Review of Chapter 5, part 2, plus Chapter 6

Daniel H. Luecking

22 March 2024

Theorem (Gram-Schmidt)

If $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{r}\right\}$ is an independent set in an inner product space V then there exists and orthonormal set $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}\right\}$ such that
$\operatorname{Span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{r}\right)=\operatorname{Span}\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}\right)$.

Theorem (Gram-Schmidt)

If $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{r}\right\}$ is an independent set in an inner product space V then there exists and orthonormal set $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}\right\}$ such that
$\operatorname{Span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{r}\right)=\operatorname{Span}\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}\right)$.
The process takes r steps, and at the end of step j the vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{j}$ have the same span as $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{j}$.

Theorem (Gram-Schmidt)

If $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{r}\right\}$ is an independent set in an inner product space V then there exists and orthonormal set $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}\right\}$ such that
$\operatorname{Span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{r}\right)=\operatorname{Span}\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}\right)$.
The process takes r steps, and at the end of step j the vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{j}$ have the same span as $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{j}$. If $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{r}\right\}$ is a basis for a subspace S of V, then $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}\right\}$ is an orthonormal basis for S.

Theorem (Gram-Schmidt)

If $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{r}\right\}$ is an independent set in an inner product space V then there exists and orthonormal set $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}\right\}$ such that
$\operatorname{Span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{r}\right)=\operatorname{Span}\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}\right)$.
The process takes r steps, and at the end of step j the vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{j}$ have the same span as $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{j}$. If $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{r}\right\}$ is a basis for a subspace S of V, then $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}\right\}$ is an orthonormal basis for S.
When computing by hand, it is quite a bit easier to first create an orthogonal (but not orthonormal) set $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ and then normalize them at the end by $\mathbf{u}_{j}=\left(1 /\left\|\mathbf{v}_{j}\right\|\right) \mathbf{v}_{j}$.

The steps

- Step 1: set $\mathbf{v}_{1}=\mathbf{x}_{1}$.

The steps

- Step 1: set $\mathbf{v}_{1}=\mathbf{x}_{1}$.
- Step 2: set $\mathbf{v}_{2}=\mathbf{x}_{2}-\mathbf{p}_{1}$, where \mathbf{p}_{1} is the projection of \mathbf{x}_{2} onto the span of \mathbf{v}_{1}.

The steps

- Step 1: set $\mathbf{v}_{1}=\mathbf{x}_{1}$.
- Step 2: set $\mathbf{v}_{2}=\mathbf{x}_{2}-\mathbf{p}_{1}$, where \mathbf{p}_{1} is the projection of \mathbf{x}_{2} onto the span of \mathbf{v}_{1}. That is $\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\left\langle\mathbf{x}_{2}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}$.

The steps

- Step 1: set $\mathbf{v}_{1}=\mathbf{x}_{1}$.
- Step 2: set $\mathbf{v}_{2}=\mathbf{x}_{2}-\mathbf{p}_{1}$, where \mathbf{p}_{1} is the projection of \mathbf{x}_{2} onto the span of \mathbf{v}_{1}. That is $\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\left\langle\mathbf{x}_{2}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}$.
- Step 3: set $\mathbf{v}_{3}=\mathbf{x}_{3}-\mathbf{p}_{2}$ where \mathbf{p}_{2} is the projection of \mathbf{x}_{3} onto $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$.

The steps

- Step 1: set $\mathbf{v}_{1}=\mathbf{x}_{1}$.
- Step 2: set $\mathbf{v}_{2}=\mathbf{x}_{2}-\mathbf{p}_{1}$, where \mathbf{p}_{1} is the projection of \mathbf{x}_{2} onto the span of \mathbf{v}_{1}. That is $\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\left\langle\mathbf{x}_{2}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}$.
- Step 3: set $\mathbf{v}_{3}=\mathbf{x}_{3}-\mathbf{p}_{2}$ where \mathbf{p}_{2} is the projection of \mathbf{x}_{3} onto $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$. That is

$$
\mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}
$$

The steps

- Step 1: set $\mathbf{v}_{1}=\mathbf{x}_{1}$.
- Step 2: set $\mathbf{v}_{2}=\mathbf{x}_{2}-\mathbf{p}_{1}$, where \mathbf{p}_{1} is the projection of \mathbf{x}_{2} onto the span of \mathbf{v}_{1}. That is $\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\left\langle\mathbf{x}_{2}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}$.
- Step 3: set $\mathbf{v}_{3}=\mathbf{x}_{3}-\mathbf{p}_{2}$ where \mathbf{p}_{2} is the projection of \mathbf{x}_{3} onto $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$. That is

$$
\mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}
$$

- Steps $k>3$: set $\mathbf{v}_{k}=\mathbf{x}_{k}-\mathbf{p}_{k-1}$ where \mathbf{p}_{k-1} is the projection of \mathbf{x}_{k} onto $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right)$.

