Review of Chapter 6

Daniel H. Luecking

24 March 2024

Definition

An $n \times n$ matrix A is diagonalizable if it is similar to a diagonal matrix.

Definition

An $n \times n$ matrix A is diagonalizable if it is similar to a diagonal matrix. A diagonal matrix is a matrix D with zeros everywhere except possibly on the main diagonal (i.e., $\left.d_{11}, d_{22}, \ldots, d_{n n}\right)$.

Definition

An $n \times n$ matrix A is diagonalizable if it is similar to a diagonal matrix. A diagonal matrix is a matrix D with zeros everywhere except possibly on the main diagonal (i.e., $\left.d_{11}, d_{22}, \ldots, d_{n n}\right)$. A is similar to D means that there is an invertible matrix S such that $D=S^{-1} A S$.

Definition

An $n \times n$ matrix A is diagonalizable if it is similar to a diagonal matrix. A diagonal matrix is a matrix D with zeros everywhere except possibly on the main diagonal (i.e., $\left.d_{11}, d_{22}, \ldots, d_{n n}\right)$. A is similar to D means that there is an invertible matrix S such that $D=S^{-1} A S$.

We have seen that this will happen if \mathbb{R}^{n} has a basis consisting of eigenvectors of A.

Definition

An $n \times n$ matrix A is diagonalizable if it is similar to a diagonal matrix. A diagonal matrix is a matrix D with zeros everywhere except possibly on the main diagonal (i.e., $\left.d_{11}, d_{22}, \ldots, d_{n n}\right)$. A is similar to D means that there is an invertible matrix S such that $D=S^{-1} A S$.

We have seen that this will happen if \mathbb{R}^{n} has a basis consisting of eigenvectors of A. In that case, the columns of S are those eigenvectors and the main diagonal of D consists of the corresponding eigenvalues (in the same order as the eigenvectors appear in S).

Definition

An $n \times n$ matrix A is diagonalizable if it is similar to a diagonal matrix. A diagonal matrix is a matrix D with zeros everywhere except possibly on the main diagonal (i.e., $\left.d_{11}, d_{22}, \ldots, d_{n n}\right)$. A is similar to D means that there is an invertible matrix S such that $D=S^{-1} A S$.

We have seen that this will happen if \mathbb{R}^{n} has a basis consisting of eigenvectors of A. In that case, the columns of S are those eigenvectors and the main diagonal of D consists of the corresponding eigenvalues (in the same order as the eigenvectors appear in S).
In fact, this case is the only way a matrix can be diagonalizable:

Definition

An $n \times n$ matrix A is diagonalizable if it is similar to a diagonal matrix. A diagonal matrix is a matrix D with zeros everywhere except possibly on the main diagonal (i.e., $\left.d_{11}, d_{22}, \ldots, d_{n n}\right)$. A is similar to D means that there is an invertible matrix S such that $D=S^{-1} A S$.

We have seen that this will happen if \mathbb{R}^{n} has a basis consisting of eigenvectors of A. In that case, the columns of S are those eigenvectors and the main diagonal of D consists of the corresponding eigenvalues (in the same order as the eigenvectors appear in S).
In fact, this case is the only way a matrix can be diagonalizable:

Theorem

An $n \times n$ matrix A is diagonalizable if and only if \mathbb{R}^{n} has a basis consisting of eigenvectors of A. It happens when the sum of the dimensions of the eigenspaces is n. In that case the diagonal elements are the eigenvalues of A.

Example: Diagonalize the following matrix, or else prove it is not diagonalizable:

$$
A=\left(\begin{array}{rrr}
1 & 1 & -1 \\
0 & 2 & 0 \\
-1 & 1 & 1
\end{array}\right)
$$

Example: Diagonalize the following matrix, or else prove it is not diagonalizable:

$$
A=\left(\begin{array}{rrr}
1 & 1 & -1 \\
0 & 2 & 0 \\
-1 & 1 & 1
\end{array}\right)
$$

First step: find the eigenvalues.

$$
\left|\begin{array}{ccc}
1-\lambda & 1 & 1 \\
0 & 2-\lambda & 0 \\
1 & 1 & 1-\lambda
\end{array}\right|=(2-\lambda)\left((1-\lambda)^{2}-1\right)=(2-\lambda)\left(\lambda^{2}-2 \lambda\right)
$$

