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Definition

An n× n matrix A is diagonalizable if it is similar to a diagonal matrix.

A diagonal
matrix is a matrix D with zeros everywhere except possibly on the main diagonal (i.e.,
d11, d22, . . . , dnn). A is similar to D means that there is an invertible matrix S such
that D = S−1AS.

We have seen that this will happen if Rn has a basis consisting of eigenvectors of A. In
that case, the columns of S are those eigenvectors and the main diagonal of D consists
of the corresponding eigenvalues (in the same order as the eigenvectors appear in S).

In fact, this case is the only way a matrix can be diagonalizable:

Theorem

An n× n matrix A is diagonalizable if and only if Rn has a basis consisting of
eigenvectors of A. It happens when the sum of the dimensions of the eigenspaces is n.
In that case the diagonal elements are the eigenvalues of A.

2 / 1



Definition

An n× n matrix A is diagonalizable if it is similar to a diagonal matrix. A diagonal
matrix is a matrix D with zeros everywhere except possibly on the main diagonal (i.e.,
d11, d22, . . . , dnn).

A is similar to D means that there is an invertible matrix S such
that D = S−1AS.

We have seen that this will happen if Rn has a basis consisting of eigenvectors of A. In
that case, the columns of S are those eigenvectors and the main diagonal of D consists
of the corresponding eigenvalues (in the same order as the eigenvectors appear in S).

In fact, this case is the only way a matrix can be diagonalizable:

Theorem

An n× n matrix A is diagonalizable if and only if Rn has a basis consisting of
eigenvectors of A. It happens when the sum of the dimensions of the eigenspaces is n.
In that case the diagonal elements are the eigenvalues of A.

2 / 1



Definition

An n× n matrix A is diagonalizable if it is similar to a diagonal matrix. A diagonal
matrix is a matrix D with zeros everywhere except possibly on the main diagonal (i.e.,
d11, d22, . . . , dnn). A is similar to D means that there is an invertible matrix S such
that D = S−1AS.

We have seen that this will happen if Rn has a basis consisting of eigenvectors of A. In
that case, the columns of S are those eigenvectors and the main diagonal of D consists
of the corresponding eigenvalues (in the same order as the eigenvectors appear in S).

In fact, this case is the only way a matrix can be diagonalizable:

Theorem

An n× n matrix A is diagonalizable if and only if Rn has a basis consisting of
eigenvectors of A. It happens when the sum of the dimensions of the eigenspaces is n.
In that case the diagonal elements are the eigenvalues of A.

2 / 1



Definition

An n× n matrix A is diagonalizable if it is similar to a diagonal matrix. A diagonal
matrix is a matrix D with zeros everywhere except possibly on the main diagonal (i.e.,
d11, d22, . . . , dnn). A is similar to D means that there is an invertible matrix S such
that D = S−1AS.

We have seen that this will happen if Rn has a basis consisting of eigenvectors of A.

In
that case, the columns of S are those eigenvectors and the main diagonal of D consists
of the corresponding eigenvalues (in the same order as the eigenvectors appear in S).

In fact, this case is the only way a matrix can be diagonalizable:

Theorem

An n× n matrix A is diagonalizable if and only if Rn has a basis consisting of
eigenvectors of A. It happens when the sum of the dimensions of the eigenspaces is n.
In that case the diagonal elements are the eigenvalues of A.

2 / 1



Definition

An n× n matrix A is diagonalizable if it is similar to a diagonal matrix. A diagonal
matrix is a matrix D with zeros everywhere except possibly on the main diagonal (i.e.,
d11, d22, . . . , dnn). A is similar to D means that there is an invertible matrix S such
that D = S−1AS.

We have seen that this will happen if Rn has a basis consisting of eigenvectors of A. In
that case, the columns of S are those eigenvectors and the main diagonal of D consists
of the corresponding eigenvalues (in the same order as the eigenvectors appear in S).

