Review of Chapter 5, part 1

Daniel H. Luecking

19 March 2024

If ${\bf x}$ and ${\bf y} \in \mathbb{R}^n$ then the scalar product of ${\bf x}$ and ${\bf y}$ is ${\bf x}^T {\bf y}$

If ${\bf x}$ and ${\bf y} \in \mathbb{R}^n$ then the scalar product of ${\bf x}$ and ${\bf y}$ is ${\bf x}^T {\bf y}$

In terms of the coordinates, if
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 and $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$, then
 $\mathbf{x}^T \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \mathbf{y}^T \mathbf{x}.$

If \mathbf{x} and $\mathbf{y} \in \mathbb{R}^n$ then the scalar product of \mathbf{x} and \mathbf{y} is $\mathbf{x}^T \mathbf{y}$

In terms of the coordinates, if
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 and $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$, then
 $\mathbf{x}^T \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \mathbf{y}^T \mathbf{x}.$

Definition (Norm)

We write $\|\mathbf{x}\| = (\mathbf{x}^T \mathbf{x})^{1/2}$ and call this the norm of \mathbf{x} .

If \mathbf{x} and $\mathbf{y} \in \mathbb{R}^n$ then the scalar product of \mathbf{x} and \mathbf{y} is $\mathbf{x}^T \mathbf{y}$

In terms of the coordinates, if
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 and $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$, then
 $\mathbf{x}^T \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \mathbf{y}^T \mathbf{x}.$

Definition (Norm)

We write $\|\mathbf{x}\| = (\mathbf{x}^T \mathbf{x})^{1/2}$ and call this the *norm of* \mathbf{x} .

In terms of coordinates $\|\mathbf{x}\| = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$.

If \mathbf{x} and $\mathbf{y} \in \mathbb{R}^n$ then the scalar product of \mathbf{x} and \mathbf{y} is $\mathbf{x}^T \mathbf{y}$

In terms of the coordinates, if
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 and $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$, then
 $\mathbf{x}^T \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \mathbf{y}^T \mathbf{x}.$

Definition (Norm)

We write $\|\mathbf{x}\| = (\mathbf{x}^T \mathbf{x})^{1/2}$ and call this the *norm of* \mathbf{x} .

In terms of coordinates $\|\mathbf{x}\| = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$.

1. The scalar product of $\alpha \mathbf{x}$ and $\beta \mathbf{y}$ is $(\alpha \mathbf{x})^T (\beta \mathbf{y}) = \alpha \beta(\mathbf{x}^T \mathbf{y})$

If \mathbf{x} and $\mathbf{y} \in \mathbb{R}^n$ then the scalar product of \mathbf{x} and \mathbf{y} is $\mathbf{x}^T \mathbf{y}$

In terms of the coordinates, if
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 and $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$, then
 $\mathbf{x}^T \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \mathbf{y}^T \mathbf{x}.$

Definition (Norm)

We write $\|\mathbf{x}\| = (\mathbf{x}^T \mathbf{x})^{1/2}$ and call this the *norm of* \mathbf{x} .

In terms of coordinates $\|\mathbf{x}\| = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$.

1. The scalar product of $\alpha \mathbf{x}$ and $\beta \mathbf{y}$ is $(\alpha \mathbf{x})^T (\beta \mathbf{y}) = \alpha \beta(\mathbf{x}^T \mathbf{y})$

2. The norm of $\alpha \mathbf{x}$ is $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$. Note that if $\alpha = 1/\|\mathbf{x}\|$ the $\|\alpha \mathbf{x}\| = 1$.

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ or \mathbb{R}^3 . Suppose $\|\mathbf{x}\| \neq 0$ and $\|\mathbf{y}\| \neq 0$. Let θ be the angle between \mathbf{x} and \mathbf{y} with $0 \leq \theta \leq 180^{\circ}$. Then

$$\cos \theta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ or \mathbb{R}^3 . Suppose $\|\mathbf{x}\| \neq 0$ and $\|\mathbf{y}\| \neq 0$. Let θ be the angle between \mathbf{x} and \mathbf{y} with $0 \leq \theta \leq 180^{\circ}$. Then

$$\cos \theta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$

Theorem (The Cauchy-Schwarz Inequality)

If \mathbf{x} and \mathbf{y} are vectors in \mathbb{R}^n , then $|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}|| \, ||\mathbf{y}||$.

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ or \mathbb{R}^3 . Suppose $\|\mathbf{x}\| \neq 0$ and $\|\mathbf{y}\| \neq 0$. Let θ be the angle between \mathbf{x} and \mathbf{y} with $0 \leq \theta \leq 180^{\circ}$. Then

$$\cos \theta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$

Theorem (The Cauchy-Schwarz Inequality)

If \mathbf{x} and \mathbf{y} are vectors in \mathbb{R}^n , then $|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$.

Definition (Orthogonal)

If x and y are in \mathbb{R}^n , we say that x is orthogonal to y if $\mathbf{x}^T \mathbf{y} = 0$. We denote this by writing $\mathbf{x} \perp \mathbf{y}$.

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ or \mathbb{R}^3 . Suppose $\|\mathbf{x}\| \neq 0$ and $\|\mathbf{y}\| \neq 0$. Let θ be the angle between \mathbf{x} and \mathbf{y} with $0 \leq \theta \leq 180^{\circ}$. Then

$$\cos \theta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$

Theorem (The Cauchy-Schwarz Inequality)

If \mathbf{x} and \mathbf{y} are vectors in \mathbb{R}^n , then $|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$.

Definition (Orthogonal)

If x and y are in \mathbb{R}^n , we say that x is orthogonal to y if $\mathbf{x}^T \mathbf{y} = 0$. We denote this by writing $\mathbf{x} \perp \mathbf{y}$.

1. If $\mathbf{x} \in \mathbb{R}^n$ then the set of vectors orthogonal to \mathbf{x} is a subspace of \mathbb{R}^n .

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ or \mathbb{R}^3 . Suppose $\|\mathbf{x}\| \neq 0$ and $\|\mathbf{y}\| \neq 0$. Let θ be the angle between \mathbf{x} and \mathbf{y} with $0 \leq \theta \leq 180^{\circ}$. Then

$$\cos \theta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$

Theorem (The Cauchy-Schwarz Inequality)

If \mathbf{x} and \mathbf{y} are vectors in \mathbb{R}^n , then $|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$.

Definition (Orthogonal)

If x and y are in \mathbb{R}^n , we say that x is orthogonal to y if $\mathbf{x}^T \mathbf{y} = 0$. We denote this by writing $\mathbf{x} \perp \mathbf{y}$.

- 1. If $\mathbf{x} \in \mathbb{R}^n$ then the set of vectors orthogonal to \mathbf{x} is a subspace of \mathbb{R}^n .
- 2. $\mathbf{x} \perp \mathbf{x}$ if and only if $\mathbf{x} = \mathbf{0}$.

Example: find a nonzero vector orthogonal to both
$$\mathbf{a}_1 = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$$
 and $\begin{pmatrix} -1 \end{pmatrix}$

$$\mathbf{a}_2 = \left(\begin{array}{c} 2\\ -1 \end{array}\right).$$

Example: find a nonzero vector orthogonal to both
$$\mathbf{a}_1 = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$$
 and $\begin{pmatrix} -1 \end{pmatrix}$

$$\mathbf{a}_2 = \begin{bmatrix} 2\\ 2\\ -1 \end{bmatrix}$$
. Solution: solve the system $\mathbf{a}_1^T \mathbf{x} = 0$, $\mathbf{a}_2^T \mathbf{x} = 0$:

Example: find a nonzero vector orthogonal to both $\mathbf{a}_1 = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ and

$$\mathbf{a}_2 = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$$
. Solution: solve the system $\mathbf{a}_1^T \mathbf{x} = 0$, $\mathbf{a}_2^T \mathbf{x} = 0$: This system is

equivalent to $A\mathbf{x} = \mathbf{0}$ where $A = \begin{pmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \end{pmatrix}$. We solve that by row-reducing A:

$$\left(\begin{array}{rrr}1 & -1 & 3\\ -1 & 2 & -1\end{array}\right) \xrightarrow{\text{2EROs}} \left(\begin{array}{rrr}1 & 0 & 5\\ 0 & 1 & 2\end{array}\right)$$

Example: find a nonzero vector orthogonal to both $\mathbf{a}_1 = \left(\begin{array}{c} 1\\ -1\\ 3 \end{array} \right)$ and

 $\mathbf{a}_2 = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$. Solution: solve the system $\mathbf{a}_1^T \mathbf{x} = 0$, $\mathbf{a}_2^T \mathbf{x} = 0$: This system is

equivalent to $A\mathbf{x} = \mathbf{0}$ where $A = \begin{pmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \end{pmatrix}$. We solve that by row-reducing A:

$$\left(\begin{array}{rrrr}1 & -1 & 3\\ -1 & 2 & -1\end{array}\right) \xrightarrow{\text{2EROs}} \left(\begin{array}{rrrr}1 & 0 & 5\\ 0 & 1 & 2\end{array}\right)$$

Thus, $x_1 = -5x_3$ and $x_2 = -2x_3$ and so the vectors $\begin{pmatrix} -5\alpha \\ -2\alpha \\ \alpha \end{pmatrix}$ are orthogonal to \mathbf{a}_1 and \mathbf{a}_2 , for any choice of α .