Example: Diagonalize the following matrix, or else prove it is not diagonalizable:

$$
A=\left(\begin{array}{rrr}
1 & 1 & -1 \\
0 & 2 & 0 \\
-1 & 1 & 1
\end{array}\right)
$$

First step: find the eigenvalues.

$$
\left|\begin{array}{ccc}
1-\lambda & 1 & 1 \\
0 & 2-\lambda & 0 \\
1 & 1 & 1-\lambda
\end{array}\right|=(2-\lambda)\left((1-\lambda)^{2}-1\right)=(2-\lambda)\left(\lambda^{2}-2 \lambda\right)
$$

Equating this to 0 we get two roots: $\lambda=0$ and a double root $\lambda=2$.

Second step: Find the eigenspaces.

$$
A-2 I=\left(\begin{array}{ccc}
-1 & 1 & 1 \\
0 & 0 & 0 \\
1 & 1 & -1
\end{array}\right) \xrightarrow{5 \mathrm{EROs}}\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Second step: Find the eigenspaces.

$$
A-2 I=\left(\begin{array}{ccc}
-1 & 1 & 1 \\
0 & 0 & 0 \\
1 & 1 & -1
\end{array}\right) \xrightarrow{5 \mathrm{EROs}}\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The equations this gives are $x_{1}=x_{3}$ and $x_{2}=0$. The eigenspace is therefore

$$
\left\{\left.\left(\begin{array}{c}
\alpha \\
0 \\
\alpha
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\} \quad \text { with basis }\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

The eigenspace for $\lambda=0$

$$
A-0 I=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 0 \\
1 & 1 & 1
\end{array}\right) \xrightarrow{3 \mathrm{EROs}}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The eigenspace for $\lambda=0$

$$
A-0 I=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 0 \\
1 & 1 & 1
\end{array}\right) \xrightarrow{3 \mathrm{EROs}}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The equations this gives are $x_{1}=-x_{3}$ and $x_{2}=0$. The eigenspace is therefore

$$
\left\{\left.\left(\begin{array}{c}
-\alpha \\
0 \\
\alpha
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\} \text { with basis }\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

The eigenspace for $\lambda=0$

$$
A-0 I=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 0 \\
1 & 1 & 1
\end{array}\right) \xrightarrow{3 \mathrm{EROs}}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The equations this gives are $x_{1}=-x_{3}$ and $x_{2}=0$. The eigenspace is therefore

$$
\left\{\left.\left(\begin{array}{c}
-\alpha \\
0 \\
\alpha
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\} \text { with basis }\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

This matrix is not diagonalizable because the only two eigenspaces have dimension 1 each for a total of 2 .

The eigenspace for $\lambda=0$

$$
A-0 I=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 0 \\
1 & 1 & 1
\end{array}\right) \xrightarrow{3 \mathrm{EROs}}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The equations this gives are $x_{1}=-x_{3}$ and $x_{2}=0$. The eigenspace is therefore

$$
\left\{\left.\left(\begin{array}{c}
-\alpha \\
0 \\
\alpha
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\} \text { with basis }\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

This matrix is not diagonalizable because the only two eigenspaces have dimension 1 each for a total of 2.
There is one special case where a matrix is assured to be diagonalizable: when there are as many different eigenvalues as the dimension.

The eigenspace for $\lambda=0$

$$
A-0 I=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 0 \\
1 & 1 & 1
\end{array}\right) \xrightarrow{3 \mathrm{EROs}}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The equations this gives are $x_{1}=-x_{3}$ and $x_{2}=0$. The eigenspace is therefore

$$
\left\{\left.\left(\begin{array}{c}
-\alpha \\
0 \\
\alpha
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\} \quad \text { with basis }\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

This matrix is not diagonalizable because the only two eigenspaces have dimension 1 each for a total of 2.
There is one special case where a matrix is assured to be diagonalizable: when there are as many different eigenvalues as the dimension.
This is because each eigenspace has dimension at least one, and in this case there will be n eigenspaces.