The steps

- Step 1: set $\mathbf{v}_{1}=\mathbf{x}_{1}$.
- Step 2: set $\mathbf{v}_{2}=\mathbf{x}_{2}-\mathbf{p}_{1}$, where \mathbf{p}_{1} is the projection of \mathbf{x}_{2} onto the span of \mathbf{v}_{1}. That is $\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\left\langle\mathbf{x}_{2}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}$.
- Step 3: set $\mathbf{v}_{3}=\mathbf{x}_{3}-\mathbf{p}_{2}$ where \mathbf{p}_{2} is the projection of \mathbf{x}_{3} onto $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$. That is

$$
\mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}
$$

- Steps $k>3$: set $\mathbf{v}_{k}=\mathbf{x}_{k}-\mathbf{p}_{k-1}$ where \mathbf{p}_{k-1} is the projection of \mathbf{x}_{k} onto $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right)$. That is

$$
\mathbf{v}_{k}=\mathbf{x}_{k}-\sum_{i=1}^{k-1} \frac{\left\langle\mathbf{x}_{k}, \mathbf{v}_{i}\right\rangle}{\left\langle\mathbf{v}_{i}, \mathbf{v}_{i}\right\rangle} \mathbf{v}_{i}
$$

The steps

- Step 1: set $\mathbf{v}_{1}=\mathbf{x}_{1}$.
- Step 2: set $\mathbf{v}_{2}=\mathbf{x}_{2}-\mathbf{p}_{1}$, where \mathbf{p}_{1} is the projection of \mathbf{x}_{2} onto the span of \mathbf{v}_{1}. That is $\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\left\langle\mathbf{x}_{2}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}$.
- Step 3: set $\mathbf{v}_{3}=\mathbf{x}_{3}-\mathbf{p}_{2}$ where \mathbf{p}_{2} is the projection of \mathbf{x}_{3} onto $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$. That is

$$
\mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}
$$

- Steps $k>3$: set $\mathbf{v}_{k}=\mathbf{x}_{k}-\mathbf{p}_{k-1}$ where \mathbf{p}_{k-1} is the projection of \mathbf{x}_{k} onto $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right)$. That is

$$
\mathbf{v}_{k}=\mathbf{x}_{k}-\sum_{i=1}^{k-1} \frac{\left\langle\mathbf{x}_{k}, \mathbf{v}_{i}\right\rangle}{\left\langle\mathbf{v}_{i}, \mathbf{v}_{i}\right\rangle} \mathbf{v}_{i}
$$

Then set $\mathbf{u}_{j}=\left(1 /\left\|\mathbf{v}_{j}\right\|\right) \mathbf{v}_{j}$ for each j.

The steps

- Step 1: set $\mathbf{v}_{1}=\mathbf{x}_{1}$.
- Step 2: set $\mathbf{v}_{2}=\mathbf{x}_{2}-\mathbf{p}_{1}$, where \mathbf{p}_{1} is the projection of \mathbf{x}_{2} onto the span of \mathbf{v}_{1}. That is $\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\left\langle\mathbf{x}_{2}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}$.
- Step 3: set $\mathbf{v}_{3}=\mathbf{x}_{3}-\mathbf{p}_{2}$ where \mathbf{p}_{2} is the projection of \mathbf{x}_{3} onto $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$. That is

$$
\mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}
$$

- Steps $k>3$: set $\mathbf{v}_{k}=\mathbf{x}_{k}-\mathbf{p}_{k-1}$ where \mathbf{p}_{k-1} is the projection of \mathbf{x}_{k} onto $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right)$. That is

$$
\mathbf{v}_{k}=\mathbf{x}_{k}-\sum_{i=1}^{k-1} \frac{\left\langle\mathbf{x}_{k}, \mathbf{v}_{i}\right\rangle}{\left\langle\mathbf{v}_{i}, \mathbf{v}_{i}\right\rangle} \mathbf{v}_{i}
$$

Then set $\mathbf{u}_{j}=\left(1 /\left\|\mathbf{v}_{j}\right\|\right) \mathbf{v}_{j}$ for each j.
It is permissible to replace any \mathbf{v}_{k} by any nonzero multiple of itself before going on to finding \mathbf{v}_{k+1}. That can make the later steps a bit easier.