Definition (Scalar and vector projections)

If x and y belong to \mathbb{R}^n then: The number $\alpha = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{y}\|}$ is called the *scalar projection of* x *onto* y. The vector $\mathbf{p} = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{y}^T \mathbf{y}}$ is called the *vector projection of* x *onto* y

Definition (Scalar and vector projections)

If x and y belong to \mathbb{R}^n then: The number $\alpha = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{y}\|}$ is called the *scalar projection of* x *onto* y. The vector $\mathbf{p} = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{y}^T \mathbf{y}}$ is called the *vector projection of* x *onto* y

Definition (Orthogonal subspaces)

If V and W are subspaces of \mathbb{R}^n then we say they are *orthogonal subspaces* if every vector in V is orthogonal to every vector in W.

Definition (Scalar and vector projections)

If x and y belong to \mathbb{R}^n then: The number $\alpha = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{y}\|}$ is called the *scalar projection of* x *onto* y. The vector $\mathbf{p} = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{y}^T \mathbf{y}}$ is called the *vector projection of* x *onto* y

Definition (Orthogonal subspaces)

If V and W are subspaces of \mathbb{R}^n then we say they are *orthogonal subspaces* if every vector in V is orthogonal to every vector in W.

Definition (Orthogonal complement)

If S is a subspace of \mathbb{R}^n then the *orthogonal complement of* S is the set of all vectors that are orthogonal to every vector in S. We denote this set S^{\perp} . Formally:

$$S^{\perp} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x}^T \mathbf{y} = 0 \text{ for all } \mathbf{y} \in S \}.$$

1. If V and W are orthogonal subspaces of \mathbb{R}^n then the only vector that belongs to both V and W is **0**.

- 1. If V and W are orthogonal subspaces of \mathbb{R}^n then the only vector that belongs to both V and W is **0**.
- 2. For any subspace S, S^{\perp} is also a subspace.

- 1. If V and W are orthogonal subspaces of \mathbb{R}^n then the only vector that belongs to both V and W is **0**.
- 2. For any subspace S, S^{\perp} is also a subspace.

We have seen that any product like $A\mathbf{x}$ is a linear combination of the columns of A.

- 1. If V and W are orthogonal subspaces of \mathbb{R}^n then the only vector that belongs to both V and W is **0**.
- 2. For any subspace S, S^{\perp} is also a subspace.

We have seen that any product like $A{\bf x}$ is a linear combination of the columns of A. If A and $n\times k$ matrix, we define

$$\mathcal{R}(A) = \{ \mathbf{b} \in \mathbb{R}^n \mid \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^k \}$$

- 1. If V and W are orthogonal subspaces of \mathbb{R}^n then the only vector that belongs to both V and W is **0**.
- 2. For any subspace S, S^{\perp} is also a subspace.

We have seen that any product like $A{\bf x}$ is a linear combination of the columns of A. If A and $n\times k$ matrix, we define

$$\mathcal{R}(A) = \{ \mathbf{b} \in \mathbb{R}^n \mid \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^k \}$$

This is the column space of A.

- 1. If V and W are orthogonal subspaces of \mathbb{R}^n then the only vector that belongs to both V and W is **0**.
- 2. For any subspace S, S^{\perp} is also a subspace.

We have seen that any product like $A{\bf x}$ is a linear combination of the columns of A. If A and $n\times k$ matrix, we define

$$\mathcal{R}(A) = \{ \mathbf{b} \in \mathbb{R}^n \mid \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^k \}$$

This is the column space of A.

What is $\mathcal{R}(A)^{\perp}$?

- 1. If V and W are orthogonal subspaces of \mathbb{R}^n then the only vector that belongs to both V and W is **0**.
- 2. For any subspace S, S^{\perp} is also a subspace.

We have seen that any product like $A{\bf x}$ is a linear combination of the columns of A. If A and $n\times k$ matrix, we define

$$\mathcal{R}(A) = \{ \mathbf{b} \in \mathbb{R}^n \mid \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^k \}$$

This is the column space of A.

What is $\mathcal{R}(A)^{\perp}$?

The solution space of a homogeneous $k \times n$ system of linear equations is a subspace of \mathbb{R}^n . It is also the nullspace $\mathcal{N}(A)$ if A is the system matrix.

- 1. If V and W are orthogonal subspaces of \mathbb{R}^n then the only vector that belongs to both V and W is **0**.
- 2. For any subspace S, S^{\perp} is also a subspace.

We have seen that any product like $A{\bf x}$ is a linear combination of the columns of A. If A and $n\times k$ matrix, we define

$$\mathcal{R}(A) = \{ \mathbf{b} \in \mathbb{R}^n \mid \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^k \}$$

This is the column space of A.

What is $\mathcal{R}(A)^{\perp}$?

The solution space of a homogeneous $k \times n$ system of linear equations is a subspace of \mathbb{R}^n . It is also the nullspace $\mathcal{N}(A)$ if A is the system matrix.

What is $\mathcal{N}(A)^{\perp}$?

Theorem (Orthogonal complements of matrix spaces)

 $\mathcal{R}(A)^{\perp} = \mathcal{N}(A^T) \, \text{ and } \, \mathcal{N}(A)^{\perp} = \mathcal{R}(A^T).$

Theorem (Orthogonal complements of matrix spaces)

 $\mathcal{R}(A)^{\perp} = \mathcal{N}(A^T) \, \text{ and } \, \mathcal{N}(A)^{\perp} = \mathcal{R}(A^T).$

Theorem (Dimension sum)

If S is a subspace of \mathbb{R}^n then dim $S + \dim S^{\perp} = n$. Furthermore, if $\{\mathbf{x}_1, \ldots, \mathbf{x}_r\}$ is a basis for S and $\{\mathbf{x}_{r+1}, \ldots, \mathbf{x}_n\}$ is a basis for S^{\perp} , then $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$ is a basis for \mathbb{R}^n .

Theorem (Orthogonal decomposition)

If S is a subspace of \mathbb{R}^n then every vector \mathbf{x} in \mathbb{R}^n can be written uniquely as a sum $\mathbf{x} = \mathbf{u} + \mathbf{v}$ with $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$.

Theorem (The double ot)

If S is a subspace of \mathbb{R}^n then $(S^{\perp})^{\perp} = S$.

Application: for which vectors \mathbf{b} does the equation $A\mathbf{x} = \mathbf{b}$ have a solution?

Application: for which vectors \mathbf{b} does the equation $A\mathbf{x} = \mathbf{b}$ have a solution? The existence of \mathbf{x} such that $A\mathbf{x} = \mathbf{b}$ means that \mathbf{b} is in the column space of A.

Application: for which vectors **b** does the equation $A\mathbf{x} = \mathbf{b}$ have a solution? The existence of **x** such that $A\mathbf{x} = \mathbf{b}$ means that **b** is in the column space of A. By the above, **b** must be orthogonal to the null space of A^T .

Application: for which vectors **b** does the equation $A\mathbf{x} = \mathbf{b}$ have a solution? The existence of **x** such that $A\mathbf{x} = \mathbf{b}$ means that **b** is in the column space of A. By the above, **b** must be orthogonal to the null space of A^T . If we find a basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ for the null space of A^T , then the condition for $A\mathbf{x} = \mathbf{b}$ to have a solution is that $\mathbf{v}_1^T \mathbf{b} = 0, \ldots, \mathbf{v}_k^T \mathbf{b} = 0$.