Some Examples

(1) Find the eigenvalues of the matrix $A=\left(\begin{array}{rrr}3 & 0 & 0 \\ 1 & 3 & 1 \\ 2 & -1 & 1\end{array}\right)$

Some Examples

(1) Find the eigenvalues of the matrix $A=\left(\begin{array}{rrr}3 & 0 & 0 \\ 1 & 3 & 1 \\ 2 & -1 & 1\end{array}\right)$

Find $\operatorname{det}(A-\lambda I)$

$$
\left|\begin{array}{ccc}
3-\lambda & 0 & 0 \\
1 & 3-\lambda & 1 \\
2 & -1 & 1-\lambda
\end{array}\right|=(3-\lambda)\left(\lambda^{2}-4 \lambda+4\right)
$$

Equate this to 0 and solve to get $\lambda=3,2,2$.
(2) For each eigenvalue of A, find a basis for its eigenspace.
(2) For each eigenvalue of A, find a basis for its eigenspace.

For $\lambda=3$, the matrix

$$
A-3 I=\left(\begin{array}{rrr}
0 & 0 & 0 \\
1 & 0 & 1 \\
2 & -1 & -2
\end{array}\right) \text { reduces to }\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 4 \\
0 & 0 & 0
\end{array}\right)
$$

(2) For each eigenvalue of A, find a basis for its eigenspace.

For $\lambda=3$, the matrix

$$
A-3 I=\left(\begin{array}{rrr}
0 & 0 & 0 \\
1 & 0 & 1 \\
2 & -1 & -2
\end{array}\right) \text { reduces to }\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 4 \\
0 & 0 & 0
\end{array}\right)
$$

So solutions of $(A-3 I) \mathbf{x}=0$ are $\mathbf{x}=\left(\begin{array}{r}-\alpha \\ -4 \alpha \\ \alpha\end{array}\right)$,
(2) For each eigenvalue of A, find a basis for its eigenspace.

For $\lambda=3$, the matrix

$$
A-3 I=\left(\begin{array}{rrr}
0 & 0 & 0 \\
1 & 0 & 1 \\
2 & -1 & -2
\end{array}\right) \quad \text { reduces to } \quad\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 4 \\
0 & 0 & 0
\end{array}\right)
$$

So solutions of $(A-3 I) \mathbf{x}=0$ are $\mathbf{x}=\left(\begin{array}{r}-\alpha \\ -4 \alpha \\ \alpha\end{array}\right)$, and a basis of this eigenspace is $\left(\begin{array}{r}-1 \\ -4 \\ 1\end{array}\right)$.

For $\lambda=2$ the matrix

$$
A-2 I=\left(\begin{array}{rrr}
1 & 0 & 0 \\
1 & 1 & 1 \\
2 & -1 & -1
\end{array}\right) \quad \text { reduces to } \quad\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

For $\lambda=2$ the matrix

$$
A-2 I=\left(\begin{array}{rrr}
1 & 0 & 0 \\
1 & 1 & 1 \\
2 & -1 & -1
\end{array}\right) \quad \text { reduces to } \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

So solutions of $(A-2 I) \mathbf{x}=0$ are $\mathbf{x}=\left(\begin{array}{r}0 \\ -\alpha \\ \alpha\end{array}\right)$,

For $\lambda=2$ the matrix

$$
A-2 I=\left(\begin{array}{rrr}
1 & 0 & 0 \\
1 & 1 & 1 \\
2 & -1 & -1
\end{array}\right) \quad \text { reduces to } \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

So solutions of $(A-2 I) \mathbf{x}=0$ are $\mathbf{x}=\left(\begin{array}{r}0 \\ -\alpha \\ \alpha\end{array}\right)$, and a basis of this eigenspace is $\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right)$.