Example: find an orthonormal basis for the span of

$$
\mathbf{x}_{1}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right), \mathbf{x}_{2}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right), \mathbf{x}_{3}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right)
$$

Example: find an orthonormal basis for the span of

$$
\begin{aligned}
& \mathbf{x}_{1}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right), \mathbf{x}_{2}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right), \mathbf{x}_{3}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right) . \\
& \mathbf{v}_{1}=\mathbf{x}_{1}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right) .
\end{aligned}
$$

Example: find an orthonormal basis for the span of

$$
\begin{aligned}
& \mathbf{x}_{1}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right), \mathbf{x}_{2}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right), \mathbf{x}_{3}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right) . \\
& \mathbf{v}_{1}=\mathbf{x}_{1}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right) . \quad \mathbf{v}_{2}=\mathbf{x}_{2}-\mathbf{p}_{1}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right)-\frac{2}{3}\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
1 / 3 \\
-2 / 3 \\
1 \\
1 / 3
\end{array}\right) .
\end{aligned}
$$

Example: find an orthonormal basis for the span of
$\mathbf{x}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right), \mathbf{x}_{2}=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right), \mathbf{x}_{3}=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right)$.
$\mathbf{v}_{1}=\mathbf{x}_{1}=\left(\begin{array}{c}1 \\ 1 \\ 0 \\ 1\end{array}\right) . \quad \mathbf{v}_{2}=\mathbf{x}_{2}-\mathbf{p}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right)-\frac{2}{3}\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{c}1 / 3 \\ -2 / 3 \\ 1 \\ 1 / 3\end{array}\right)$.
Let's use $\mathbf{v}_{2}=\left(\begin{array}{c}1 \\ -2 \\ 3 \\ 1\end{array}\right)$ instead.

Example: find an orthonormal basis for the span of
$\mathbf{x}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right), \mathbf{x}_{2}=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right), \mathbf{x}_{3}=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right)$.
$\mathbf{v}_{1}=\mathbf{x}_{1}=\left(\begin{array}{c}1 \\ 1 \\ 0 \\ 1\end{array}\right) . \quad \mathbf{v}_{2}=\mathbf{x}_{2}-\mathbf{p}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right)-\frac{2}{3}\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{c}1 / 3 \\ -2 / 3 \\ 1 \\ 1 / 3\end{array}\right)$.
Let's use $\mathbf{v}_{2}=\left(\begin{array}{c}1 \\ -2 \\ 3 \\ 1\end{array}\right)$ instead.
$\mathbf{v}_{3}=\mathbf{x}_{3}-\mathbf{p}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right)-\frac{2}{3}\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right)-\frac{2}{15}\left(\begin{array}{r}1 \\ -2 \\ 3 \\ 1\end{array}\right)=\left(\begin{array}{r}-4 / 5 \\ 3 / 5 \\ 3 / 5 \\ 1 / 5\end{array}\right)$.

Example: find an orthonormal basis for the span of
$\mathbf{x}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right), \mathbf{x}_{2}=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right), \mathbf{x}_{3}=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right)$.
$\mathbf{v}_{1}=\mathbf{x}_{1}=\left(\begin{array}{c}1 \\ 1 \\ 0 \\ 1\end{array}\right) . \quad \mathbf{v}_{2}=\mathbf{x}_{2}-\mathbf{p}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right)-\frac{2}{3}\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{c}1 / 3 \\ -2 / 3 \\ 1 \\ 1 / 3\end{array}\right)$.
Let's use $\mathbf{v}_{2}=\left(\begin{array}{c}1 \\ -2 \\ 3 \\ 1\end{array}\right)$ instead.
$\mathbf{v}_{3}=\mathbf{x}_{3}-\mathbf{p}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right)-\frac{2}{3}\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right)-\frac{2}{15}\left(\begin{array}{r}1 \\ -2 \\ 3 \\ 1\end{array}\right)=\left(\begin{array}{r}-4 / 5 \\ 3 / 5 \\ 3 / 5 \\ 1 / 5\end{array}\right)$. Using $\left(\begin{array}{r}-4 \\ 3 \\ 3 \\ 1\end{array}\right)$.

