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Definition (Scalar product)
If x and y € R" then the scalar product of x and y is x'y
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If x and y € R" then the scalar product of x and y is x'y

x1 Y1
) ) T2 Y2

In terms of the coordinates, if x = ) and y = ) , then
Tn Yn

xly = T1y1 +X2Y2 + -+ TpYn = y'x.

Definition (Norm)

We write ||x|| = (x”x)/? and call this the norm of x.
In terms of coordinates ||x|| = (22 + 23 + - -- 4 22)1/2.

1. The scalar product of ax and By is (ax)”(By) = aB(xTy)
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Definition (Scalar product)
If x and y € R" then the scalar product of x and y is x'y

x1 Y1
) ) T2 Y2

In terms of the coordinates, if x = ) and y = ) , then
Tn Yn

x'y = z1y1 + 2aya + -+ + Ty = Y1 X
Definition (Norm)

We write ||x|| = (x”x)/? and call this the norm of x.

In terms of coordinates ||x|| = (22 + 23 + - -- 4 22)1/2.

1. The scalar product of ax and By is (ax)”(By) = aB(xTy)

2. The norm of ax is |lax|| = |a| ||x||. Note that if &« = 1/ ||x]| the [|ax]|| = 1.
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Theorem (Angle between two vectors)

Let x,y € R? or R3. Suppose ||x|| # 0 and ||y|| # 0. Let 0 be the angle between x
andy with 0 < 6 < 180°. Then

xTy

cosf = ————.
[BSIRIN
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Theorem (Angle between two vectors)

Let x,y € R? or R3. Suppose ||x|| # 0 and ||y|| # 0. Let 0 be the angle between x
andy with 0 < 6 < 180°. Then

xTy

cosf = ————.
[BSIRIN

Theorem (The Cauchy-Schwarz Inequality)

If x and y are vectors in R™, then |xTy| < ||x| ||ly]|.

Definition (Orthogonal)
If x and y are in R”, we say that x is orthogonal to y if xTy = 0. We denote this by
writing x L y.

1. If x € R™ then the set of vectors orthogonal to x is a subspace of R".

2. x L xif and only if x = 0.
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Example: find a nonzero vector orthogonal to both a; =

—1
ay = 2
—1

—1

and
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Example: find a nonzero vector orthogonal to both a; = | —1 and

-1
ag = 2 | . Solution: solve the system al'x =0, alx = 0: This system is
-1

T

equivalent to Ax = 0 where A = [ Z%p ] . We solve that by row-reducing A:
2

1 -1 3 2EROs 1
-1 2 —1 0
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Example: find a nonzero vector orthogonal to both a; = | —1 and

-1
ag = 2 | . Solution: solve the system al'x =0, alx = 0: This system is
-1
al
equivalent to Ax = 0 where A = [ a%p ] . We solve that by row-reducing A:
2
1 -1 3 2EROs, 1 05
-1 2 -1 01 2
—d
Thus, 1 = —5x3 and 9 = —2x3 and so the vectors —2o are orthogonal to a;
o

and ao, for any choice of a.
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Definition (Scalar and vector projections)
If x and y beIong to R” then:

The number a = — is called the scalar projection of x onto y.

X ..
The vector p = Tyy is called the vector projection of x onto'y
yy
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Definition (Orthogonal subspaces)

If V and W are subspaces of R™ then we say they are orthogonal subspaces if every
vector in V' is orthogonal to every vector in W.
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Definition (Scalar and vector projections)

If x and y belong to R” then:
xTy

The number « = — is called the scalar projection of x ontoy.

X
The vector p = Tyy is called the vector projection of x onto'y
yy

Definition (Orthogonal subspaces)

If V and W are subspaces of R™ then we say they are orthogonal subspaces if every
vector in V' is orthogonal to every vector in W.

Definition (Orthogonal complement)

If S is a subspace of R™ then the orthogonal complement of S is the set of all vectors
that are orthogonal to every vector in S. We denote this set S--. Formally:

L={xeR"|x'y=0forally €S}
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Properties of orthogonal subspaces

6/1



Properties of orthogonal subspaces

1. If V and W are orthogonal subspaces of R™ then the only vector that belongs to
both V and W is 0.
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Properties of orthogonal subspaces

1. If V and W are orthogonal subspaces of R™ then the only vector that belongs to
both V and W is 0.

2. For any subspace S, S is also a subspace.

We have seen that any product like Ax is a linear combination of the columns of A. If
A and n x k& matrix, we define

R(A) = {b € R" | b = Ax for some x € RF}

This is the column space of A.