Example: For what vectors \mathbf{b} does the following have a solution?

 $2x_1 + 2x_2 + 4x_3 = b_1$ $x_1 + + x_3 = b_2$ $x_2 + x_3 = b_3$ Application: for which vectors **b** does the equation $A\mathbf{x} = \mathbf{b}$ have a solution? The existence of **x** such that $A\mathbf{x} = \mathbf{b}$ means that **b** is in the column space of A. By the above, **b** must be orthogonal to the null space of A^T . If we find a basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ for the null space of A^T , then the condition for $A\mathbf{x} = \mathbf{b}$ to have a solution is that $\mathbf{v}_1^T \mathbf{b} = 0, \ldots, \mathbf{v}_k^T \mathbf{b} = 0$.

Example: For what vectors \mathbf{b} does the following have a solution?

$$2x_1 + 2x_2 + 4x_3 = b_1$$

$$x_1 + + x_3 = b_2$$

$$x_2 + x_3 = b_3$$

Take the system matrix A, transpose it, and find the null space of A^T

Application: for which vectors **b** does the equation $A\mathbf{x} = \mathbf{b}$ have a solution? The existence of **x** such that $A\mathbf{x} = \mathbf{b}$ means that **b** is in the column space of A. By the above, **b** must be orthogonal to the null space of A^T . If we find a basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ for the null space of A^T , then the condition for $A\mathbf{x} = \mathbf{b}$ to have a solution is that $\mathbf{v}_1^T \mathbf{b} = 0, \ldots, \mathbf{v}_k^T \mathbf{b} = 0$.

Example: For what vectors \mathbf{b} does the following have a solution?

$$2x_1 + 2x_2 + 4x_3 = b_1$$

$$x_1 + + x_3 = b_2$$

$$x_2 + x_3 = b_3$$

Take the system matrix A, transpose it, and find the null space of A^T

$$\begin{pmatrix} 2 & 1 & 0 \\ 2 & 0 & 1 \\ 4 & 1 & 1 \end{pmatrix} \xrightarrow{6 \text{ EROs}} \begin{pmatrix} 1 & 0 & 1/2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{i.e.} \quad \begin{cases} x_1 + (1/2)x_3 = 0 \\ x_2 - x_3 = 0 \end{cases}$$

Then
$$\mathcal{N}(A^T)$$
 is spanned by one vector $\begin{pmatrix} -1/2 \\ 1 \\ 1 \end{pmatrix}$.

$$\begin{pmatrix} -1/2 & 1 & 1 \end{pmatrix}$$
 b = $-(1/2)b_1 + b_2 + b_3 = 0$

$$\begin{pmatrix} -1/2 & 1 & 1 \end{pmatrix}$$
 b = $-(1/2)b_1 + b_2 + b_3 = 0$

Another application:

If we have an inconsistent equation $A\mathbf{x} = \mathbf{b}$ (i.e., one which has no solution), we can multiply it by A^T and we get $A^T A \mathbf{x} = A^T \mathbf{b} \dots$

$$\begin{pmatrix} -1/2 & 1 & 1 \end{pmatrix}$$
 b = $-(1/2)b_1 + b_2 + b_3 = 0$

Another application:

If we have an inconsistent equation $A\mathbf{x} = \mathbf{b}$ (i.e., one which has no solution), we can multiply it by A^T and we get $A^T A \mathbf{x} = A^T \mathbf{b} \dots$ which must have a solution.

$$\begin{pmatrix} -1/2 & 1 & 1 \end{pmatrix}$$
 b = $-(1/2)b_1 + b_2 + b_3 = 0$

Another application:

If we have an inconsistent equation $A\mathbf{x} = \mathbf{b}$ (i.e., one which has no solution), we can multiply it by A^T and we get $A^T A \mathbf{x} = A^T \mathbf{b} \dots$ which must have a solution. That solution $\hat{\mathbf{x}}$ has the property that $\mathbf{b} - A\hat{\mathbf{x}}$ is orthogonal to the column space of A and has the smallest norm among all \mathbf{x} in \mathbb{R}^n .

$$\begin{pmatrix} -1/2 & 1 & 1 \end{pmatrix}$$
 b = $-(1/2)b_1 + b_2 + b_3 = 0$

Another application:

If we have an inconsistent equation $A\mathbf{x} = \mathbf{b}$ (i.e., one which has no solution), we can multiply it by A^T and we get $A^T A \mathbf{x} = A^T \mathbf{b} \dots$ which must have a solution. That solution $\hat{\mathbf{x}}$ has the property that $\mathbf{b} - A\hat{\mathbf{x}}$ is orthogonal to the column space of A and has the smallest norm among all \mathbf{x} in \mathbb{R}^n .

This vector $\hat{\mathbf{x}}$ is called the *least squares solution* to $A\mathbf{x} = \mathbf{b}$.

Find the least squares solution of the following system:

$$\left(\begin{array}{rrr}1 & 1\\ -2 & 3\\ 2 & -1\end{array}\right) \left(\begin{array}{r}x_1\\ x_2\end{array}\right) = \left(\begin{array}{r}3\\ 1\\ 2\end{array}\right)$$

Find the least squares solution of the following system:

$$\left(\begin{array}{rrr}1 & 1\\ -2 & 3\\ 2 & -1\end{array}\right) \left(\begin{array}{r}x_1\\ x_2\end{array}\right) = \left(\begin{array}{r}3\\ 1\\ 2\end{array}\right)$$

Multiplying by the transpose gives

$$\left(\begin{array}{cc} 9 & -7 \\ -7 & 11 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 5 \\ 4 \end{array}\right)$$

Find the least squares solution of the following system:

$$\left(\begin{array}{rrr}1 & 1\\ -2 & 3\\ 2 & -1\end{array}\right)\left(\begin{array}{r}x_1\\ x_2\end{array}\right) = \left(\begin{array}{r}3\\ 1\\ 2\end{array}\right)$$

Multiplying by the transpose gives

$$\begin{pmatrix} 9 & -7 \\ -7 & 11 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$$

This has a solution $\hat{\mathbf{x}} = \begin{pmatrix} 83/50 \\ 71/50 \end{pmatrix} = \begin{pmatrix} 1.66 \\ 1.42 \end{pmatrix}$.

$$A\hat{\mathbf{x}} = \left(\begin{array}{c} 3.08\\0.94\\1.9\end{array}\right)$$

these values differ from $(3,1,2)^T$ by $(-0.08,0.06,0.1)^T$ which has norm $\sqrt{0.02}\approx 0.1414$

$$A\hat{\mathbf{x}} = \left(\begin{array}{c} 3.08\\0.94\\1.9\end{array}\right)$$

these values differ from $(3,1,2)^T$ by $(-0.08,0.06,0.1)^T$ which has norm $\sqrt{0.02}\approx 0.1414$

In any problem $A\mathbf{x} = \mathbf{b}$, the difference $r(\mathbf{x}) = \mathbf{b} - A\mathbf{x}$ is called the *residual vector* assosiated to \mathbf{x} .

$$A\hat{\mathbf{x}} = \left(\begin{array}{c} 3.08\\0.94\\1.9\end{array}\right)$$

these values differ from $(3,1,2)^T$ by $(-0.08,0.06,0.1)^T$ which has norm $\sqrt{0.02}\approx 0.1414$

In any problem $A\mathbf{x} = \mathbf{b}$, the difference $r(\mathbf{x}) = \mathbf{b} - A\mathbf{x}$ is called the *residual vector* assosiated to \mathbf{x} . The least squares solution is a vector $\hat{\mathbf{x}}$ that gives the residual vector the smallest possible norm.

Using the method of least squares to get vectors orthogonal to a subspace.

$$A\hat{\mathbf{x}} = \left(\begin{array}{c} 3.08\\0.94\\1.9\end{array}\right)$$

these values differ from $(3,1,2)^T$ by $(-0.08,0.06,0.1)^T$ which has norm $\sqrt{0.02}\approx 0.1414$

In any problem $A\mathbf{x} = \mathbf{b}$, the difference $r(\mathbf{x}) = \mathbf{b} - A\mathbf{x}$ is called the *residual vector* assosiated to \mathbf{x} . The least squares solution is a vector $\hat{\mathbf{x}}$ that gives the residual vector the smallest possible norm.