Since $\left\|\mathbf{v}_{1}\right\|=\sqrt{3},\left\|\mathbf{v}_{2}\right\|=\sqrt{15}$ and $\left\|\mathbf{v}_{3}\right\|=\sqrt{35}$ we get the orthonormal basis

$$
\mathbf{u}_{1}=\left(\begin{array}{c}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
0 \\
1 / \sqrt{3}
\end{array}\right), \quad \mathbf{u}_{2}=\left(\begin{array}{r}
1 / \sqrt{15} \\
-2 / \sqrt{15} \\
3 / \sqrt{15} \\
1 / \sqrt{15}
\end{array}\right), \quad \mathbf{u}_{3}=\left(\begin{array}{r}
-4 / \sqrt{35} \\
3 / \sqrt{35} \\
3 / \sqrt{35} \\
1 / \sqrt{35}
\end{array}\right)
$$

Since $\left\|\mathbf{v}_{1}\right\|=\sqrt{3},\left\|\mathbf{v}_{2}\right\|=\sqrt{15}$ and $\left\|\mathbf{v}_{3}\right\|=\sqrt{35}$ we get the orthonormal basis

$$
\mathbf{u}_{1}=\left(\begin{array}{c}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
0 \\
1 / \sqrt{3}
\end{array}\right), \quad \mathbf{u}_{2}=\left(\begin{array}{r}
1 / \sqrt{15} \\
-2 / \sqrt{15} \\
3 / \sqrt{15} \\
1 / \sqrt{15}
\end{array}\right), \quad \mathbf{u}_{3}=\left(\begin{array}{r}
-4 / \sqrt{35} \\
3 / \sqrt{35} \\
3 / \sqrt{35} \\
1 / \sqrt{35}
\end{array}\right)
$$

Example: Find an orthonormal basis for \mathbb{R}^{3} Using the Gram-Schmidt on the set
$\mathbf{x}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \quad \mathbf{x}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right), \quad \mathbf{x}_{3}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$

Since $\left\|\mathbf{v}_{1}\right\|=\sqrt{3},\left\|\mathbf{v}_{2}\right\|=\sqrt{15}$ and $\left\|\mathbf{v}_{3}\right\|=\sqrt{35}$ we get the orthonormal basis

$$
\mathbf{u}_{1}=\left(\begin{array}{c}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
0 \\
1 / \sqrt{3}
\end{array}\right), \quad \mathbf{u}_{2}=\left(\begin{array}{r}
1 / \sqrt{15} \\
-2 / \sqrt{15} \\
3 / \sqrt{15} \\
1 / \sqrt{15}
\end{array}\right), \quad \mathbf{u}_{3}=\left(\begin{array}{r}
-4 / \sqrt{35} \\
3 / \sqrt{35} \\
3 / \sqrt{35} \\
1 / \sqrt{35}
\end{array}\right)
$$

Example: Find an orthonormal basis for \mathbb{R}^{3} Using the Gram-Schmidt on the set
$\mathbf{x}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \quad \mathbf{x}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right), \quad \mathbf{x}_{3}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$
$\mathbf{v}_{1}=\mathbf{x}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.

Since $\left\|\mathbf{v}_{1}\right\|=\sqrt{3},\left\|\mathbf{v}_{2}\right\|=\sqrt{15}$ and $\left\|\mathbf{v}_{3}\right\|=\sqrt{35}$ we get the orthonormal basis

$$
\mathbf{u}_{1}=\left(\begin{array}{c}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
0 \\
1 / \sqrt{3}
\end{array}\right), \quad \mathbf{u}_{2}=\left(\begin{array}{r}
1 / \sqrt{15} \\
-2 / \sqrt{15} \\
3 / \sqrt{15} \\
1 / \sqrt{15}
\end{array}\right), \quad \mathbf{u}_{3}=\left(\begin{array}{r}
-4 / \sqrt{35} \\
3 / \sqrt{35} \\
3 / \sqrt{35} \\
1 / \sqrt{35}
\end{array}\right)
$$

Example: Find an orthonormal basis for \mathbb{R}^{3} Using the Gram-Schmidt on the set
$\mathbf{x}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \quad \mathbf{x}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right), \quad \mathbf{x}_{3}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$
$\mathbf{v}_{1}=\mathbf{x}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.
$\mathbf{v}_{2}=\mathbf{x}_{2}-\mathbf{p}_{1}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)-\frac{0}{1}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$.