For $\lambda=2$ the matrix

$$
A-2 I=\left(\begin{array}{rrr}
1 & 0 & 0 \\
1 & 1 & 1 \\
2 & -1 & -1
\end{array}\right) \quad \text { reduces to } \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

So solutions of $(A-2 I) \mathbf{x}=0$ are $\mathbf{x}=\left(\begin{array}{r}0 \\ -\alpha \\ \alpha\end{array}\right)$, and a basis of this eigenspace is $\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right)$.
(3) We can conclude that A is not diagonalizable.
(1) Find the eigenvalues of the matrix $B=\left(\begin{array}{rrr}2 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & -2 & 0\end{array}\right)$

The determinant of $B-\lambda I$ is

$$
\left|\begin{array}{ccc}
2-\lambda & 1 & 1 \\
0 & 3-\lambda & 1 \\
0 & -2 & -\lambda
\end{array}\right|=(2-\lambda)\left(\lambda^{2}-3 \lambda+2\right)
$$

(1) Find the eigenvalues of the matrix $B=\left(\begin{array}{rrr}2 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & -2 & 0\end{array}\right)$

The determinant of $B-\lambda I$ is

$$
\left|\begin{array}{ccc}
2-\lambda & 1 & 1 \\
0 & 3-\lambda & 1 \\
0 & -2 & -\lambda
\end{array}\right|=(2-\lambda)\left(\lambda^{2}-3 \lambda+2\right)
$$

Equate this to 0 and solve to get $\lambda=2,2,1$.
(2) For each eigenvalue of A, find a basis for its eigenspace.
(2) For each eigenvalue of A, find a basis for its eigenspace.

For $\lambda=2$ the matrix

$$
B-2 I=\left(\begin{array}{ccc}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & -2 & -2
\end{array}\right) \text { reduces to }\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

(2) For each eigenvalue of A, find a basis for its eigenspace.

For $\lambda=2$ the matrix

$$
B-2 I=\left(\begin{array}{ccc}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & -2 & -2
\end{array}\right) \text { reduces to }\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

So solutions of $(B-2 I) \mathbf{x}=0$ are $\mathbf{x}=\left(\begin{array}{r}\alpha \\ -\beta \\ \beta\end{array}\right)$,
(2) For each eigenvalue of A, find a basis for its eigenspace.

For $\lambda=2$ the matrix

$$
B-2 I=\left(\begin{array}{ccc}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & -2 & -2
\end{array}\right) \text { reduces to }\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

So solutions of $(B-2 I) \mathbf{x}=0$ are $\mathbf{x}=\left(\begin{array}{r}\alpha \\ -\beta \\ \beta\end{array}\right)$, and a basis of this eigenspace is $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right)$.

For $\lambda=1$ the matrix

$$
B-I=\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & -2 & -1
\end{array}\right) \quad \text { reduces to } \quad\left(\begin{array}{rrr}
1 & 0 & 1 / 2 \\
0 & 1 & 1 / 2 \\
0 & 0 & 0
\end{array}\right)
$$

For $\lambda=1$ the matrix

$$
B-I=\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & -2 & -1
\end{array}\right) \quad \text { reduces to } \quad\left(\begin{array}{rrr}
1 & 0 & 1 / 2 \\
0 & 1 & 1 / 2 \\
0 & 0 & 0
\end{array}\right)
$$

So solutions of $(B-I) \mathbf{x}=0$ are $\mathbf{x}=\left(\begin{array}{c}-\alpha / 2 \\ -\alpha / 2 \\ \alpha\end{array}\right)$,

For $\lambda=1$ the matrix

$$
B-I=\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & -2 & -1
\end{array}\right) \quad \text { reduces to } \quad\left(\begin{array}{rrr}
1 & 0 & 1 / 2 \\
0 & 1 & 1 / 2 \\
0 & 0 & 0
\end{array}\right)
$$

So solutions of $(B-I) \mathbf{x}=0$ are $\mathbf{x}=\left(\begin{array}{c}-\alpha / 2 \\ -\alpha / 2 \\ \alpha\end{array}\right)$, and a basis of this eigenspace is $\left(\begin{array}{r}-1 \\ -1 \\ 2\end{array}\right)$.

For $\lambda=1$ the matrix

$$
B-I=\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & -2 & -1
\end{array}\right) \quad \text { reduces to } \quad\left(\begin{array}{rrr}
1 & 0 & 1 / 2 \\
0 & 1 & 1 / 2 \\
0 & 0 & 0
\end{array}\right)
$$

So solutions of $(B-I) \mathbf{x}=0$ are $\mathbf{x}=\left(\begin{array}{c}-\alpha / 2 \\ -\alpha / 2 \\ \alpha\end{array}\right)$, and a basis of this eigenspace is $\left(\begin{array}{r}-1 \\ -1 \\ 2\end{array}\right)$.
(3) We can conclude that B is diagonalizable.