Using the method of least squares to get vectors orthogonal to a subspace.

If S is a subspace of \mathbb{R}^n and b is a vector in \mathbb{R}^n , we know that there exist unique vectors $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$ such that $\mathbf{b} = \mathbf{u} + \mathbf{v}$.

$$A\hat{\mathbf{x}} = \left(\begin{array}{c} 3.08\\0.94\\1.9\end{array}\right)$$

these values differ from $(3,1,2)^T$ by $(-0.08,0.06,0.1)^T$ which has norm $\sqrt{0.02}\approx 0.1414$

In any problem $A\mathbf{x} = \mathbf{b}$, the difference $r(\mathbf{x}) = \mathbf{b} - A\mathbf{x}$ is called the *residual vector* assosiated to \mathbf{x} . The least squares solution is a vector $\hat{\mathbf{x}}$ that gives the residual vector the smallest possible norm.

Using the method of least squares to get vectors orthogonal to a subspace.

If S is a subspace of \mathbb{R}^n and **b** is a vector in \mathbb{R}^n , we know that there exist unique vectors $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$ such that $\mathbf{b} = \mathbf{u} + \mathbf{v}$. The method of least squares allows us to find them.

If S is $\mathcal{R}(A)$ for some matrix then, by what we have seen, the least squares solution $\hat{\mathbf{x}}$ of $A\mathbf{x}=\mathbf{b}$

If S is $\mathcal{R}(A)$ for some matrix then, by what we have seen, the least squares solution $\hat{\mathbf{x}}$ of $A\mathbf{x} = \mathbf{b}$ (which satisfies $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$) If S is $\mathcal{R}(A)$ for some matrix then, by what we have seen, the least squares solution $\hat{\mathbf{x}}$ of $A\mathbf{x} = \mathbf{b}$ (which satisfies $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$) has the following property: $A \hat{\mathbf{x}}$ is the closest element of $\mathcal{R}(A)$ to \mathbf{b} and the residual vector $\mathbf{b} - A \hat{\mathbf{x}}$ is orthogonal to $\mathcal{R}(A)$. That is $\mathbf{u} = A \hat{\mathbf{x}}$ and $\mathbf{v} = \mathbf{b} - A \hat{\mathbf{x}}$. If S is $\mathcal{R}(A)$ for some matrix then, by what we have seen, the least squares solution $\hat{\mathbf{x}}$ of $A\mathbf{x} = \mathbf{b}$ (which satisfies $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$) has the following property: $A \hat{\mathbf{x}}$ is the closest element of $\mathcal{R}(A)$ to \mathbf{b} and the residual vector $\mathbf{b} - A \hat{\mathbf{x}}$ is orthogonal to $\mathcal{R}(A)$. That is $\mathbf{u} = A \hat{\mathbf{x}}$ and $\mathbf{v} = \mathbf{b} - A \hat{\mathbf{x}}$.

But every subspace S of \mathbb{R}^n is the column space of some matrix: take any basis of S (or any set of vectors whose span is S) and make them the columns of a matrix A. Then $S = \mathcal{R}(A)$.

Example: Let S be the span of $(1,1,2,0)^T$ and $(0,1,2,-2)^T$ and let $\mathbf{b} = (1,1,1,1)^T$. Find the vectors $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$ such that $\mathbf{b} = \mathbf{u} + \mathbf{v}$. If S is $\mathcal{R}(A)$ for some matrix then, by what we have seen, the least squares solution $\hat{\mathbf{x}}$ of $A\mathbf{x} = \mathbf{b}$ (which satisfies $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$) has the following property: $A \hat{\mathbf{x}}$ is the closest element of $\mathcal{R}(A)$ to \mathbf{b} and the residual vector $\mathbf{b} - A \hat{\mathbf{x}}$ is orthogonal to $\mathcal{R}(A)$. That is $\mathbf{u} = A \hat{\mathbf{x}}$ and $\mathbf{v} = \mathbf{b} - A \hat{\mathbf{x}}$.

But every subspace S of \mathbb{R}^n is the column space of some matrix: take any basis of S (or any set of vectors whose span is S) and make them the columns of a matrix A. Then $S = \mathcal{R}(A)$.

Example: Let S be the span of $(1,1,2,0)^T$ and $(0,1,2,-2)^T$ and let $\mathbf{b} = (1,1,1,1)^T$. Find the vectors $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$ such that $\mathbf{b} = \mathbf{u} + \mathbf{v}$.

Now S is the column space of the 4×2 matrix A below and we need the least squares solution of

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 2 & 2 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

Multiplying by ${\cal A}^T$ we get

$$\left(\begin{array}{cc} 6 & 5 \\ 5 & 9 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 4 \\ 1 \end{array}\right)$$

which has solution $\hat{\mathbf{x}} = (31/29, -14/29)^T$.

Multiplying by ${\cal A}^T$ we get

$$\left(\begin{array}{cc} 6 & 5 \\ 5 & 9 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 4 \\ 1 \end{array}\right)$$

which has solution $\hat{\mathbf{x}} = (31/29, -14/29)^T$. Then $\mathbf{u} = A\hat{\mathbf{x}} = (31/29, 17/29, 34/29, 28/29)^T$

Multiplying by A^T we get

$$\left(\begin{array}{cc} 6 & 5 \\ 5 & 9 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 4 \\ 1 \end{array}\right)$$

which has solution $\hat{\mathbf{x}} = (31/29, -14/29)^T$. Then $\mathbf{u} = A\hat{\mathbf{x}} = (31/29, 17/29, 34/29, 28/29)^T$ and $\mathbf{v} = \mathbf{b} - A\hat{\mathbf{x}} = (-2/29, 12/29, -5/29, 1/29)$.

Multiplying by A^T we get

$$\left(\begin{array}{cc} 6 & 5 \\ 5 & 9 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 4 \\ 1 \end{array}\right)$$

which has solution $\hat{\mathbf{x}} = (31/29, -14/29)^T$. Then $\mathbf{u} = A\hat{\mathbf{x}} = (31/29, 17/29, 34/29, 28/29)^T$ and $\mathbf{v} = \mathbf{b} - A\hat{\mathbf{x}} = (-2/29, 12/29, -5/29, 1/29)$.

Definition (Orthogonal/orthonormal set)

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is called *orthogonal* if $\mathbf{v}_i \perp \mathbf{v}_j$ for every $i \neq j$.

Multiplying by A^T we get

$$\left(\begin{array}{cc} 6 & 5 \\ 5 & 9 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 4 \\ 1 \end{array}\right)$$

which has solution $\hat{\mathbf{x}} = (31/29, -14/29)^T$. Then $\mathbf{u} = A\hat{\mathbf{x}} = (31/29, 17/29, 34/29, 28/29)^T$ and $\mathbf{v} = \mathbf{b} - A\hat{\mathbf{x}} = (-2/29, 12/29, -5/29, 1/29)$.

Definition (Orthogonal/orthonormal set)

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is called *orthogonal* if $\mathbf{v}_i \perp \mathbf{v}_j$ for every $i \neq j$. It is called *orthonormal* if it is orthogonal and also $\|\mathbf{v}_j\| = 1$ for every j. Multiplying by ${\cal A}^T$ we get

$$\left(\begin{array}{cc} 6 & 5 \\ 5 & 9 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 4 \\ 1 \end{array}\right)$$

which has solution $\hat{\mathbf{x}} = (31/29, -14/29)^T$. Then $\mathbf{u} = A\hat{\mathbf{x}} = (31/29, 17/29, 34/29, 28/29)^T$ and $\mathbf{v} = \mathbf{b} - A\hat{\mathbf{x}} = (-2/29, 12/29, -5/29, 1/29)$.

Definition (Orthogonal/orthonormal set)

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is called *orthogonal* if $\mathbf{v}_i \perp \mathbf{v}_j$ for every $i \neq j$. It is called *orthonormal* if it is orthogonal and also $\|\mathbf{v}_i\| = 1$ for every j.

If a set of nonzero vectors is orthogonal, we can make it orthonormal simply by multiplying each \mathbf{v}_j by $(1/\|\mathbf{v}_j\|)$.