What is R(A)*7?

The solution space of a homogeneous k X n system of linear equations is a subspace of
R™. It is also the nullspace N'(A) if A is the system matrix.

What is N(A)1?
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Theorem (Orthogonal complements of matrix spaces)
R(A)L = N(AT) and N (A)*+ = R(AT).
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Theorem (Orthogonal complements of matrix spaces)
R(A)L = N(AT) and N (A)*+ = R(AT).

Theorem (Dimension sum)

If S is a subspace of R then dim S + dim S+ = n. Furthermore, if {x1,...,%,} is a
basis for S and {X,11,...,X,} is a basis for S*, then {x1,...,X,} is a basis for R".

Theorem (Orthogonal decomposition)

If S is a subspace of R™ then every vector x in R™ can be written uniquely as a sum
Xx=u+vwithueSandvesSt

Theorem (The double 1)
If S is a subspace of R" then (S+)*+ = S.
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Application: for which vectors b does the equation Ax = b have a solution?
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existence of x such that Ax = b means that b is in the column space of A. By the
above, b must be orthogonal to the null space of A”. If we find a basis {v1,...,v;}
for the null space of AT, then the condition for Ax = b to have a solution is that
vlTb:O,...,VZb:O.

Example: For what vectors b does the following have a solution?

221 + 2x9 + 43 = Oy
xr1 + + x3 = by
ro+ x3=bs
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Application: for which vectors b does the equation Ax = b have a solution? The
existence of x such that Ax = b means that b is in the column space of A. By the
above, b must be orthogonal to the null space of A”. If we find a basis {v1,...,v;}
for the null space of AT, then the condition for Ax = b to have a solution is that
vlTb:O,...,vgb:O.

Example: For what vectors b does the following have a solution?

221 + 2x9 + 43 = Oy
xr1 + + x3 = by
ro+ x3=bs

Take the system matrix A, transpose it, and find the null space of AT

10 1/2
1/2 =
6EROs | o o z1+ (1/2)z3 =0
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Then N (AT) is spanned by one vector

~1/2
1
1
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~1/2
Then N(A”) is spanned by one vector 1 . So, we conclude that a solution
1
exists if and only if b is orthogonal to this:

[ 12 11 ]b:—(1/2)b1+b2+b3:0
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Another application:

If we have an inconsistent equation Ax = b (i.e., one which has no solution), we can
multiply it by AT and we get ATAx = A"b ...
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9/1



~1/2
Then N(A”) is spanned by one vector 1 . So, we conclude that a solution
1
exists if and only if b is orthogonal to this:

[ 12 11 ]b:—(1/2)b1+b2+b3:0

Another application:

If we have an inconsistent equation Ax = b (i.e., one which has no solution), we can
multiply it by AT and we get AT Ax = A”b ...which must have a solution. That
solution X has the property that b — Ax is orthogonal to the column space of A and
has the smallest norm among all x in R™.

This vector x is called the least squares solution to Ax = b.
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An example:

10/1



An example:

Find the least squares solution of the following system:

1 1

—2 3 [:”1]_ 1
2 —1 T2 9
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An example:

Find the least squares solution of the following system:

Multiplying by the transpose gives

(=) ()=

=~ ot
N—_—r
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An example:

Find the least squares solution of the following system:
3
RIEE
2 —1 2
Multiplying by the transpose gives
9 —7 X1 .
-7 11 o |

. .. (8350 ) [ 166
This has a solution x = [ 71/50 ] - [ 1.42 ] '

N =

=~ ot
N—_—r
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If we want to see how close we have come, we find

3.08
Ax= | 0.94
1.9

these values differ from (3,1,2)” by (—0.08,0.06,0.1)” which has norm
v0.02 =~ 0.1414
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assosiated to x.
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If we want to see how close we have come, we find

3.08
Ax= | 0.94
1.9

these values differ from (3,1,2)” by (—0.08,0.06,0.1)” which has norm
v0.02 =~ 0.1414

In any problem Ax = b, the difference r(x) = b — Ax is called the residual vector
assosiated to x. The least squares solution is a vector X that gives the residual vector
the smallest possible norm.