Since $\left\|\mathbf{v}_{1}\right\|=\sqrt{3},\left\|\mathbf{v}_{2}\right\|=\sqrt{15}$ and $\left\|\mathbf{v}_{3}\right\|=\sqrt{35}$ we get the orthonormal basis

$$
\mathbf{u}_{1}=\left(\begin{array}{c}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
0 \\
1 / \sqrt{3}
\end{array}\right), \quad \mathbf{u}_{2}=\left(\begin{array}{r}
1 / \sqrt{15} \\
-2 / \sqrt{15} \\
3 / \sqrt{15} \\
1 / \sqrt{15}
\end{array}\right), \quad \mathbf{u}_{3}=\left(\begin{array}{r}
-4 / \sqrt{35} \\
3 / \sqrt{35} \\
3 / \sqrt{35} \\
1 / \sqrt{35}
\end{array}\right)
$$

Example: Find an orthonormal basis for \mathbb{R}^{3} Using the Gram-Schmidt on the set
$\mathbf{x}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \quad \mathbf{x}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right), \quad \mathbf{x}_{3}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$
$\mathbf{v}_{1}=\mathbf{x}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.
$\mathbf{v}_{2}=\mathbf{x}_{2}-\mathbf{p}_{1}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)-\frac{0}{1}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$.
$\mathbf{v}_{3}=\mathbf{x}_{3}-\mathbf{p}_{2}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)-\frac{1}{1}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)-\frac{1}{2}\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{c}0 \\ -1 / 2 \\ 1 / 2\end{array}\right)$

So, $\mathbf{u}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \quad \mathbf{u}_{2}=\left(\begin{array}{c}0 \\ 1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right), \quad \mathbf{u}_{3}=\left(\begin{array}{c}0 \\ -1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right)$.

So, $\mathbf{u}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \mathbf{u}_{2}=\left(\begin{array}{c}0 \\ 1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right), \quad \mathbf{u}_{3}=\left(\begin{array}{c}0 \\ -1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right)$.

Eigenstuff

Definition (Eigenvalue/eigenvector)

If A is an $n \times n$ matrix and $\mathbf{x} \in \mathbb{R}^{n}$ is a nonzero vector such that $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar λ then \mathbf{x} is called an eigenvector for A and λ is an eigenvalue. For a given eigenvalue λ, the set of solutions of $A \mathbf{x}=\lambda \mathbf{x}$ is called the eigenspace associated to λ.

So, $\mathbf{u}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \mathbf{u}_{2}=\left(\begin{array}{c}0 \\ 1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right), \quad \mathbf{u}_{3}=\left(\begin{array}{c}0 \\ -1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right)$.

Eigenstuff

Definition (Eigenvalue/eigenvector)

If A is an $n \times n$ matrix and $\mathbf{x} \in \mathbb{R}^{n}$ is a nonzero vector such that $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar λ then \mathbf{x} is called an eigenvector for A and λ is an eigenvalue. For a given eigenvalue λ, the set of solutions of $A \mathbf{x}=\lambda \mathbf{x}$ is called the eigenspace associated to λ.

Every eigenvector has an associated eigenvalue.

So, $\mathbf{u}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \mathbf{u}_{2}=\left(\begin{array}{c}0 \\ 1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right), \quad \mathbf{u}_{3}=\left(\begin{array}{c}0 \\ -1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right)$.

Eigenstuff

Definition (Eigenvalue/eigenvector)

If A is an $n \times n$ matrix and $\mathbf{x} \in \mathbb{R}^{n}$ is a nonzero vector such that $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar λ then \mathbf{x} is called an eigenvector for A and λ is an eigenvalue. For a given eigenvalue λ, the set of solutions of $A \mathbf{x}=\lambda \mathbf{x}$ is called the eigenspace associated to λ.

Every eigenvector has an associated eigenvalue.
If λ is an eigenvalue for A then $(A-\lambda I) \mathbf{x}=\mathbf{0}$ has a nontrivial solution, so $\operatorname{det}(A-\lambda I)=0$. This is how we find eigenvalues.