Multiplying by ${\cal A}^T$ we get

$$\left(\begin{array}{cc} 6 & 5 \\ 5 & 9 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 4 \\ 1 \end{array}\right)$$

which has solution $\hat{\mathbf{x}} = (31/29, -14/29)^T$. Then $\mathbf{u} = A\hat{\mathbf{x}} = (31/29, 17/29, 34/29, 28/29)^T$ and $\mathbf{v} = \mathbf{b} - A\hat{\mathbf{x}} = (-2/29, 12/29, -5/29, 1/29)$.

Definition (Orthogonal/orthonormal set)

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is called *orthogonal* if $\mathbf{v}_i \perp \mathbf{v}_j$ for every $i \neq j$. It is called *orthonormal* if it is orthogonal and also $\|\mathbf{v}_j\| = 1$ for every j.

If a set of nonzero vectors is orthogonal, we can make it orthonormal simply by multiplying each \mathbf{v}_j by $(1/\|\mathbf{v}_j\|)$.

Theorem (Orthogonal \Rightarrow independent)

If a set of nonzero vectors is orthogonal, then it is independent.

Every nonzero subspace of \mathbb{R}^n has a basis that is orthonormal.

Every nonzero subspace of \mathbb{R}^n has a basis that is orthonormal.

Theorem (Formula for the projection)

Let S is a subspace of \mathbb{R}^n and let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ be an orthogonal basis for S. If \mathbf{v} is any vector in \mathbb{R}^n and \mathbf{p} the element of S that is closest to \mathbf{v} , then

$$\mathbf{p} = \sum_{j=1}^r rac{\mathbf{v}^T \mathbf{v}_j}{\mathbf{v}_j^T \mathbf{v}_j} \, \mathbf{v}_j$$

Every nonzero subspace of \mathbb{R}^n has a basis that is orthonormal.

Theorem (Formula for the projection)

Let S is a subspace of \mathbb{R}^n and let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ be an orthogonal basis for S. If \mathbf{v} is any vector in \mathbb{R}^n and \mathbf{p} the element of S that is closest to \mathbf{v} , then

$$\mathbf{p} = \sum_{j=1}^r rac{\mathbf{v}^T \mathbf{v}_j}{\mathbf{v}_j^T \mathbf{v}_j} \, \mathbf{v}_j$$

Notice that each term in the sum $\sum_{j=1}^{r} \frac{\mathbf{v}^T \mathbf{v}_j}{\mathbf{v}_j^T \mathbf{v}_j} \mathbf{v}_j$ has the same formula as the vector projection of \mathbf{v} onto \mathbf{v}_j .

Every nonzero subspace of \mathbb{R}^n has a basis that is orthonormal.

Theorem (Formula for the projection)

Let S is a subspace of \mathbb{R}^n and let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ be an orthogonal basis for S. If \mathbf{v} is any vector in \mathbb{R}^n and \mathbf{p} the element of S that is closest to \mathbf{v} , then

$$\mathbf{p} = \sum_{j=1}^r rac{\mathbf{v}^T \mathbf{v}_j}{\mathbf{v}_j^T \mathbf{v}_j} \, \mathbf{v}_j$$

Notice that each term in the sum $\sum_{j=1}^{r} \frac{\mathbf{v}^T \mathbf{v}_j}{\mathbf{v}_j^T \mathbf{v}_j} \mathbf{v}_j$ has the same formula as the vector projection of \mathbf{v} onto \mathbf{v}_j . We will call \mathbf{p} the projection of \mathbf{v} onto $\operatorname{Span}(\mathbf{v}_1, \dots, \mathbf{v}_r)$.

Definition (Inner product)

If V is a vector space, then an *inner product* is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V a real number, denoted $\langle \mathbf{x}, \mathbf{y} \rangle$, satisfying

Definition (Inner product)

If V is a vector space, then an *inner product* is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V a real number, denoted $\langle \mathbf{x}, \mathbf{y} \rangle$, satisfying

1. $\langle \mathbf{0}, \mathbf{0} \rangle = 0$, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle \mathbf{x}, \mathbf{x} \rangle > 0$.

Definition (Inner product)

If V is a vector space, then an *inner product* is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V a real number, denoted $\langle \mathbf{x}, \mathbf{y} \rangle$, satisfying

- 1. $\langle \mathbf{0}, \mathbf{0} \rangle = 0$, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle \mathbf{x}, \mathbf{x} \rangle > 0$.
- 2. $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$, for every \mathbf{x}, \mathbf{y} in V

Definition (Inner product)

If V is a vector space, then an *inner product* is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V a real number, denoted $\langle \mathbf{x}, \mathbf{y} \rangle$, satisfying

- 1. $\langle \mathbf{0}, \mathbf{0} \rangle = 0$, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle \mathbf{x}, \mathbf{x} \rangle > 0$.
- 2. $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$, for every \mathbf{x}, \mathbf{y} in V
- 3. $\langle \alpha \mathbf{y} + \beta \mathbf{z}, \mathbf{x} \rangle = \alpha \langle \mathbf{y}, \mathbf{x} \rangle + \beta \langle \mathbf{z}, \mathbf{x} \rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R} .

Definition (Inner product)

If V is a vector space, then an *inner product* is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V a real number, denoted $\langle \mathbf{x}, \mathbf{y} \rangle$, satisfying

- 1. $\langle \mathbf{0}, \mathbf{0} \rangle = 0$, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle \mathbf{x}, \mathbf{x} \rangle > 0$.
- 2. $\langle {\bf x}, {\bf y}
 angle = \langle {\bf y}, {\bf x}
 angle$, for every ${\bf x}, {\bf y}$ in V
- 3. $\langle \alpha \mathbf{y} + \beta \mathbf{z}, \mathbf{x} \rangle = \alpha \langle \mathbf{y}, \mathbf{x} \rangle + \beta \langle \mathbf{z}, \mathbf{x} \rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R} .

A vector space with an inner product defined on it is called an *inner product space*. One way to create an inner product is to produce a linear one-to-one correspondence from V to a vector space that already has an inner product. There are many vector spaces with a type of product similar to the scalar product in \mathbb{R}^n .

Definition (Inner product)

If V is a vector space, then an *inner product* is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V a real number, denoted $\langle \mathbf{x}, \mathbf{y} \rangle$, satisfying

- 1. $\langle \mathbf{0}, \mathbf{0} \rangle = 0$, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle \mathbf{x}, \mathbf{x} \rangle > 0$.
- 2. $\langle {\bf x}, {\bf y}
 angle = \langle {\bf y}, {\bf x}
 angle$, for every ${\bf x}, {\bf y}$ in V
- 3. $\langle \alpha \mathbf{y} + \beta \mathbf{z}, \mathbf{x} \rangle = \alpha \langle \mathbf{y}, \mathbf{x} \rangle + \beta \langle \mathbf{z}, \mathbf{x} \rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R} .

A vector space with an inner product defined on it is called an *inner product space*. One way to create an inner product is to produce a linear one-to-one correspondence from V to a vector space that already has an inner product.

 \mathbb{R}^n can have inner products different from the scalar product.

There are many vector spaces with a type of product similar to the scalar product in \mathbb{R}^n .

Definition (Inner product)

If V is a vector space, then an *inner product* is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V a real number, denoted $\langle \mathbf{x}, \mathbf{y} \rangle$, satisfying

- 1. $\langle \mathbf{0}, \mathbf{0} \rangle = 0$, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle \mathbf{x}, \mathbf{x} \rangle > 0$.
- 2. $\langle {\bf x}, {\bf y}
 angle = \langle {\bf y}, {\bf x}
 angle$, for every ${\bf x}, {\bf y}$ in V
- 3. $\langle \alpha \mathbf{y} + \beta \mathbf{z}, \mathbf{x} \rangle = \alpha \langle \mathbf{y}, \mathbf{x} \rangle + \beta \langle \mathbf{z}, \mathbf{x} \rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R} .

A vector space with an inner product defined on it is called an *inner product space*. One way to create an inner product is to produce a linear one-to-one correspondence from V to a vector space that already has an inner product.

 \mathbb{R}^n can have inner products different from the scalar product. If A is any invertible $n\times n$ matrix, then

$$\langle \mathbf{x}, \mathbf{y} \rangle = (A\mathbf{x})^T A \mathbf{y} = \mathbf{x}^T A^T A \mathbf{y}$$

is an example of an inner product.