For $\lambda=1$ the matrix

$$
B-I=\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & -2 & -1
\end{array}\right) \quad \text { reduces to } \quad\left(\begin{array}{rrr}
1 & 0 & 1 / 2 \\
0 & 1 & 1 / 2 \\
0 & 0 & 0
\end{array}\right)
$$

So solutions of $(B-I) \mathbf{x}=0$ are $\mathbf{x}=\left(\begin{array}{c}-\alpha / 2 \\ -\alpha / 2 \\ \alpha\end{array}\right)$, and a basis of this eigenspace is $\left(\begin{array}{r}-1 \\ -1 \\ 2\end{array}\right)$.
(3) We can conclude that B is diagonalizable. The invertible matrix
$S=\left(\begin{array}{rrr}1 & 0 & -1 \\ 0 & -1 & -1 \\ 0 & 1 & 2\end{array}\right)$, consisting of the eigenvectors of B,

For $\lambda=1$ the matrix

$$
B-I=\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & -2 & -1
\end{array}\right) \quad \text { reduces to } \quad\left(\begin{array}{rrr}
1 & 0 & 1 / 2 \\
0 & 1 & 1 / 2 \\
0 & 0 & 0
\end{array}\right)
$$

So solutions of $(B-I) \mathbf{x}=0$ are $\mathbf{x}=\left(\begin{array}{c}-\alpha / 2 \\ -\alpha / 2 \\ \alpha\end{array}\right)$, and a basis of this eigenspace is $\left(\begin{array}{r}-1 \\ -1 \\ 2\end{array}\right)$.
(3) We can conclude that B is diagonalizable. The invertible matrix
$S=\left(\begin{array}{rrr}1 & 0 & -1 \\ 0 & -1 & -1 \\ 0 & 1 & 2\end{array}\right)$, consisting of the eigenvectors of B, will satisfy
$S^{-1} B S=\left(\begin{array}{ccc}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$.

In both these cases, there was a double root.

In both these cases, there was a double root. In the second case the eigenspace was 2-dimensional, but in the first it was only 1-dimensional.

In both these cases, there was a double root. In the second case the eigenspace was 2-dimensional, but in the first it was only 1-dimensional.

There is a theory about this: The dimension of the eigenspace can be anything from 1 to the multiplicity of the root.

In both these cases, there was a double root. In the second case the eigenspace was 2-dimensional, but in the first it was only 1-dimensional.
There is a theory about this: The dimension of the eigenspace can be anything from 1 to the multiplicity of the root.

Theorem

Let A be a symmetric $n \times n$ matrix, (i.e., $A^{T}=A$) and suppose λ_{1} and λ_{2} are two different eigenvalues. If \mathbf{x}_{1} and \mathbf{x}_{2} are the respective eigenvectors then $\mathbf{x}_{1} \perp \mathbf{x}_{2}$.

In both these cases, there was a double root. In the second case the eigenspace was 2-dimensional, but in the first it was only 1-dimensional.
There is a theory about this: The dimension of the eigenspace can be anything from 1 to the multiplicity of the root.

Theorem

Let A be a symmetric $n \times n$ matrix, (i.e., $A^{T}=A$) and suppose λ_{1} and λ_{2} are two different eigenvalues. If \mathbf{x}_{1} and \mathbf{x}_{2} are the respective eigenvectors then $\mathbf{x}_{1} \perp \mathbf{x}_{2}$.

Theorem

If A is a symmetric matrix then all eigenvalues are real, and there an orthonormal basis for \mathbb{R}^{n} consisting of eigenvectors of A.

Example: Find an orthonormal basis of eigenvectors for $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2\end{array}\right)$

Example: Find an orthonormal basis of eigenvectors for $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2\end{array}\right)$
Eigenvalues: $\left|\begin{array}{ccc}2-\lambda & 0 & 0 \\ 0 & 2-\lambda & 1 \\ 0 & 1 & 2-\lambda\end{array}\right|=(2-\lambda)\left((2-\lambda)^{2}-1\right)=(2-\lambda)\left(\lambda^{2}-4 \lambda+3\right)$.
Equate to zero to get $\lambda=1,2,3$.