So, $\mathbf{u}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \mathbf{u}_{2}=\left(\begin{array}{c}0 \\ 1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right), \quad \mathbf{u}_{3}=\left(\begin{array}{c}0 \\ -1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right)$.

Eigenstuff

Definition (Eigenvalue/eigenvector)

If A is an $n \times n$ matrix and $\mathbf{x} \in \mathbb{R}^{n}$ is a nonzero vector such that $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar λ then \mathbf{x} is called an eigenvector for A and λ is an eigenvalue. For a given eigenvalue λ, the set of solutions of $A \mathbf{x}=\lambda \mathbf{x}$ is called the eigenspace associated to λ.

Every eigenvector has an associated eigenvalue.
If λ is an eigenvalue for A then $(A-\lambda I) \mathbf{x}=\mathbf{0}$ has a nontrivial solution, so $\operatorname{det}(A-\lambda I)=0$. This is how we find eigenvalues.
We find eigenvectors by finding the nontrivial solutions of $(A-\lambda I) \mathbf{x}=\mathbf{0}$ once we know the eigemvalues

Ideally, for applications, we want a basis of eigenvectors. If we have that, say $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ is a basis and $A \mathbf{v}_{j}=\lambda_{j} \mathbf{v}_{j}$ for every j, then we have the following: Suppose $[\mathbf{x}]_{\mathcal{B}}=\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right)$. This means that $\mathbf{x}=c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}$

Ideally, for applications, we want a basis of eigenvectors. If we have that, say $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ is a basis and $A \mathbf{v}_{j}=\lambda_{j} \mathbf{v}_{j}$ for every j, then we have the following: Suppose $[\mathbf{x}]_{\mathcal{B}}=\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right)$. This means that $\mathbf{x}=c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}$ and therefore $A \mathbf{x}=\lambda_{1} c_{1} \mathbf{v}_{1}+\cdots+\lambda_{n} c_{n} \mathbf{v}_{n}$.

Ideally, for applications, we want a basis of eigenvectors. If we have that, say $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ is a basis and $A \mathbf{v}_{j}=\lambda_{j} \mathbf{v}_{j}$ for every j, then we have the following: Suppose $[\mathbf{x}]_{\mathcal{B}}=\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right)$. This means that $\mathbf{x}=c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}$ and therefore $A \mathbf{x}=\lambda_{1} c_{1} \mathbf{v}_{1}+\cdots+\lambda_{n} c_{n} \mathbf{v}_{n}$. So,
$[A \mathbf{x}]_{\mathcal{B}}=\left(\begin{array}{c}\lambda_{1} c_{1} \\ \vdots \\ \lambda_{n} c_{n}\end{array}\right)=\left(\begin{array}{cccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right)[\mathbf{x}]_{\mathcal{B}}$.

Ideally, for applications, we want a basis of eigenvectors. If we have that, say $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ is a basis and $A \mathbf{v}_{j}=\lambda_{j} \mathbf{v}_{j}$ for every j, then we have the following: Suppose $[\mathbf{x}]_{\mathcal{B}}=\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right)$. This means that $\mathbf{x}=c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}$ and therefore $A \mathbf{x}=\lambda_{1} c_{1} \mathbf{v}_{1}+\cdots+\lambda_{n} c_{n} \mathbf{v}_{n}$. So,
$[A \mathbf{x}]_{\mathcal{B}}=\left(\begin{array}{c}\lambda_{1} c_{1} \\ \vdots \\ \lambda_{n} c_{n}\end{array}\right)=\left(\begin{array}{cccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right)[\mathbf{x}]_{\mathcal{B}}$. Moreover, if
$S=\left(\begin{array}{lll}\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}\end{array}\right)$ (the transition matrix from \mathcal{B} to \mathcal{E}), then $S^{-1} A S$ is a diagonal matrix, with eigenvalues of A on the diagonal.

All this is only possible when there is a basis of eigenvectors.

All this is only possible when there is a basis of eigenvectors. To get this, we take a basis of each eigenspace and put them together.

All this is only possible when there is a basis of eigenvectors. To get this, we take a basis of each eigenspace and put them together. This will be independent, but will be a basis of \mathbb{R}^{n} only if the sum of the dimensions of the eigenspaces is n.
Finding eigenvalues and eigenvectors.