Definition (Induced norm)

If V is a vector space with an inner product $\langle \mathbf{x}, \mathbf{y} \rangle$, then $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$. This is called the *norm induced by* this inner product.

Definition (Induced norm)

If V is a vector space with an inner product $\langle \mathbf{x}, \mathbf{y} \rangle$, then $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$. This is called the *norm induced by* this inner product.

Definition (Orthogonal)

If V is a vector space with an inner product $\langle \mathbf{x}, \mathbf{y} \rangle$, then we say \mathbf{x} is orthogonal to \mathbf{y} if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$. and we express this by $\mathbf{x} \perp \mathbf{y}$.

Definition (Induced norm)

If V is a vector space with an inner product $\langle \mathbf{x}, \mathbf{y} \rangle$, then $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$. This is called the *norm induced by* this inner product.

Definition (Orthogonal)

If V is a vector space with an inner product $\langle \mathbf{x}, \mathbf{y} \rangle$, then we say \mathbf{x} is orthogonal to \mathbf{y} if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$. and we express this by $\mathbf{x} \perp \mathbf{y}$.

Theorem (Pythagorean Formula)

If $\mathbf{x} \perp \mathbf{y}$ then $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$.

Theorem (Cauchy-Schwarz Inequality)

For any \mathbf{x} and \mathbf{y} in an inner product space,

 $|\left< \mathbf{x}, \mathbf{y} \right>| \leq \|\mathbf{x}\| \, \|\mathbf{y}\|$

For any pair of vectors $\mathbf x$ and $\mathbf y, \, \|\mathbf x+\mathbf y\| \leq \|\mathbf x\|+\|\mathbf y\|.$

For any pair of vectors $\mathbf x$ and $\mathbf y, \, \|\mathbf x+\mathbf y\| \leq \|\mathbf x\|+\|\mathbf y\|.$

This allows us to express the distance between vectors by $d(\mathbf{x},\mathbf{y}) = \|\mathbf{x}-\mathbf{y}\|$

For any pair of vectors $\mathbf x$ and $\mathbf y, \, \|\mathbf x+\mathbf y\| \leq \|\mathbf x\|+\|\mathbf y\|.$

This allows us to express the distance between vectors by $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$ Here is an example of an inner product for \mathcal{P}_3 . Define

$$\langle p,q\rangle = p(0)q(0) + p(1)q(1) + p(-1)q(-1).$$

For any pair of vectors $\mathbf x$ and $\mathbf y, \, \|\mathbf x+\mathbf y\| \leq \|\mathbf x\|+\|\mathbf y\|.$

This allows us to express the distance between vectors by $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$ Here is an example of an inner product for \mathcal{P}_3 . Define

$$\langle p,q\rangle = p(0)q(0) + p(1)q(1) + p(-1)q(-1).$$

In this inner product space, the polynomials x and x^2 are orthogonal to each other. Also the constant polynomial 1 is orthogonal to x but not to x^2 . Exercise: $1 - x^2$ is orthogonal to both x and x^2 .

Definition (Scalar/vector projection)

For vectors \mathbf{x}, \mathbf{y} in $V, \mathbf{y} \neq \mathbf{0}$, the scalar projection of \mathbf{x} onto \mathbf{y} is

$$\alpha = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{y}\|}$$

Definition (Scalar/vector projection)

For vectors \mathbf{x}, \mathbf{y} in $V, \mathbf{y} \neq \mathbf{0}$, the scalar projection of \mathbf{x} onto \mathbf{y} is

$$\alpha = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{y}\|}$$

and the vector projection of ${\bf x}$ onto ${\bf y}$ is

$$\mathbf{p} = lpha rac{1}{\|\mathbf{y}\|} \mathbf{y} = rac{\langle \mathbf{x}, \mathbf{y}
angle}{\langle \mathbf{y}, \mathbf{y}
angle} \mathbf{y}$$

A set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is said to be *orthogonal* if $\mathbf{v}_i \perp \mathbf{v}_j$ for each $i \neq j$. If it is orthogonal and $\|\mathbf{v}_j\| = 1$ for each j, we call it *orthonormal*.

Just as in \mathbb{R}^n we have

1. Every finite dimensional subset of V has an orthonomal basis.

A set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is said to be *orthogonal* if $\mathbf{v}_i \perp \mathbf{v}_j$ for each $i \neq j$. If it is orthogonal and $\|\mathbf{v}_j\| = 1$ for each j, we call it *orthonormal*.

Just as in \mathbb{R}^n we have

- 1. Every finite dimensional subset of V has an orthonomal basis.
- 2. If S is a subspace of V with an orthogonal basis $\{v_1, \ldots, v_r\}$ and x is any vector in V. Then the closest vector in S to x is

$$\mathbf{p} = \sum_{j=1}^r rac{\langle \mathbf{x}, \mathbf{v}_j
angle}{\langle \mathbf{v}_j, \mathbf{v}_j
angle} \mathbf{v}_j$$

and $\mathbf{x} - \mathbf{p}$ is orthogonal to S.

A set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is said to be *orthogonal* if $\mathbf{v}_i \perp \mathbf{v}_j$ for each $i \neq j$. If it is orthogonal and $\|\mathbf{v}_j\| = 1$ for each j, we call it *orthonormal*.

Just as in \mathbb{R}^n we have

- 1. Every finite dimensional subset of V has an orthonomal basis.
- 2. If S is a subspace of V with an orthogonal basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ and \mathbf{x} is any vector in V. Then the closest vector in S to \mathbf{x} is

$$\mathbf{p} = \sum_{j=1}^r rac{\langle \mathbf{x}, \mathbf{v}_j
angle}{\langle \mathbf{v}_j, \mathbf{v}_j
angle} \mathbf{v}_j$$

and $\mathbf{x} - \mathbf{p}$ is orthogonal to S.

3. If $\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$ an orthonormal basis for S then $\mathbf{p} = \sum_{j=1}^r \langle \mathbf{x}, \mathbf{u}_j \rangle \mathbf{u}_j$

A set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is said to be *orthogonal* if $\mathbf{v}_i \perp \mathbf{v}_j$ for each $i \neq j$. If it is orthogonal and $\|\mathbf{v}_j\| = 1$ for each j, we call it *orthonormal*.

Just as in \mathbb{R}^n we have

- 1. Every finite dimensional subset of V has an orthonomal basis.
- 2. If S is a subspace of V with an orthogonal basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ and \mathbf{x} is any vector in V. Then the closest vector in S to \mathbf{x} is

$$\mathbf{p} = \sum_{j=1}^r rac{\langle \mathbf{x}, \mathbf{v}_j
angle}{\langle \mathbf{v}_j, \mathbf{v}_j
angle} \mathbf{v}_j$$

and $\mathbf{x} - \mathbf{p}$ is orthogonal to S.

- 3. If $\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$ an orthonormal basis for S then $\mathbf{p} = \sum_{j=1}^r \langle \mathbf{x}, \mathbf{u}_j \rangle \mathbf{u}_j$
- 4. Every orthogonal set of nonzero vectors is independent.

In this discussion, all vectors will be in \mathbb{R}^n for some n. Orthogonality will mean $\mathbf{x}^T \mathbf{y} = 0$.

In this discussion, all vectors will be in \mathbb{R}^n for some n. Orthogonality will mean $\mathbf{x}^T \mathbf{y} = 0$.

If A is an $n \times k$ matrix with orthonormal columns, then $k \le n$ because the columns are independent so there can't be more than n of them.

In this discussion, all vectors will be in \mathbb{R}^n for some n. Orthogonality will mean $\mathbf{x}^T \mathbf{y} = 0$.

If A is an $n \times k$ matrix with orthonormal columns, then $k \le n$ because the columns are independent so there can't be more than n of them. Also, the rank of A is k and the nullity is 0.

The columns of A being orthonormal means $A^T A = I$, the $k \times k$ identity matrix. The matrix AA^T doesn't have to be the identity unless A is a square matrix. In general, AA^T is the projection matrix for $\mathcal{R}(A)$: AA^T b is the closest vector in $\mathcal{R}(A)$ to b.

In this discussion, all vectors will be in \mathbb{R}^n for some n. Orthogonality will mean $\mathbf{x}^T \mathbf{y} = 0$.