In fact, this case is the only way a matrix can be diagonalizable:

Theorem

An n× n matrix A is diagonalizable if and only if Rn has a basis consisting of
eigenvectors of A. It happens when the sum of the dimensions of the eigenspaces is n.
In that case the diagonal elements are the eigenvalues of A.

2 / 1



Definition

An n× n matrix A is diagonalizable if it is similar to a diagonal matrix. A diagonal
matrix is a matrix D with zeros everywhere except possibly on the main diagonal (i.e.,
d11, d22, . . . , dnn). A is similar to D means that there is an invertible matrix S such
that D = S−1AS.

We have seen that this will happen if Rn has a basis consisting of eigenvectors of A. In
that case, the columns of S are those eigenvectors and the main diagonal of D consists
of the corresponding eigenvalues (in the same order as the eigenvectors appear in S).

In fact, this case is the only way a matrix can be diagonalizable:

Theorem

An n× n matrix A is diagonalizable if and only if Rn has a basis consisting of
eigenvectors of A. It happens when the sum of the dimensions of the eigenspaces is n.
In that case the diagonal elements are the eigenvalues of A.

2 / 1



Definition

An n× n matrix A is diagonalizable if it is similar to a diagonal matrix. A diagonal
matrix is a matrix D with zeros everywhere except possibly on the main diagonal (i.e.,
d11, d22, . . . , dnn). A is similar to D means that there is an invertible matrix S such
that D = S−1AS.

We have seen that this will happen if Rn has a basis consisting of eigenvectors of A. In
that case, the columns of S are those eigenvectors and the main diagonal of D consists
of the corresponding eigenvalues (in the same order as the eigenvectors appear in S).

In fact, this case is the only way a matrix can be diagonalizable:

Theorem

An n× n matrix A is diagonalizable if and only if Rn has a basis consisting of
eigenvectors of A. It happens when the sum of the dimensions of the eigenspaces is n.
In that case the diagonal elements are the eigenvalues of A.

2 / 1



Example: Diagonalize the following matrix, or else prove it is not diagonalizable:

A =


1 1 −1
0 2 0

−1 1 1



First step: find the eigenvalues.∣∣∣∣∣∣
1− λ 1 1
0 2− λ 0
1 1 1− λ

∣∣∣∣∣∣ = (2− λ)((1− λ)2 − 1) = (2− λ)(λ2 − 2λ)

Equating this to 0 we get two roots: λ = 0 and a double root λ = 2.
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Second step: Find the eigenspaces.

A− 2I =


−1 1 1
0 0 0
1 1 −1

 5 EROs−−−−→


1 0 −1
0 1 0
0 0 0



The equations this gives are x1 = x3 and x2 = 0. The eigenspace is therefore


α
0
α

 α ∈ R

 with basis


1
0
1


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The eigenspace for λ = 0

A− 0I =


1 1 1
0 2 0
1 1 1

 3 EROs−−−−→


1 0 1
0 1 0
0 0 0



The equations this gives are x1 = −x3 and x2 = 0. The eigenspace is therefore


−α
0
α

 α ∈ R

 with basis


−1
0
1


This matrix is not diagonalizable because the only two eigenspaces have dimension 1
each for a total of 2.

There is one special case where a matrix is assured to be diagonalizable: when there
are as many different eigenvalues as the dimension.

This is because each eigenspace has dimension at least one, and in this case there will
be n eigenspaces.
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Some Examples

(1) Find the eigenvalues of the matrix A =


3 0 0
1 3 1
2 −1 1



Find det(A− λI) ∣∣∣∣∣∣
3− λ 0 0
1 3− λ 1
2 −1 1− λ

∣∣∣∣∣∣ = (3− λ)(λ2 − 4λ+ 4)

Equate this to 0 and solve to get λ = 3, 2, 2.
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(2) For each eigenvalue of A, find a basis for its eigenspace.