All this is only possible when there is a basis of eigenvectors. To get this, we take a basis of each eigenspace and put them together. This will be independent, but will be a basis of \mathbb{R}^{n} only if the sum of the dimensions of the eigenspaces is n.
Finding eigenvalues and eigenvectors.
Example.

All this is only possible when there is a basis of eigenvectors. To get this, we take a basis of each eigenspace and put them together. This will be independent, but will be a basis of \mathbb{R}^{n} only if the sum of the dimensions of the eigenspaces is n.
Finding eigenvalues and eigenvectors.
Example.
Find the eigenvalues of $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 2\end{array}\right)$.

All this is only possible when there is a basis of eigenvectors. To get this, we take a basis of each eigenspace and put them together. This will be independent, but will be a basis of \mathbb{R}^{n} only if the sum of the dimensions of the eigenspaces is n.
Finding eigenvalues and eigenvectors.
Example.
Find the eigenvalues of $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 2\end{array}\right)$. Find the determinant

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
2-\lambda & 0 & 0 \\
0 & 1-\lambda & 0 \\
0 & 1 & 2-\lambda
\end{array}\right|=(2-\lambda)(1-\lambda)(2-\lambda)
$$

All this is only possible when there is a basis of eigenvectors. To get this, we take a basis of each eigenspace and put them together. This will be independent, but will be a basis of \mathbb{R}^{n} only if the sum of the dimensions of the eigenspaces is n.
Finding eigenvalues and eigenvectors.

Example.

Find the eigenvalues of $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 2\end{array}\right)$. Find the determinant

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
2-\lambda & 0 & 0 \\
0 & 1-\lambda & 0 \\
0 & 1 & 2-\lambda
\end{array}\right|=(2-\lambda)(1-\lambda)(2-\lambda)
$$

So $\lambda=2$ and $\lambda=1$ are eigenvalues of A.

All this is only possible when there is a basis of eigenvectors. To get this, we take a basis of each eigenspace and put them together. This will be independent, but will be a basis of \mathbb{R}^{n} only if the sum of the dimensions of the eigenspaces is n.
Finding eigenvalues and eigenvectors.

Example.

Find the eigenvalues of $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 2\end{array}\right)$. Find the determinant

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
2-\lambda & 0 & 0 \\
0 & 1-\lambda & 0 \\
0 & 1 & 2-\lambda
\end{array}\right|=(2-\lambda)(1-\lambda)(2-\lambda)
$$

So $\lambda=2$ and $\lambda=1$ are eigenvalues of A.
Find the eigenspaces for these eigenvalues.

The nullspace of $A-2 I$:

$$
\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & 1 & 0
\end{array}\right) \xrightarrow{2 \mathrm{ERO}}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The nullspace of $A-2 I$:

$$
\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & 1 & 0
\end{array}\right) \xrightarrow{2 \text { EROs }}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Then x_{2} is the only leading variable, x_{1} and x_{3} are free and the equation is $x_{2}=0$.

The nullspace of $A-2 I$:

$$
\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & 1 & 0
\end{array}\right) \xrightarrow{2 \text { EROs }}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Then x_{2} is the only leading variable, x_{1} and x_{3} are free and the equation is $x_{2}=0$. This gives the eigenspace

$$
\left\{\left.\left(\begin{array}{c}
\alpha \\
0 \\
\beta
\end{array}\right) \right\rvert\, \alpha, \beta \in \mathbb{R}\right\}
$$

The nullspace of $A-2 I$:

$$
\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & 1 & 0
\end{array}\right) \xrightarrow{2 \mathrm{EROs}}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Then x_{2} is the only leading variable, x_{1} and x_{3} are free and the equation is $x_{2}=0$. This gives the eigenspace

$$
\left\{\left.\left(\begin{array}{c}
\alpha \\
0 \\
\beta
\end{array}\right) \right\rvert\, \alpha, \beta \in \mathbb{R}\right\}
$$

So we get a basis for this eigenspace: $\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $\mathbf{v}_{2}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$

The nullspace of $A-I$:

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right) \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

The nullspace of $A-I$:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right) \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Then x_{1} and x_{2} are the leading variables and x_{3} is free. The equations are $x_{1}=0$ and $x_{2}=-x_{3}$. This gives the eigenspace

$$
\left\{\left.\left(\begin{array}{c}
0 \\
-\alpha \\
\alpha
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\}
$$

The nullspace of $A-I$:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right) \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Then x_{1} and x_{2} are the leading variables and x_{3} is free. The equations are $x_{1}=0$ and $x_{2}=-x_{3}$. This gives the eigenspace

$$
\left\{\left.\left(\begin{array}{c}
0 \\
-\alpha \\
\alpha
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\}
$$

So we get a basis for this eigenspace: $\mathbf{v}_{3}=\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right)$.

