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Theorem (Gram-Schmidt)

If {x1,x2, . . . ,xr} is an independent set in an inner product space V then there exists
and orthonormal set {u1,u2, . . . ,ur} such that
Span(x1,x2, . . . ,xr) = Span(u1,u2, . . . ,ur).

The process takes r steps, and at the end of step j the vectors u1, . . . ,uj have the
same span as x1,x2, . . . ,xj . If {x1,x2, . . . ,xr} is a basis for a subspace S of V , then
{u1,u2, . . . ,ur} is an orthonormal basis for S.

When computing by hand, it is quite a bit easier to first create an orthogonal (but not
orthonormal) set v1, . . . ,vr and then normalize them at the end by uj = (1/ ∥vj∥)vj .
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The steps

• Step 1: set v1 = x1.

• Step 2: set v2 = x2 − p1, where p1 is the projection of x2 onto the span of v1.

That is v2 = x2 −
⟨x2,v1⟩
⟨v1,v1⟩

v1.

• Step 3: set v3 = x3 − p2 where p2 is the projection of x3 onto Span(v1,v2).
That is

v3 = x3 −
⟨x3,v1⟩
⟨v1,v1⟩

v1 −
⟨x3,v2⟩
⟨v2,v2⟩

v2

• Steps k > 3: set vk = xk − pk−1 where pk−1 is the projection of xk onto
Span(v1, . . . ,vk−1). That is

vk = xk −
k−1∑
i=1

⟨xk,vi⟩
⟨vi,vi⟩

vi

Then set uj = (1/ ∥vj∥)vj for each j.

It is permissible to replace any vk by any nonzero multiple of itself before going on to
finding vk+1. That can make the later steps a bit easier.
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Example: find an orthonormal basis for the span of

x1 =


1
1
0
1

 , x2 =


1
0
1
1

 , x3 =


0
1
1
1

 .

v1 = x1 =


1
1
0
1

. v2 = x2 − p1 =


1
0
1
1

− 2

3


1
1
0
1

 =


1/3
−2/3
1
1/3

.

Let’s use v2 =


1
−2
3
1

 instead.

v3 = x3 − p2 =


0
1
1
1

− 2

3


1
1
0
1

− 2

15


1

−2
3
1

 =


−4/5
3/5
3/5
1/5

. Using


−4
3
3
1

.
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Since ∥v1∥ =
√
3, ∥v2∥ =

√
15 and ∥v3∥ =

√
35 we get the orthonormal basis

u1 =


1/

√
3

1/
√
3

0

1/
√
3

 , u2 =


1/
√
15

−2/
√
15

3/
√
15

1/
√
15

 , u3 =


−4/

√
35

3/
√
35

3/
√
35

1/
√
35

 .

Example: Find an orthonormal basis for R3 Using the Gram-Schmidt on the set

x1 =


1
0
0

, x2 =


0
1
1

, x3 =


1
0
1


v1 = x1 =


1
0
0

.

v2 = x2 − p1 =


0
1
1

− 0

1


1
0
0

 =


0
1
1

.

v3 = x3 − p2 =


1
0
1

− 1

1


1
0
0

− 1

2


0
1
1

 =


0

−1/2
1/2
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So, u1 =


1
0
0

, u2 =


0

1/
√
2

1/
√
2

, u3 =


0

−1/
√
2

1/
√
2

.

Eigenstuff

Definition (Eigenvalue/eigenvector)

If A is an n× n matrix and x ∈ Rn is a nonzero vector such that Ax = λx for some
scalar λ then x is called an eigenvector for A and λ is an eigenvalue. For a given
eigenvalue λ, the set of solutions of Ax = λx is called the eigenspace associated to λ.

Every eigenvector has an associated eigenvalue.

If λ is an eigenvalue for A then (A− λI)x = 0 has a nontrivial solution, so
det(A− λI) = 0. This is how we find eigenvalues.

We find eigenvectors by finding the nontrivial solutions of (A− λI)x = 0 once we
know the eigemvalues
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Every eigenvector has an associated eigenvalue.

If λ is an eigenvalue for A then (A− λI)x = 0 has a nontrivial solution, so
det(A− λI) = 0. This is how we find eigenvalues.

We find eigenvectors by finding the nontrivial solutions of (A− λI)x = 0 once we
know the eigemvalues
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Ideally, for applications, we want a basis of eigenvectors. If we have that, say
B = [v1,v1, . . . ,vn] is a basis and Avj = λjvj for every j, then we have the following:

Suppose [x]B =


c1
...
cn

. This means that x = c1v1 + · · ·+ cnvn

and therefore

Ax = λ1c1v1 + · · ·+ λncnvn. So,

[Ax]B =


λ1c1
...

λncn

 =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 [x]B. Moreover, if

S =
 v1 . . . vn

 (the transition matrix from B to E), then S−1AS is a

diagonal matrix, with eigenvalues of A on the diagonal.
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All this is only possible when there is a basis of eigenvectors.

To get this, we take a
basis of each eigenspace and put them together. This will be independent, but will be
a basis of Rn only if the sum of the dimensions of the eigenspaces is n.

Finding eigenvalues and eigenvectors.

Example.

Find the eigenvalues of A =


2 0 0
0 1 0
0 1 2

. Find the determinant

det(A− λI) =

∣∣∣∣∣∣
2− λ 0 0
0 1− λ 0
0 1 2− λ

∣∣∣∣∣∣ = (2− λ)(1− λ)(2− λ)

So λ = 2 and λ = 1 are eigenvalues of A.

Find the eigenspaces for these eigenvalues.
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The nullspace of A− 2I:
0 0 0
0 −1 0
0 1 0

 2 EROs−−−−→


0 1 0
0 0 0
0 0 0



Then x2 is the only leading variable, x1 and x3 are free and the equation is x2 = 0.
This gives the eigenspace 


α
0
β

 α, β ∈ R


So we get a basis for this eigenspace: v1 =


1
0
0

 and v2 =


0
0
1
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The nullspace of A− I:
1 0 0
0 0 0
0 1 1

 R2↔R3−−−−−→


1 0 0
0 1 1
0 0 0



Then x1 and x2 are the leading variables and x3 is free. The equations are x1 = 0 and
x2 = −x3. This gives the eigenspace


0
−α
α

 α ∈ R


So we get a basis for this eigenspace: v3 =


0

−1
1

.

Because we have altogether 3 independent vectors, we have a basis for R3 consisting of
eigenvectors. If we put the basis vectors in a matrix S and find its inverse S−1, then
the product S−1AS will be a diagonal matrix D with 2, 2, 1 on the diagonal:
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That is, S =


1 0 0
0 0 −1
0 1 1

, S−1 =


1 0 0
0 1 1
0 −1 0



and

D = S−1AS =


2 0 0
0 2 0
0 0 1


Note that A = SDS−1. This allows us to compute successive powers of A easily:

A2 = SDS−1SDS−1 = SDIDS−1 = SD2S−1

A3 = SD2S−1SDS−1 = SD2IDS−1 = SD3S−1

and so on for An = SDnS−1. This is an advantage because Dn =


2n 0 0
0 2n 0
0 0 1n


is essentially trivial to calculate. This works for negative powers as well.
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