For $\lambda=1$, the matrix

$$
A-I=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) \xrightarrow{R_{3}-R_{2}}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

For $\lambda=1$, the matrix

$$
A-I=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) \xrightarrow{R_{3}-R_{2}}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

A basis for the eigenspace is $\left(\begin{array}{ccc}0 & -1 & 1\end{array}\right)^{T}$. Normalize to get $\mathbf{q}_{1}=\left(\begin{array}{lll}0 & -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)^{T}$.

For $\lambda=1$, the matrix

$$
A-I=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) \xrightarrow{R_{3}-R_{2}}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

A basis for the eigenspace is $\left(\begin{array}{lll}0 & -1 & 1\end{array}\right)^{T}$. Normalize to get
$\mathbf{q}_{1}=\left(\begin{array}{lll}0 & -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)^{T}$.
For $\lambda=2$ the matrix

$$
A-2 I=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \xrightarrow{R_{3} \leftrightarrow R_{1}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

For $\lambda=1$, the matrix

$$
A-I=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) \xrightarrow{R_{3}-R_{2}}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

A basis for the eigenspace is $\left(\begin{array}{lll}0 & -1 & 1\end{array}\right)^{T}$. Normalize to get
$\mathbf{q}_{1}=\left(\begin{array}{lll}0 & -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)^{T}$.
For $\lambda=2$ the matrix

$$
A-2 I=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \xrightarrow{R_{3} \leftrightarrow R_{1}}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

A basis for the eigenspace is $\mathbf{q}_{2}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$. The norm is already 1 . Note that $\mathbf{q}_{1} \perp \mathbf{q}_{2}$.

For $\lambda=3$ the matrix

$$
A-3 I=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 1 \\
0 & 1 & -1
\end{array}\right) \xrightarrow{3 \mathrm{EROs}}\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

For $\lambda=3$ the matrix

$$
A-3 I=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 1 \\
0 & 1 & -1
\end{array}\right) \xrightarrow{3 \mathrm{ERO}}\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

A basis for the eigenspace is $\left(\begin{array}{lll}0 & 1 & 1\end{array}\right)^{T}$. Normalize to get
$\mathbf{q}_{3}=\left(\begin{array}{lll}0 & 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)^{T}$. Note that both $\mathbf{q}_{1} \perp \mathbf{q}_{3}$ and $\mathbf{q}_{2} \perp \mathbf{q}_{3}$.

Since all three eigenvalues are different, we automatically got a basis of \mathbb{R}^{3}.

Since all three eigenvalues are different, we automatically got a basis of \mathbb{R}^{3}. Since A was symmetric, we automatically got orthogonal eigenvectors.

Since all three eigenvalues are different, we automatically got a basis of \mathbb{R}^{3}. Since A was symmetric, we automatically got orthogonal eigenvectors.
This need not be so automatic.

Since all three eigenvalues are different, we automatically got a basis of \mathbb{R}^{3}. Since A was symmetric, we automatically got orthogonal eigenvectors.
This need not be so automatic.
For example: let $A=\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$

Since all three eigenvalues are different, we automatically got a basis of \mathbb{R}^{3}. Since A was symmetric, we automatically got orthogonal eigenvectors.
This need not be so automatic.
For example: let $A=\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$ For this matrix $\operatorname{det}(A-\lambda I)=-(\lambda-1)^{2}(\lambda-4)$, giving eigenvalues $\lambda=1,1,4$.

Since all three eigenvalues are different, we automatically got a basis of \mathbb{R}^{3}. Since A was symmetric, we automatically got orthogonal eigenvectors.
This need not be so automatic.
For example: let $A=\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$ For this matrix $\operatorname{det}(A-\lambda I)=-(\lambda-1)^{2}(\lambda-4)$, giving eigenvalues $\lambda=1,1,4$.
For $\lambda=4$ we get a one-dimensional eigenspace with basis $\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{T}$.

Since all three eigenvalues are different, we automatically got a basis of \mathbb{R}^{3}. Since A was symmetric, we automatically got orthogonal eigenvectors.
This need not be so automatic.
For example: let $A=\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$ For this matrix $\operatorname{det}(A-\lambda I)=-(\lambda-1)^{2}(\lambda-4)$, giving eigenvalues $\lambda=1,1,4$.
For $\lambda=4$ we get a one-dimensional eigenspace with basis $\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{T}$.
For $\lambda=1$, the matrix $A-I$ is

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \xrightarrow[R_{3}-R_{1}]{R_{2}-R_{1}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The last matrix corresponds to the equation $x_{1}+x_{2}+x_{3}=0$.

