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Rule

If two sets A and B are in 1-to-1 correspondence, then |A| = |B|.

Rule

If B ⊆ A then |B| ≤ |A|. If there are elements of A that are not in B
then |B| < |A| (assuming B at least is a finite set).

Rule

If A and B are disjoint sets then |A ∪B| = |A|+ |B|. More generally, for
all sets |A ∪B| = |A|+ |B| − |A ∩B|.

Rule

If A ⊆ C and B is the set of all elements of C that are not in A then
|B| = |C| − |A|.

This is because A and B are disjoint and C = A ∪B, so |C| = |A|+ |B|.
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Rule

If one task can be performed in m ways while another task can be
performed in k ways, and the two tasks cannot be performed
simultaneously, then there are m+ k possible ways to perform one or the
other task.

An example

Consider the following counting problem: How many solutions does the
equation x+ y = 10 have, if x and y are required to be a nonnegative
integers? There are 11: 0+10 = 10, 1+9 = 10, and so on to 10+0 = 10.

There is nothing special about 10: the number of solutions of x+ y = n is
n+ 1 no matter what positive integer n is.

Now, how many solutions does x+ y + z = 10 have? We can break this
into 11 cases:
Case z = 0: so x+ y = 10 and there are 11 ways.
Case z = 1: so x+ y = 9 and there are 10 ways.
. . .
Case z = 10: so x+ y = 0 and there is 1 way.
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So we have 11 tasks: find a solution when z = 0, or 1, or 2, . . . , or 10. All
solutions are the result of one of these tasks and there is no overlapping of
tasks,

so we can add these together to get the number of solutions:
11 + 10 + · · ·+ 1 = 66.

Rule

Suppose one task can be performed in m ways and a second task can be
performed in k ways. Then the number of ways to perform the first
followed by the second is mk.

It is important, in applications of the Rule of Product, that the following
are satisfied

1. The number of ways to perform a task does not depend on the
outcome of previous tasks.

2. If we use this to count final outcomes, we must have
• If any one task is done differently, the final outcome is different.
• All final outcomes are produced by some way of performing the

sequence of tasks.
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A picture of one-to-one correspondence

1 ←→ A
2 ←→ B
3 ←→ C
4 ←→ D
...

...
...

24 ←→ X
25 ←→ Y
26 ←→ Z
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A picture of the rule of sum

A B

|A| = 6, |B| = 5, |A ∩B| = 3, |A ∪B| = 6 + 5− 3 = 8.
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A picture of the rule of product

The following illustrates building strings of length 2 from the letters A, B,
and C without repeated letters. This illustrates the rule of product: the
first task (select a letter) produces a 3-way branching, and then the second
task (select a different letter) produces 2-way branching. There are a total
of 3 · 2 paths to the different final results.

AB AC BA BC CA CB

A B C
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Definition

A permutation on a set A is an subset of A placed in some order.

For example, if we select 5 different letters, then arrange them into a
5-letter string, we have a permutation on the set of letters.

We are interested in the number of possible permutations. That number
doesn’t depend on what is in the set A, only on how many elements A has
and on how many elements we are choosing to put in order.

If the set we are choosing from is an n-set and we are choosing k
elements, we refer to these as permutations of n things taken k at a time.
(The shorter ‘k-permutations of an n-set’ is also used.)

Definition

P (n, k) stands for the number of permutations possible when choosing k
elements from a set of size n. We’ll have a formula for this momentarily.

The Rule of product comes to our aid here: we can build a k-permutation
in k steps: Pick the element for each position one-by-one.
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The formula for P (n, k)

If we are picking k elements from a set with n elements, the steps are:

Pick an element for the 1st position: There are n ways to do this.
Pick an element for the 2nd position: There are n− 1 ways to do this.
. . .
Pick an element for the kth position: There are n− (k − 1) = n− k + 1
ways to do this.

Thus P (n, k) = n(n− 1) · · · (n− k + 1). For example,
P (10, 3) = 10 · 9 · 8 = 720.

The special case P (n, n) is important: P (n, n) = n(n− 1)(n− 2) · · · 1.
We have a special notation for this product, called a factorial :

n! = n(n− 1)(n− 2) · · · 1 (special case: 0! = 1)

With this notation we have the shorter formulas:

P (n, n) = n! and P (n, k) =
n!

(n− k)!
.
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Other ways to look at permutations

Note that P (100, 3) = 100! /97! = 100 · 99 · 98 = 970200. The first
computation (dividing 100! by 97! ) is impossible to do by hand, and not
even guaranteed to be exact in some computer programs, the second is
easy and pretty quick.

Consider the set S = {A,B,C,D,E, F,G} and the following table:

x 1 2 3 4

f(x) B G A C

This defines a function from A = {1, 2, 3, 4} to S which is a one-to-one
function because all the elements in the second row are different. It also
contains a 4-permutation on S: BGAC.

In fact, there is a one-to-one correspondence between permutations and
one-to-one functions. That is, for any k-set A and n-set S, P (n, k) is the
number of one-to-one functions from A to S.
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Example

How many ways can a 10-member club select its officers (president,
vice-president, treasurer)?

