, revisited

Consider the version of the rule of sum that says
$|A \cup B|=|A|+|B|-|A \cap B|$. Let us suppose that A and B are subsets of U and we want to know how many elements of U are not in either A or B. The answer is $|U|-|A \cup B|=|U|-|A|-|B|+|A \cap B|$. Let's apply this to the following problem.
How many permutations of the 26 letters of the alphabet do not contain either of the substrings "CAT" or "DOG".

Strings with substrings, revisited

Consider the version of the rule of sum that says
$|A \cup B|=|A|+|B|-|A \cap B|$. Let us suppose that A and B are subsets of U and we want to know how many elements of U are not in either A or B. The answer is $|U|-|A \cup B|=|U|-|A|-|B|+|A \cap B|$. Let's apply this to the following problem.
How many permutations of the 26 letters of the alphabet do not contain either of the substrings "CAT" or "DOG".
If U is the set of all such permutationss then $|U|=26$!.

Strings with substrings, revisited

Consider the version of the rule of sum that says
$|A \cup B|=|A|+|B|-|A \cap B|$. Let us suppose that A and B are subsets of U and we want to know how many elements of U are not in either A or B. The answer is $|U|-|A \cup B|=|U|-|A|-|B|+|A \cap B|$. Let's apply this to the following problem.
How many permutations of the 26 letters of the alphabet do not contain either of the substrings "CAT" or "DOG".
If U is the set of all such permutationss then $|U|=26$!. If A is the subset of those containing "CAT" and B is the subset of those containing "DOG" then $|A|=24$! and $|B|=24$!

Strings with substrings, revisited

Consider the version of the rule of sum that says
$|A \cup B|=|A|+|B|-|A \cap B|$. Let us suppose that A and B are subsets of U and we want to know how many elements of U are not in either A or B. The answer is $|U|-|A \cup B|=|U|-|A|-|B|+|A \cap B|$. Let's apply this to the following problem.
How many permutations of the 26 letters of the alphabet do not contain either of the substrings "CAT" or "DOG".
If U is the set of all such permutationss then $|U|=26$!. If A is the subset of those containing "CAT" and B is the subset of those containing "DOG" then $|A|=24$! and $|B|=24$! and $A \cap B$ is the set of those containing both so $|A \cap B|=22$!.

Strings with substrings, revisited

Consider the version of the rule of sum that says
$|A \cup B|=|A|+|B|-|A \cap B|$. Let us suppose that A and B are subsets of U and we want to know how many elements of U are not in either A or B. The answer is $|U|-|A \cup B|=|U|-|A|-|B|+|A \cap B|$. Let's apply this to the following problem.
How many permutations of the 26 letters of the alphabet do not contain either of the substrings "CAT" or "DOG".
If U is the set of all such permutationss then $|U|=26$!. If A is the subset of those containing "CAT" and B is the subset of those containing "DOG" then $|A|=24$! and $|B|=24$! and $A \cap B$ is the set of those containing both so $|A \cap B|=22$!.
Thus there are $26!-24$! -24 ! +22 ! permutations containing neither.