Using the method of least squares to get vectors orthogonal to a subspace.

If S is a subspace of R™ and b is a vector in R™, we know that there exist unique

vectors u € S and v € S+ such that b = u+ v. The method of least squares allows
us to find them.
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If S'is R(A) for some matrix then, by what we have seen, the least squares solution x
of Ax=Db
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If S'is R(A) for some matrix then, by what we have seen, the least squares solution x
of Ax = b (which satisfies A7 A% = ATDb) has the following property: Ax is the
closest element of R(A) to b and the residual vector b — Ax is orthogonal to R(A).
That isu = Ax and v =Db — Ax.
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If S'is R(A) for some matrix then, by what we have seen, the least squares solution x
of Ax = b (which satisfies A7 A% = ATDb) has the following property: Ax is the
closest element of R(A) to b and the residual vector b — Ax is orthogonal to R(A).
That isu = Ax and v =Db — Ax.

But every subspace S of R" is the column space of some matrix: take any basis of S
(or any set of vectors whose span is S) and make them the columns of a matrix A.
Then S =R(A).

Example: Let S be the span of (1,1,2,0)” and (0,1,2,—2)" and let b= (1,1,1,1)T.
Find the vectors u € S and v € S+ such that b =u + v.
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If S'is R(A) for some matrix then, by what we have seen, the least squares solution x
of Ax = b (which satisfies A7 A% = ATDb) has the following property: Ax is the
closest element of R(A) to b and the residual vector b — Ax is orthogonal to R(A).
That isu = Ax and v =Db — Ax.

But every subspace S of R" is the column space of some matrix: take any basis of S
(or any set of vectors whose span is S) and make them the columns of a matrix A.
Then S =R(A).

Example: Let S be the span of (1,1,2,0)” and (0,1,2,—2)" and let b= (1,1,1,1)T.
Find the vectors u € S and v € S such that b=u + v.

Now S is the column space of the 4 x 2 matrix A below and we need the least squares
solution of

1 0 1
11 z) |1
2 2 [xz]_ 1
0 -2 1
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Multiplying by AT we get

(25 (2)- ()

which has solution x = (31/29, —14/29)7.
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Multiplying by AT we get

6 5 I . 4
5 9 T2 o 1
which has solution x = (31/29, —14/29)T. Then
u = Ax = (31/29,17/29, 34/29, 28 /29)"
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v=b— A% = (-2/29,12/29, —-5/29,1/29).
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If a set of nonzero vectors is orthogonal, we can make it orthonormal simply by
multiplying each v; by (1/||v;|]).
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Multiplying by AT we get

6 5 I . 4
5 9 T2 o 1
which has solution x = (31/29, —14/29)T. Then

u = Ax = (31/29,17/29, 34/29,28/29)" and
v=b— A% = (-2/29,12/29, —-5/29,1/29).

Definition (Orthogonal /orthonormal set)

A set of vectors {vi,Vva,...,v,} is called orthogonal if v; L v; for every i # j.
It is called orthonormal if it is orthogonal and also ||v;|| = 1 for every j.

If a set of nonzero vectors is orthogonal, we can make it orthonormal simply by
multiplying each v; by (1/||v;|]).

Theorem (Orthogonal = independent)

If a set of nonzero vectors is orthogonal, then it is independent.
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Theorem (Orthogonal bases)

Every nonzero subspace of R™ has a basis that is orthonormal.
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any vector in R™ and p the element of S that is closest to v, then
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Theorem (Formula for the projection)

Let S is a subspace of R"™ and let {v1,va,...,v,} be an orthogonal basis for S. If v is
any vector in R™ and p the element of S that is closest to v, then

VoV

p= vj

VTVj /
Jj=1 7J
vlv;

Notice that each term in the sum 377, —=— v; has the same formula as the vector

V.V,
77

projection of v onto v;.
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Theorem (Orthogonal bases)

Every nonzero subspace of R™ has a basis that is orthonormal.

Theorem (Formula for the projection)

Let S is a subspace of R"™ and let {v1,va,...,v,} be an orthogonal basis for S. If v is
any vector in R™ and p the element of S that is closest to v, then

VoV
p= vj
VTVj /
Jj=1 7J
vlv;
Notice that each term in the sum 377, —=— v; has the same formula as the vector
V.V,

j
projection of v onto v;. We will call p the projection of v onto Span(vy,...,v;).
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There are many vector spaces with a type of product similar to the scalar product in
R™.