For λ = 3, the matrix

A− 3I =


0 0 0
1 0 1
2 −1 −2

 reduces to


1 0 1
0 1 4
0 0 0


So solutions of (A− 3I)x = 0 are x =


−α

−4α
α

, and a basis of this eigenspace is
−1
−4
1

.
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For λ = 2 the matrix

A− 2I =


1 0 0
1 1 1
2 −1 −1

 reduces to


1 0 0
0 1 1
0 0 0



So solutions of (A− 2I)x = 0 are x =


0

−α
α

, and a basis of this eigenspace is
0

−1
1

.

(3) We can conclude that A is not diagonalizable.
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(1) Find the eigenvalues of the matrix B =


2 1 1
0 3 1
0 −2 0


The determinant of B − λI is∣∣∣∣∣∣

2− λ 1 1
0 3− λ 1
0 −2 −λ

∣∣∣∣∣∣ = (2− λ)(λ2 − 3λ+ 2)

Equate this to 0 and solve to get λ = 2, 2, 1.
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Equate this to 0 and solve to get λ = 2, 2, 1.
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(2) For each eigenvalue of A, find a basis for its eigenspace.

For λ = 2 the matrix

B − 2I =


0 1 1
0 1 1
0 −2 −2

 reduces to


0 1 1
0 0 0
0 0 0


So solutions of (B − 2I)x = 0 are x =


α

−β
β

, and a basis of this eigenspace is
1
0
0

,


0

−1
1

.
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For λ = 1 the matrix

B − I =


1 1 1
0 2 1
0 −2 −1

 reduces to


1 0 1/2
0 1 1/2
0 0 0



So solutions of (B − I)x = 0 are x =


−α/2
−α/2
α

, and a basis of this eigenspace is
−1
−1
2

.

(3) We can conclude that B is diagonalizable. The invertible matrix

S =


1 0 −1
0 −1 −1
0 1 2

, consisting of the eigenvectors of B, will satisfy

S−1BS =


2 0 0
0 2 0
0 0 1

.

11 / 1



For λ = 1 the matrix

B − I =


1 1 1
0 2 1
0 −2 −1

 reduces to


1 0 1/2
0 1 1/2
0 0 0


So solutions of (B − I)x = 0 are x =


−α/2
−α/2
α

,

and a basis of this eigenspace is
−1
−1
2

.

(3) We can conclude that B is diagonalizable. The invertible matrix

S =


1 0 −1
0 −1 −1
0 1 2

, consisting of the eigenvectors of B, will satisfy

S−1BS =


2 0 0
0 2 0
0 0 1

.

11 / 1



For λ = 1 the matrix

B − I =


1 1 1
0 2 1
0 −2 −1

 reduces to


1 0 1/2
0 1 1/2
0 0 0


So solutions of (B − I)x = 0 are x =


−α/2
−α/2
α

, and a basis of this eigenspace is
−1
−1
2

.

(3) We can conclude that B is diagonalizable. The invertible matrix

S =


1 0 −1
0 −1 −1
0 1 2

, consisting of the eigenvectors of B, will satisfy

S−1BS =


2 0 0
0 2 0
0 0 1

.

11 / 1



For λ = 1 the matrix

B − I =


1 1 1
0 2 1
0 −2 −1

 reduces to


1 0 1/2
0 1 1/2
0 0 0


So solutions of (B − I)x = 0 are x =


−α/2
−α/2
α

, and a basis of this eigenspace is
−1
−1
2

.

(3) We can conclude that B is diagonalizable.

The invertible matrix

S =


1 0 −1
0 −1 −1
0 1 2

, consisting of the eigenvectors of B, will satisfy

S−1BS =


2 0 0
0 2 0
0 0 1

.

11 / 1



For λ = 1 the matrix

B − I =


1 1 1
0 2 1
0 −2 −1

 reduces to


1 0 1/2
0 1 1/2
0 0 0


So solutions of (B − I)x = 0 are x =


−α/2
−α/2
α

, and a basis of this eigenspace is
−1
−1
2

.