If A is an $n \times k$ matrix with orthonormal columns, then $k \le n$ because the columns are independent so there can't be more than n of them. Also, the rank of A is k and the nullity is 0.

The columns of A being orthonormal means $A^T A = I$, the $k \times k$ identity matrix. The matrix AA^T doesn't have to be the identity unless A is a square matrix. In general, AA^T is the projection matrix for $\mathcal{R}(A)$: AA^T b is the closest vector in $\mathcal{R}(A)$ to b. If it happens that n = k so that A is a square matrix, then $A^T A = I$ tells us that A is invertible and $A^{-1} = A^T$.

In this discussion, all vectors will be in \mathbb{R}^n for some n. Orthogonality will mean $\mathbf{x}^T \mathbf{y} = 0$.

If A is an $n \times k$ matrix with orthonormal columns, then $k \le n$ because the columns are independent so there can't be more than n of them. Also, the rank of A is k and the nullity is 0.

The columns of A being orthonormal means $A^T A = I$, the $k \times k$ identity matrix. The matrix AA^T doesn't have to be the identity unless A is a square matrix. In general, AA^T is the projection matrix for $\mathcal{R}(A)$: AA^T b is the closest vector in $\mathcal{R}(A)$ to b. If it happens that n = k so that A is a square matrix, then $A^T A = I$ tells us that A is invertible and $A^{-1} = A^T$. In this case only, we also have $AA^T = I$ and this tells us that A^T also has orthonormal columns.

An orthogonal matrix is a square matrix with orthonormal columns. Equivalently, an orthogonal matrix A is a square matrix satisfying $A^{-1} = A^T$.

An orthogonal matrix is a square matrix with orthonormal columns. Equivalently, an orthogonal matrix A is a square matrix satisfying $A^{-1} = A^T$.

The product of two (or more) orthogonal matrices is an orthogonal matrices.

An orthogonal matrix is a square matrix with orthonormal columns. Equivalently, an orthogonal matrix A is a square matrix satisfying $A^{-1} = A^T$.

The product of two (or more) orthogonal matrices is an orthogonal matrices.

For an orthonormal basis \mathcal{B} , if Q is the matrix whose columns are the vectors in \mathcal{B} , then Q is the transition matrix from \mathcal{B} to \mathcal{E} and Q^T is the transition matrix from \mathcal{E} to \mathcal{B} .

An orthogonal matrix is a square matrix with orthonormal columns. Equivalently, an orthogonal matrix A is a square matrix satisfying $A^{-1} = A^T$.

The product of two (or more) orthogonal matrices is an orthogonal matrices.

For an orthonormal basis \mathcal{B} , if Q is the matrix whose columns are the vectors in \mathcal{B} , then Q is the transition matrix from \mathcal{B} to \mathcal{E} and Q^T is the transition matrix from \mathcal{E} to \mathcal{B} . The following can be used instead of a transition matrix, and it works for any inner product space:

An orthogonal matrix is a square matrix with orthonormal columns. Equivalently, an orthogonal matrix A is a square matrix satisfying $A^{-1} = A^T$.

The product of two (or more) orthogonal matrices is an orthogonal matrices.

For an orthonormal basis \mathcal{B} , if Q is the matrix whose columns are the vectors in \mathcal{B} , then Q is the transition matrix from \mathcal{B} to \mathcal{E} and Q^T is the transition matrix from \mathcal{E} to \mathcal{B} .

The following can be used instead of a transition matrix, and it works for any inner product space:

Theorem (Coordinates for orthonormal bases)

If $\mathcal{B} = [\mathbf{u}_1, \dots, \mathbf{u}_n]$ is an orthonormal basis in an inner product space V and \mathbf{v} is any vector in V, then

$$\mathbf{v} = \langle \mathbf{v}, \mathbf{u}_1 \rangle \, \mathbf{u}_1 + \langle \mathbf{v}, \mathbf{u}_2 \rangle \, \mathbf{u}_2 + \cdots \langle \mathbf{v}, \mathbf{u}_n \rangle \, \mathbf{u}_n$$

An orthogonal matrix is a square matrix with orthonormal columns. Equivalently, an orthogonal matrix A is a square matrix satisfying $A^{-1} = A^T$.

The product of two (or more) orthogonal matrices is an orthogonal matrices.

For an orthonormal basis \mathcal{B} , if Q is the matrix whose columns are the vectors in \mathcal{B} , then Q is the transition matrix from \mathcal{B} to \mathcal{E} and Q^T is the transition matrix from \mathcal{E} to \mathcal{B} .

The following can be used instead of a transition matrix, and it works for any inner product space:

Theorem (Coordinates for orthonormal bases)

If $\mathcal{B} = [\mathbf{u}_1, \dots, \mathbf{u}_n]$ is an orthonormal basis in an inner product space V and \mathbf{v} is any vector in V, then

$$\mathbf{v} = \langle \mathbf{v}, \mathbf{u}_1 \rangle \, \mathbf{u}_1 + \langle \mathbf{v}, \mathbf{u}_2 \rangle \, \mathbf{u}_2 + \cdots \langle \mathbf{v}, \mathbf{u}_n \rangle \, \mathbf{u}_n$$

As we have seen before, if $\mathbf{v} = c_1 \mathbf{u}_1 + \cdots + c_n \mathbf{u}_n$ then

$$\langle \mathbf{v}, \mathbf{u}_j \rangle = c_1 \langle \mathbf{u}_1, \mathbf{u}_j \rangle + \dots + c_n \langle \mathbf{u}_n, \mathbf{u}_j \rangle = c_j$$

The set
$$\mathcal{B} = \begin{bmatrix} \mathbf{u}_1 = \begin{pmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \end{pmatrix}$$
, $\mathbf{u}_2 = \begin{pmatrix} -\sqrt{2}/2 \\ \sqrt{2}/2 \end{pmatrix} \end{bmatrix}$ is an orthonormal basis in \mathbb{R}^2 .

The set
$$\mathcal{B} = \begin{bmatrix} \mathbf{u}_1 = \begin{pmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} -\sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix} \end{bmatrix}$$
 is an orthonormal basis in \mathbb{R}^2 .
If we take any other vector, for example $\mathbf{x} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$,

The set
$$\mathcal{B} = \begin{bmatrix} \mathbf{u}_1 = \begin{pmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} -\sqrt{2}/2 \\ \sqrt{2}/2 \end{pmatrix} \end{bmatrix}$$
 is an orthonormal basis in \mathbb{R}^2 .
If we take any other vector, for example $\mathbf{x} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$, we can write
 $\mathbf{x} = (\mathbf{x}^T \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{x}^T \mathbf{u}_2)\mathbf{u}_2 = \sqrt{2} \mathbf{u}_1 - 2\sqrt{2} \mathbf{u}_2$.

The set
$$\mathcal{B} = \begin{bmatrix} \mathbf{u}_1 = \begin{pmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} -\sqrt{2}/2 \\ \sqrt{2}/2 \end{pmatrix} \end{bmatrix}$$
 is an orthonormal basis in \mathbb{R}^2 .
If we take any other vector, for example $\mathbf{x} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$, we can write
 $\mathbf{x} = (\mathbf{x}^T \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{x}^T \mathbf{u}_2)\mathbf{u}_2 = \sqrt{2} \mathbf{u}_1 - 2\sqrt{2} \mathbf{u}_2$. That is, $[\mathbf{x}]_{\mathcal{B}} = \begin{pmatrix} \sqrt{2} \\ -2\sqrt{2} \end{pmatrix}$

The set
$$\mathcal{B} = \begin{bmatrix} \mathbf{u}_1 = \begin{pmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} -\sqrt{2}/2 \\ \sqrt{2}/2 \end{pmatrix} \end{bmatrix}$$
 is an orthonormal basis in \mathbb{R}^2 .
If we take any other vector, for example $\mathbf{x} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$, we can write
 $\mathbf{x} = (\mathbf{x}^T \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{x}^T \mathbf{u}_2)\mathbf{u}_2 = \sqrt{2} \mathbf{u}_1 - 2\sqrt{2} \mathbf{u}_2$. That is, $[\mathbf{x}]_{\mathcal{B}} = \begin{pmatrix} \sqrt{2} \\ -2\sqrt{2} \end{pmatrix}$
Moreover, $Q = \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix}$ is an orthogonal matrix

The set
$$\mathcal{B} = \begin{bmatrix} \mathbf{u}_1 = \begin{pmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} -\sqrt{2}/2 \\ \sqrt{2}/2 \end{pmatrix} \end{bmatrix}$$
 is an orthonormal basis in \mathbb{R}^2 .
If we take any other vector, for example $\mathbf{x} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$, we can write
 $\mathbf{x} = (\mathbf{x}^T \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{x}^T \mathbf{u}_2)\mathbf{u}_2 = \sqrt{2} \mathbf{u}_1 - 2\sqrt{2} \mathbf{u}_2$. That is, $[\mathbf{x}]_{\mathcal{B}} = \begin{pmatrix} \sqrt{2} \\ -2\sqrt{2} \end{pmatrix}$
Moreover, $Q = \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix}$ is an orthogonal matrix and
 $Q^T = \begin{pmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ -\sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix}$ is its inverse. Finally, note that $Q^T \mathbf{x} = [\mathbf{x}]_{\mathcal{B}}$

A three-dimensional example:

A three-dimensional example:

Here is an orthogonal set:
$$\mathbf{v}_1 = \begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 1\\ 1\\ -1 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix}$.