Definition (Inner product)

If V' is a vector space, then an inner product is an operation that assigns, to any pair
of vectors x and y in V' a real number, denoted (x,y), satisfying
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If V' is a vector space, then an inner product is an operation that assigns, to any pair
of vectors x and y in V' a real number, denoted (x,y), satisfying

1. (0,0) =0, and if x # 0 then (x,x) > 0.
2. (x,y) = (y,x), for every x,y in V
3. (ay + Bz,x) = a(y,x) + B (z,x), for every x,y,z in V and every «, 3 in R.
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Definition (Inner product)

If V' is a vector space, then an inner product is an operation that assigns, to any pair
of vectors x and y in V' a real number, denoted (x,y), satisfying

1. (0,0) =0, and if x # 0 then (x,x) > 0.
2. (x,y) = (y,x), for every x,y in V
3. (ay + Bz,x) = a(y,x) + B (z,x), for every x,y,z in V and every «, 3 in R.

A vector space with an inner product defined on it is called an inner product space.

One way to create an inner product is to produce a linear one-to-one correspondence
from V to a vector space that already has an inner product.

R™ can have inner products different from the scalar product. If A is any invertible
n X n matrix, then

(x,y) = (Ax)T Ay = x" AT Ay

is an example of an inner product.
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Definition (Induced norm)

If V' is a vector space with an inner product (x,y), then ||x|| = /(x,x). This is called
the norm induced by this inner product.
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Definition (Induced norm)

If V' is a vector space with an inner product (x,y), then ||x|| = /(x,x). This is called
the norm induced by this inner product.

Definition (Orthogonal)

If V' is a vector space with an inner product (x,y), then we say x is orthogonal to y if
(x,y) = 0. and we express this by x L y.

Theorem (Pythagorean Formula)

Ifx Ly then [)x +y|* = [|x[|* + ly[|*.

Theorem (Cauchy-Schwarz Inequality)

For any x and y in an inner product space,

|Gy | < Il lyl
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Theorem (Triangle Inequality)
For any pair of vectors x and y, ||x +y| < |Ix|| + |yl
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Theorem (Triangle Inequality)

For any pair of vectors x and y, ||x +y|| < ||x| + Iyl

This allows us to express the distance between vectors by d(x,y) = ||x — y]||

Here is an example of an inner product for P3. Define

(p,q) = p(0)q(0) + p(1)g(1) + p(—1)g(-1).

In this inner product space, the polynomials x and z2 are orthogonal to each other.

Also the constant polynomial 1 is orthogonal to x but not to 2. Exercise: 1 — 22 is

orthogonal to both z and z2.
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Definition (Scalar/vector projection)

For vectors x,y in V, y # 0, the scalar projection of x onto y is

_ xy)
Iyl

«
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For vectors x,y in V, y # 0, the scalar projection of x onto y is

_ xy)
Iyl

«

and the vector projection of x onto y is
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Definition (Orthogonal/orthonormal set)
A set {vi,va,...,v,} is said to be orthogonal if v; L v; for each i # j. If it is
orthogonal and ||v;|| =1 for each j, we call it orthonormal.

Just as in R™ we have

1. Every finite dimensional subset of V' has an orthonomal basis.

19/1



Definition (Orthogonal/orthonormal set)
A set {vi,va,...,v,} is said to be orthogonal if v; L v; for each i # j. If it is
orthogonal and ||v;|| =1 for each j, we call it orthonormal.

Just as in R™ we have

1. Every finite dimensional subset of V' has an orthonomal basis.
2. If S'is a subspace of V' with an orthogonal basis {v1,...,v,} and x is any vector
in V. Then the closest vector in S to x is

XV
J

p= Z
VJ,VJ

and x — p is orthogonal to S.

19/1



Definition (Orthogonal/orthonormal set)

A set {vi,va,...,v,} is said to be orthogonal if v; L v; for each i # j. If it is
orthogonal and ||v;|| =1 for each j, we call it orthonormal.