The last matrix corresponds to the equation $x_{1}+x_{2}+x_{3}=0$. Setting $\mathbf{x}_{2}=\alpha$ and $x_{3}=\beta$ we get solutions $\mathbf{x}=\left(\begin{array}{lll}-\alpha-\beta & \alpha & \beta\end{array}\right)^{T}$.

The last matrix corresponds to the equation $x_{1}+x_{2}+x_{3}=0$. Setting $\mathbf{x}_{2}=\alpha$ and $x_{3}=\beta$ we get solutions $\mathbf{x}=\left(\begin{array}{ccc}-\alpha-\beta & \alpha & \beta\end{array}\right)^{T}$. And the usual way to obtain a basis gives us

$$
\left(\begin{array}{ccc}
-1 & 1 & 0
\end{array}\right)^{T} \text { and }\left(\begin{array}{ccc}
-1 & 0 & 1
\end{array}\right)^{T}
$$

These are not orthogonal, though they are a basis for the eigenspace. If we want an orthonormal basis we can apply the Gram-Schmidt process to these two to get

$$
\left(\begin{array}{lll}
-1 / \sqrt{2} & 1 / \sqrt{2} & 0
\end{array}\right) \text { and }\left(\begin{array}{lll}
-1 / \sqrt{6} & -1 / \sqrt{6} & 2 / \sqrt{6}
\end{array}\right)^{T}
$$

The last matrix corresponds to the equation $x_{1}+x_{2}+x_{3}=0$. Setting $\mathbf{x}_{2}=\alpha$ and $x_{3}=\beta$ we get solutions $\mathbf{x}=\left(\begin{array}{ccc}-\alpha-\beta & \alpha & \beta\end{array}\right)^{T}$. And the usual way to obtain a basis gives us

$$
\left(\begin{array}{ccc}
-1 & 1 & 0
\end{array}\right)^{T} \text { and }\left(\begin{array}{ccc}
-1 & 0 & 1
\end{array}\right)^{T}
$$

These are not orthogonal, though they are a basis for the eigenspace. If we want an orthonormal basis we can apply the Gram-Schmidt process to these two to get

$$
\left(\begin{array}{lll}
-1 / \sqrt{2} & 1 / \sqrt{2} & 0
\end{array}\right) \text { and }\left(\begin{array}{lll}
-1 / \sqrt{6} & -1 / \sqrt{6} & 2 / \sqrt{6}
\end{array}\right)^{T}
$$

These two are orthogonal to the eigenvector for $\lambda=4$. If we normalize that we get $\left(\begin{array}{lll}1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3}\end{array}\right)$

The last matrix corresponds to the equation $x_{1}+x_{2}+x_{3}=0$. Setting $\mathbf{x}_{2}=\alpha$ and $x_{3}=\beta$ we get solutions $\mathbf{x}=\left(\begin{array}{ccc}-\alpha-\beta & \alpha & \beta\end{array}\right)^{T}$. And the usual way to obtain a basis gives us

$$
\left(\begin{array}{ccc}
-1 & 1 & 0
\end{array}\right)^{T} \text { and }\left(\begin{array}{ccc}
-1 & 0 & 1
\end{array}\right)^{T}
$$

These are not orthogonal, though they are a basis for the eigenspace. If we want an orthonormal basis we can apply the Gram-Schmidt process to these two to get

$$
\left(\begin{array}{lll}
-1 / \sqrt{2} & 1 / \sqrt{2} & 0
\end{array}\right) \text { and }\left(\begin{array}{lll}
-1 / \sqrt{6} & -1 / \sqrt{6} & 2 / \sqrt{6}
\end{array}\right)^{T}
$$

These two are orthogonal to the eigenvector for $\lambda=4$. If we normalize that we get $\left(\begin{array}{lll}1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3}\end{array}\right)$ and the three together give us an orthonormal basis for \mathbb{R}^{3} of eigenvectors for A.