A three-dimensional example:

Here is an orthogonal set:
$$\mathbf{v}_1 = \begin{pmatrix} 1\\1\\2 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 1\\1\\-1 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 1\\-1\\0 \end{pmatrix}$. Therefore,
 $\mathcal{B} = \begin{bmatrix} \mathbf{u}_1 = (1/\sqrt{6})\mathbf{v}_1, \mathbf{u}_2 = (1/\sqrt{3})\mathbf{v}_2, \mathbf{u}_3 = (1/\sqrt{2})\mathbf{v}_3 \end{bmatrix}$ is an orthonormal basis and

A three-dimensional example:

Here is an orthogonal set:
$$\mathbf{v}_1 = \begin{pmatrix} 1\\1\\2 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 1\\1\\-1 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 1\\-1\\0 \end{pmatrix}$. Therefore,
 $\mathcal{B} = \begin{bmatrix} \mathbf{u}_1 = (1/\sqrt{6})\mathbf{v}_1, \mathbf{u}_2 = (1/\sqrt{3})\mathbf{v}_2, \mathbf{u}_3 = (1/\sqrt{2})\mathbf{v}_3 \end{bmatrix}$ is an orthonormal basis and

$$Q = \left(\begin{array}{rrrr} 1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \\ 1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2} \\ 2/\sqrt{6} & -1/\sqrt{3} & 0 \end{array}\right)$$

is an orthogonal matrix.

The projection matrix

The projection matrix

Let S be a subspace of \mathbb{R}^n and $\{\mathbf{u}_1, \ldots, \mathbf{u}_r\}$ an orthonormal basis for S.

The projection matrix

Let S be a subspace of \mathbb{R}^n and $\{\mathbf{u}_1, \ldots, \mathbf{u}_r\}$ an orthonormal basis for S. For any vector $\mathbf{b} \in \mathbb{R}^n$ we can get the closest vector to S by solving a least squares problem.

The projection matrix

Let S be a subspace of \mathbb{R}^n and $\{\mathbf{u}_1, \ldots, \mathbf{u}_r\}$ an orthonormal basis for S. For any vector $\mathbf{b} \in \mathbb{R}^n$ we can get the closest vector to S by solving a least squares problem. Recall: If U is the matrix whose columns are $\mathbf{u}_1, \ldots, \mathbf{u}_r$, then we solve $U^T U \mathbf{x} = U^T \mathbf{b}$ to get $\hat{\mathbf{x}}$,

The projection matrix

Let S be a subspace of \mathbb{R}^n and $\{\mathbf{u}_1, \ldots, \mathbf{u}_r\}$ an orthonormal basis for S. For any vector $\mathbf{b} \in \mathbb{R}^n$ we can get the closest vector to S by solving a least squares problem. Recall: If U is the matrix whose columns are $\mathbf{u}_1, \ldots, \mathbf{u}_r$, then we solve $U^T U \mathbf{x} = U^T \mathbf{b}$ to get $\hat{\mathbf{x}}$, and then $U\hat{\mathbf{x}}$ is then the closest vector to \mathbf{b} in the column space of U (which is S).

The projection matrix

Let S be a subspace of \mathbb{R}^n and $\{\mathbf{u}_1, \ldots, \mathbf{u}_r\}$ an orthonormal basis for S. For any vector $\mathbf{b} \in \mathbb{R}^n$ we can get the closest vector to S by solving a least squares problem. Recall: If U is the matrix whose columns are $\mathbf{u}_1, \ldots, \mathbf{u}_r$, then we solve $U^T U \mathbf{x} = U^T \mathbf{b}$ to get $\hat{\mathbf{x}}$, and then $U\hat{\mathbf{x}}$ is then the closest vector to \mathbf{b} in the column space of U (which is S).

But, since U has orthogonal columns, the $U^T U = I$ ($r \times r$) and so the solution of $U^T U \mathbf{x} = U^T \mathbf{b}$ is $\hat{\mathbf{x}} = U^T \mathbf{b}$ and the closest vector in S to **b** is $U \hat{\mathbf{x}} = U U^T \mathbf{b}$.

The projection matrix

Let S be a subspace of \mathbb{R}^n and $\{\mathbf{u}_1, \ldots, \mathbf{u}_r\}$ an orthonormal basis for S. For any vector $\mathbf{b} \in \mathbb{R}^n$ we can get the closest vector to S by solving a least squares problem. Recall: If U is the matrix whose columns are $\mathbf{u}_1, \ldots, \mathbf{u}_r$, then we solve $U^T U \mathbf{x} = U^T \mathbf{b}$ to get $\hat{\mathbf{x}}$, and then $U\hat{\mathbf{x}}$ is then the closest vector to \mathbf{b} in the column space of U (which is S).

But, since U has orthogonal columns, the $U^T U = I$ $(r \times r)$ and so the solution of $U^T U \mathbf{x} = U^T \mathbf{b}$ is $\hat{\mathbf{x}} = U^T \mathbf{b}$ and the closest vector in S to **b** is $U \hat{\mathbf{x}} = U U^T \mathbf{b}$. We call the matrix $P = U U^T$ the *projection matrix*. Here is an example. Find the projection matrix for the span of

$$\mathbf{v}_1 = \left(\begin{array}{c} 1\\2\\2\end{array}\right), \mathbf{v}_2 = \left(\begin{array}{c} 0\\-1\\1\end{array}\right).$$

Here is an example. Find the projection matrix for the span of $\mathbf{v}_1 = \begin{pmatrix} 1\\2\\2 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 0\\-1\\1 \end{pmatrix}$. Use it to find the projection of $\mathbf{v} = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$ onto this span. Here is an example. Find the projection matrix for the span of $\mathbf{v}_1 = \begin{pmatrix} 1\\2\\2 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 0\\-1\\1 \end{pmatrix}$. Use it to find the projection of $\mathbf{v} = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$ onto this span.

These are orthogonal, but not orthonormal, so we normalize them: $\begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$

$$\mathbf{u}_1 = \begin{bmatrix} 1/3\\ 2/3\\ 2/3 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 0\\ -1/\sqrt{2}\\ 1/\sqrt{2} \end{bmatrix}, \text{ and we get the projection matrix}$$

$$P = UU^{T} = \begin{pmatrix} 1/3 & 0\\ 2/3 & -1/\sqrt{2}\\ 2/3 & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 1/3 & 2/3 & 2/3\\ 0 & -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$
$$= \begin{pmatrix} 1/9 & 2/9 & 2/9\\ 2/9 & 17/18 & -1/18\\ 2/9 & -1/18 & 17/18 \end{pmatrix}$$

Then
$$P\mathbf{v} = \begin{pmatrix} 1/3 \\ 7/6 \\ 1/6 \end{pmatrix}$$
.

Then
$$P\mathbf{v} = \begin{pmatrix} 1/3 \\ 7/6 \\ 1/6 \end{pmatrix}$$
. We can check our work (in part) by determining whether the difference $\mathbf{v} - P\mathbf{v} = \begin{pmatrix} 2/3 \\ -1/6 \\ -1/6 \end{pmatrix}$ is orthogonal to both \mathbf{v}_1 and \mathbf{v}_2 .