Just as in R™ we have

1. Every finite dimensional subset of V' has an orthonomal basis.

2. If S'is a subspace of V' with an orthogonal basis {v1,...,v,} and x is any vector
in V. Then the closest vector in S to x is

XV
J

p= Z
VJ,VJ

and x — p is orthogonal to S.
3. If {uy,...,u,} an orthonormal basis for S then p = 25:1 (x,u;)u;

19/1



Definition (Orthogonal/orthonormal set)

A set {vi,va,...,v,} is said to be orthogonal if v; L v; for each i # j. If it is
orthogonal and ||v;|| =1 for each j, we call it orthonormal.

Just as in R™ we have

1. Every finite dimensional subset of V' has an orthonomal basis.

2. If S'is a subspace of V' with an orthogonal basis {v1,...,v,} and x is any vector
in V. Then the closest vector in S to x is

X Vi
(x,v5)
p= Z .
and x — p is orthogonal to S.

3. If {uy,...,u;} an orthonormal basis for S then p = > "_, (x,u;) u;

4. Every orthogonal set of nonzero vectors is independent.

19/1



Matrices with orthogonal columns

In this discussion, all vectors will be in R™ for some n. Orthogonality will mean
T
x'y =0.
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Matrices with orthogonal columns

In this discussion, all vectors will be in R™ for some n. Orthogonality will mean

x'y = 0.

If Ais an n x k& matrix with orthonormal columns, then & < n because the columns
are independent so there can't be more than n of them. Also, the rank of A is k£ and
the nullity is 0.

The columns of A being orthonormal means AT A = I, the k x k identity matrix. The
matrix AAT doesn't have to be the identity unless A is a square matrix. In general,
AAT is the projection matrix for R(A): AATD is the closest vector in R(A) to b.

If it happens that n = k so that A is a square matrix, then AT A = I tells us that A is
invertible and A=' = AT In this case only, we also have AAT = I and this tells us
that A7 also has orthonormal columns.
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Definition (Orthogonal matrix)

An orthogonal matrix is a square matrix with orthonormal columns. Equivalently, an
orthogonal matrix A is a square matrix satisfying A=1 = AT
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Q is the transition matrix from B to £ and Q7 is the transition matrix from & to B.

The following can be used instead of a transition matrix, and it works for any inner
product space:

Theorem (Coordinates for orthonormal bases)

If B=[ui,...,uy] is an orthonormal basis in an inner product space V' and v is any
vector in V', then

V= <V7u1>u1 + <V7u2> ug + - <V,U_n> up,
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Definition (Orthogonal matrix)
An orthogonal matrix is a square matrix with orthonormal columns. Equivalently, an

orthogonal matrix A is a square matrix satisfying A=1 = AT

The product of two (or more) orthogonal matrices is an orthogonal matrices.

For an orthonormal basis B, if ) is the matrix whose columns are the vectors in B, then
Q is the transition matrix from B to £ and Q7 is the transition matrix from & to B.

The following can be used instead of a transition matrix, and it works for any inner
product space:

Theorem (Coordinates for orthonormal bases)

If B=[ui,...,uy] is an orthonormal basis in an inner product space V' and v is any
vector in V', then

V= <V7u1> u + <V7u2> ug + - <V,U_n> up,
As we have seen before, if v =—cju; +---+ ¢,u, then

<V,11j> =1 <u1, uj> —+ o+ Cn, (un, u]> = Cj
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Some examples of orthonormal sets and orthogonal matrices
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V2/2 ] . [ V32

The set B = [ul = [ \@/2 \@/2 ] } is an orthonormal basis in R2.
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Some examples of orthonormal sets and orthogonal matrices

g;; ] Uy = [ _gg ” is an orthonormal basis in R2.

If we take any other vector, for example x = [ _i’ ] )

The set B = [ul = [
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Some examples of orthonormal sets and orthogonal matrices

The set BB = [ulz [ g;; ] = [ —gg

3 :
If we take any other vector, for example x = 1 | wecan write

x = (xTup))u; + (xTuz)us = V2 uy — 2v/2 us.

] } is an orthonormal basis in R2.
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Some examples of orthonormal sets and orthogonal matrices

The set BB = [ulz [ g;; ] = [ —gg

If we take any other vector, for example x = [

] } is an orthonormal basis in R2.