We need to associate each title (abbreviated P, V and T, for short) with a
single club member. Thus if A = {P, V, T} and S is the set of club
members, the question asks for the number of one-to-one functions from
A to S, namely P (10, 3) = 10 · 9 · 8.
How many ways can a 10-member club select a 3-person committee?

Such a selection is not a permutation. We want the number of 3-element
subsets of the club members. We can use permutations to count this.
ABC and CAB are different permutations, but they both produce the
subset {A,B,C}. In fact, P (3, 3) = 6 permutations produce the same
subset.

If we group all the permutations into clusters of size 6 that each represent
the same subset, we get P (10, 3)/P (3, 3) = 10·9·8

3·2·1 = 120 subsets.
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Permutations with repetition (arrangements)

How many ways can we arrange the letters of the string "BOOKKEEPER"?

To be clear what this means, imagine we write each letter on a tile,
B O O K K E E P E R , then we shuffle these tiles and
line them up, recording the resulting string of letters. How many different
strings do we get?

If we count each tile as different, we get 10! permutations. But if, for
example, all we do is exchange the two O -tiles we don’t get different
strings. Same for the K -tiles and E -tiles.

Since there are 2! ways to permute the O s, 2! ways to permute the K s
and 3! ways to permute the E s, we have 2! 2! 3! different permutations
(of the tiles) that produce the same string. We have a set (10!
permutations of tiles) divided into clusters of equal size (2! 2! 3! ) and we
want the number of clusters: divide the number of permutations by the

size of the clusters:
10!

2! 2! 3!
= 151,200.
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Other examples

How many strings are arrangements of the string "SOCIOECONOMIC"?

Since the string has length 13, with 2 occurrences of ’I’, 3 occurrences of

’C’ and 4 occurrences of ’O’, there are
13!

2! 3! 4!
arrangements

What about "FILIOPIETISTIC"?
14!

2! 5!
.

What about "BEE"?
3!

2!
= 3 and they are "BEE", "EBE" and "EEB".

Finally, what about "STRATIFICATIONAL" and "GASTROENTEROLOGIST"?
Give it a try, the hard part is not missing any repetitions.
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Permutations with (sub)strings attached

We know there are 8! /2! arrangements of "GEODESIC". Now how many
contain the substring "DOG"?

If we imagine the letters on tiles again, we
can glue the D , O and G tiles together to get

D O G E E S I C

If we arrange these and record the resulting string we are guaranteed to
get one with the substring "DOG". Since there are 6 objects with 2 of
them identical, there are 6! /2! arrangements with the substring "DOG".

The number that do not have the substring "DOG" is 8! /2! − 6! /2! .

A similar argument applies to the following kind of problem: how many
permutations of the 26 letters of the alphabet contain the substrings
"CAT", "DOG" and "LYNX"? Answer: 19! , the number of permutations of
C A T , D O G , L Y N X , and 16 individual letters.

How about permutations of the 26 letters of the alphabet contain the
substrings "CAT", "DOG" and "KID"? Answer: 20! , the number of
permutations of C A T , K I D O G , and 18 individual letters.

14 / 16
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A similar argument applies to the following kind of problem: how many
permutations of the 26 letters of the alphabet contain the substrings
"CAT", "DOG" and "LYNX"? Answer: 19! , the number of permutations of
C A T , D O G , L Y N X , and 16 individual letters.

How about permutations of the 26 letters of the alphabet contain the
substrings "CAT", "DOG" and "KID"? Answer: 20! , the number of
permutations of C A T , K I D O G , and 18 individual letters.
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Selections without order

A combination of n things taken k at a time is subset of size k from an
n-set. The distinction between a permutation and a combination is that 2
combinations are the same if they have the same elements, while 2
permutations are the same if they have the same elements in the same
order.

More generally, if we view a permutation as a one-to-one function, from
some k-set A into an n-set S then, to get a permutation, we have to
choose the correct number of elements of S (k of them) and then
associate each of those with an element of A. With a combination, we are
done when we have chosen the elements.

That is, for combinations we just choose them, for permutations we
choose them and then ‘label’ them.

Definition

C(n, k) stands for the number of combinations possible when choosing k
elements from a set of size n.
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Formulas for C(n, k)

Note that P (n, k) = C(n, k)P (k, k),

so the formula for C(n, k) is

C(n, k) =
P (n, k)

P (k, k)
=

n!

(n− k)! k!
.

Example: I have 7 books I haven’t read and I want to take 3 of them on
vacation. There are

C(7, 3) =
7!

4! 3!
=

7 · 6 · 5
3 · 2 · 1

= 35 ways to do this.

Example: I have 7 books of fiction and 5 nonfiction. I want to bring 2 of
each on my vacation. I use the rule of product: select 2 fiction and then
select 2 nonfiction.

C(7, 2)C(5, 2) =
7!

5! 2!

5!

3! 2!
=

7 · 6
2 · 1

5 · 4
2 · 1

= 210 ways to do this.
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