(3) We can conclude that B is diagonalizable. The invertible matrix

S =


1 0 −1
0 −1 −1
0 1 2

, consisting of the eigenvectors of B,

will satisfy

S−1BS =


2 0 0
0 2 0
0 0 1

.

11 / 1



For λ = 1 the matrix

B − I =


1 1 1
0 2 1
0 −2 −1

 reduces to


1 0 1/2
0 1 1/2
0 0 0


So solutions of (B − I)x = 0 are x =


−α/2
−α/2
α

, and a basis of this eigenspace is
−1
−1
2

.

(3) We can conclude that B is diagonalizable. The invertible matrix

S =


1 0 −1
0 −1 −1
0 1 2

, consisting of the eigenvectors of B, will satisfy

S−1BS =


2 0 0
0 2 0
0 0 1

.

11 / 1



In both these cases, there was a double root.

In the second case the eigenspace was
2-dimensional, but in the first it was only 1-dimensional.

There is a theory about this: The dimension of the eigenspace can be anything from 1
to the multiplicity of the root.

Theorem

Let A be a symmetric n× n matrix, (i.e., AT = A) and suppose λ1 and λ2 are two
different eigenvalues. If x1 and x2 are the respective eigenvectors then x1 ⊥ x2.

Theorem

If A is a symmetric matrix then all eigenvalues are real, and there an orthonormal basis
for Rn consisting of eigenvectors of A.
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Example: Find an orthonormal basis of eigenvectors for A =


2 0 0
0 2 1
0 1 2


Eigenvalues:

∣∣∣∣∣∣
2− λ 0 0
0 2− λ 1
0 1 2− λ

∣∣∣∣∣∣ = (2− λ)((2− λ)2 − 1) = (2− λ)(λ2 − 4λ+3).

Equate to zero to get λ = 1, 2, 3.
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For λ = 1, the matrix

A− I =


1 0 0
0 1 1
0 1 1

 R3−R2−−−−→


1 0 0
0 1 1
0 0 0



A basis for the eigenspace is
 0 −1 1

T
. Normalize to get

q1 =
 0 −1/

√
2 1/

√
2
T

.

For λ = 2 the matrix

A− 2I =


0 0 0
0 0 1
0 1 0

 R3↔R1−−−−−→


0 1 0
0 0 1
0 0 0


A basis for the eigenspace is q2 =

 1 0 0
T

. The norm is already 1. Note that

q1 ⊥ q2.
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For λ = 3 the matrix

A− 3I =


−1 0 0
0 −1 1
0 1 −1

 3 EROs−−−−→


1 0 0
0 1 −1
0 0 0



A basis for the eigenspace is
 0 1 1

T
. Normalize to get

q3 =
 0 1/

√
2 1/

√
2
T

. Note that both q1 ⊥ q3 and q2 ⊥ q3.
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Since all three eigenvalues are different, we automatically got a basis of R3.

Since A
was symmetric, we automatically got orthogonal eigenvectors.

This need not be so automatic.

For example: let A =


2 1 1
1 2 1
1 1 2

 For this matrix det(A− λI) = −(λ− 1)2(λ− 4),

giving eigenvalues λ = 1, 1, 4.
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.
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The last matrix corresponds to the equation x1 + x2 + x3 = 0.

Setting x2 = α and

x3 = β we get solutions x =
 −α− β α β

T
. And the usual way to obtain a

basis gives us  −1 1 0
T

and
 −1 0 1

T

These are not orthogonal, though they are a basis for the eigenspace. If we want an
orthonormal basis we can apply the Gram-Schmidt process to these two to get −1/

√
2 1/

√
2 0

 and
 −1/

√
6 −1/

√
6 2/

√
6
T

These two are orthogonal to the eigenvector for λ = 4. If we normalize that we get 1/
√
3 1/

√
3 1/

√
3
 and the three together give us an orthonormal basis for R3

of eigenvectors for A.
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