1 ] , we can write

X = (xTu1)u1 + (xTug)ug =2 u; — 2v/2 us. That is, [x|p = [ _\2/\% ]
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Some examples of orthonormal sets and orthogonal matrices

The set B = [ul = [ \/5/2 ] ,Ug = [ —ﬂ/2 ] } is an orthonormal basis in R2.

V2/2 V2/2

If we take any other vector, for example x = [ ] , We can write

-1
x = (xTup)u; + (x ug)uy = v2 u; —2v/2 uy. Thatis, [x]p = [ _\2& ]

V2
V3j2 32

Moreover, () = [ \/5/2 \/§/2 ] is an orthogonal matrix
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Some examples of orthonormal sets and orthogonal matrices

The set B = [ul = [ \/5/2 ] ,Ug = [ —ﬂ/2 ] } is an orthonormal basis in R2.

V2/2 V2/2

If we take any other vector, for example x = [ ] , We can write

-1
x = (xTup)u; + (x ug)uy = v2 u; —2v/2 uy. Thatis, [x]p = [ _\2& ]

V2
Moreover, () = [ gg _gg ] is an orthogonal matrix and

QT = [ _gg g;; ] is its inverse. Finally, note that Q”x = [x]5
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1 1 1
Here is an orthogonal set: vi= | 1 | ,vo = 1 |,vg= 1] —1 |. Therefore,
2 -1 0

B = [u; = (1/V6)vi,uz = (1/v/3)va,u3 = (1/v/2)v3] is an orthonormal basis and
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A three-dimensional example:

1 1 1
Here is an orthogonal set: v; = [ 1 ] , Vo = [ 1 ] , Vg = [ -1 ] Therefore,

2 -1 0
B = [u; = (1/V6)vi,uz = (1/v/3)va,u3 = (1/v/2)v3] is an orthonormal basis and

[1/\/6 1/vV3  1/V2
Q=

1/V6  1/V/3 —1/V2
2/vV6 —1//3 0

is an orthogonal matrix.
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2

Taking any vector, for example v= | 1 | we get
1
u{v 5/\/6
Vg=QTv=| ulv | =] 2/V3

ulv 1/v2
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Let S be a subspace of R" and {uy,...,u,} an orthonormal basis for S. For any
vector b € R™ we can get the closest vector to .S by solving a least squares problem.

Recall: If U is the matrix whose columns are uy, ..., u,, then we solve UTUx = UTb
to get X, and then UX is then the closest vector to b in the column space of U (which
is ).

But, since U has orthogonal columns, the UTU = I (r x r) and so the solution of
UTUx =UTb is x = UTb and the closest vector in S to b is Ux = UUTb.
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Taking any vector, for example v= | 1 | we get
1
ul'v
T
Vig=Q'v=| ulv | =
ulv

The projection matrix
Let S be a subspace of R" and {uy,.

5/V6
2/\/3
1/V2

.., u,} an orthonormal basis for S. For any

vector b € R™ we can get the closest vector to .S by solving a least squares problem.

Recall: If U is the matrix whose columns are uy, ..., u,, then we solve UTUx = UTb
to get X, and then UX is then the closest vector to b in the column space of U (which

is ).

But, since U has orthogonal columns, the UTU = I (r x r) and so the solution of
UTUx = U"b is x = UTb and the closest vector in S to b is Ux = UUTb.

We call the matrix P = UU7 the projection matrix.
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Here is an example. Find the projection matrix for the span of

1 0
V1 = 2 , Vo = -1
2 1
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Here is an example. Find the projection matrix for the span of

1 0
V1 = 2 , Vo = -1
2 1
1
Use it to find the projection of v = | 1 | onto this span.
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Here is an example. Find the projection matrix for the span of

1 0
V1 = 2 , Vo = -1
2 1
1
Use it to find the projection of v = | 1 | onto this span.
0
These are orthogonal, but not orthonormal, so we normalize them:
1/3 0
ui=| 2/3 | ,up= | —1/v/2 |, and we get the projection matrix
2/3 1/v2
((1/3 0
2/3  1/v2 -1/ /

1/9 2/9  2/9
= | 2/9 17/18 -1/18
2/9 —1/18 17/18
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Then Pv =

1/3
e ] |
1/6
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1/3

Then Pv = | 7/6 |. We can check our work (in part) by determining whether the
1/6
2/3
difference v — Pv = -1/6 is orthogonal to both v and vo.
-1/6
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