The nullspace of $A-I$:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right) \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Then x_{1} and x_{2} are the leading variables and x_{3} is free. The equations are $x_{1}=0$ and $x_{2}=-x_{3}$. This gives the eigenspace

$$
\left\{\left.\left(\begin{array}{c}
0 \\
-\alpha \\
\alpha
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\}
$$

So we get a basis for this eigenspace: $\mathbf{v}_{3}=\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right)$.
Because we have altogether 3 independent vectors, we have a basis for \mathbb{R}^{3} consisting of eigenvectors.

The nullspace of $A-I$:

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right) \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Then x_{1} and x_{2} are the leading variables and x_{3} is free. The equations are $x_{1}=0$ and $x_{2}=-x_{3}$. This gives the eigenspace

$$
\left\{\left.\left(\begin{array}{c}
0 \\
-\alpha \\
\alpha
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\}
$$

So we get a basis for this eigenspace: $\mathbf{v}_{3}=\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right)$.
Because we have altogether 3 independent vectors, we have a basis for \mathbb{R}^{3} consisting of eigenvectors. If we put the basis vectors in a matrix S and find its inverse S^{-1}, then the product $S^{-1} A S$ will be a diagonal matrix D with $2,2,1$ on the diagonal:

That is, $S=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 1\end{array}\right), S^{-1}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 0\end{array}\right)$

That is, $S=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 1\end{array}\right), S^{-1}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 0\end{array}\right)$ and
$D=S^{-1} A S=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$

That is, $S=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 1\end{array}\right), S^{-1}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 0\end{array}\right)$ and
$D=S^{-1} A S=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$
Note that $A=S D S^{-1}$. This allows us to compute successive powers of A easily:

$$
\begin{aligned}
& A^{2}=S D S^{-1} S D S^{-1}=S D I D S^{-1}=S D^{2} S^{-1} \\
& A^{3}=S D^{2} S^{-1} S D S^{-1}=S D^{2} I D S^{-1}=S D^{3} S^{-1}
\end{aligned}
$$

and so on for $A^{n}=S D^{n} S^{-1}$.

That is, $S=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 1\end{array}\right), S^{-1}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 0\end{array}\right)$ and
$D=S^{-1} A S=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$
Note that $A=S D S^{-1}$. This allows us to compute successive powers of A easily:

$$
\begin{aligned}
& A^{2}=S D S^{-1} S D S^{-1}=S D I D S^{-1}=S D^{2} S^{-1} \\
& A^{3}=S D^{2} S^{-1} S D S^{-1}=S D^{2} I D S^{-1}=S D^{3} S^{-1}
\end{aligned}
$$

and so on for $A^{n}=S D^{n} S^{-1}$. This is an advantage because $D^{n}=\left(\begin{array}{ccc}2^{n} & 0 & 0 \\ 0 & 2^{n} & 0 \\ 0 & 0 & 1^{n}\end{array}\right)$ is essentially trivial to calculate.

That is, $S=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 1\end{array}\right), S^{-1}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 0\end{array}\right)$ and
$D=S^{-1} A S=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$
Note that $A=S D S^{-1}$. This allows us to compute successive powers of A easily:

$$
\begin{aligned}
& A^{2}=S D S^{-1} S D S^{-1}=S D I D S^{-1}=S D^{2} S^{-1} \\
& A^{3}=S D^{2} S^{-1} S D S^{-1}=S D^{2} I D S^{-1}=S D^{3} S^{-1}
\end{aligned}
$$

and so on for $A^{n}=S D^{n} S^{-1}$. This is an advantage because $D^{n}=\left(\begin{array}{ccc}2^{n} & 0 & 0 \\ 0 & 2^{n} & 0 \\ 0 & 0 & 1^{n}\end{array}\right)$ is essentially trivial to calculate. This works for negative powers as well.

