Review of Chapter 5, part 1

Daniel H. Luecking

19 March 2024

Definition (Scalar product)
If x and $\mathbf{y} \in \mathbb{R}^{n}$ then the scalar product of x and y is $\mathbf{x}^{T} \mathbf{y}$

Definition (Scalar product)

If \mathbf{x} and $\mathbf{y} \in \mathbb{R}^{n}$ then the scalar product of x and y is $\mathbf{x}^{T} \mathbf{y}$
In terms of the coordinates, if $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$ and $\mathbf{y}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right)$, then
$\mathbf{x}^{T} \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\mathbf{y}^{T} \mathbf{x}$.

Definition (Scalar product)

If \mathbf{x} and $\mathbf{y} \in \mathbb{R}^{n}$ then the scalar product of x and y is $\mathbf{x}^{T} \mathbf{y}$
In terms of the coordinates, if $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$ and $\mathbf{y}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right)$, then
$\mathbf{x}^{T} \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\mathbf{y}^{T} \mathbf{x}$.

Definition (Norm)

We write $\|\mathbf{x}\|=\left(\mathbf{x}^{T} \mathbf{x}\right)^{1 / 2}$ and call this the norm of \mathbf{x}.

Definition (Scalar product)

If \mathbf{x} and $\mathbf{y} \in \mathbb{R}^{n}$ then the scalar product of x and y is $\mathbf{x}^{T} \mathbf{y}$
In terms of the coordinates, if $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$ and $\mathbf{y}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right)$, then
$\mathbf{x}^{T} \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\mathbf{y}^{T} \mathbf{x}$.

Definition (Norm)

We write $\|\mathbf{x}\|=\left(\mathbf{x}^{T} \mathbf{x}\right)^{1 / 2}$ and call this the norm of \mathbf{x}.
In terms of coordinates $\|\mathbf{x}\|=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$.

Definition (Scalar product)

If \mathbf{x} and $\mathbf{y} \in \mathbb{R}^{n}$ then the scalar product of x and y is $\mathbf{x}^{T} \mathbf{y}$
In terms of the coordinates, if $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$ and $\mathbf{y}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right)$, then
$\mathbf{x}^{T} \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\mathbf{y}^{T} \mathbf{x}$.

Definition (Norm)

We write $\|\mathbf{x}\|=\left(\mathbf{x}^{T} \mathbf{x}\right)^{1 / 2}$ and call this the norm of \mathbf{x}.
In terms of coordinates $\|\mathbf{x}\|=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$.

1. The scalar product of $\alpha \mathbf{x}$ and $\beta \mathbf{y}$ is $(\alpha \mathbf{x})^{T}(\beta \mathbf{y})=\alpha \beta\left(\mathbf{x}^{T} \mathbf{y}\right)$

Definition (Scalar product)

If \mathbf{x} and $\mathbf{y} \in \mathbb{R}^{n}$ then the scalar product of \mathbf{x} and \mathbf{y} is $\mathbf{x}^{T} \mathbf{y}$
In terms of the coordinates, if $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$ and $\mathbf{y}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right)$, then
$\mathbf{x}^{T} \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\mathbf{y}^{T} \mathbf{x}$.

Definition (Norm)

We write $\|\mathbf{x}\|=\left(\mathbf{x}^{T} \mathbf{x}\right)^{1 / 2}$ and call this the norm of \mathbf{x}.
In terms of coordinates $\|\mathbf{x}\|=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$.

1. The scalar product of $\alpha \mathbf{x}$ and $\beta \mathbf{y}$ is $(\alpha \mathbf{x})^{T}(\beta \mathbf{y})=\alpha \beta\left(\mathbf{x}^{T} \mathbf{y}\right)$
2. The norm of $\alpha \mathbf{x}$ is $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$. Note that if $\alpha=1 /\|\mathbf{x}\|$ the $\|\alpha \mathbf{x}\|=1$.

Theorem (Angle between two vectors)

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$ or \mathbb{R}^{3}. Suppose $\|\mathbf{x}\| \neq 0$ and $\|\mathbf{y}\| \neq 0$. Let θ be the angle between \mathbf{x} and \mathbf{y} with $0 \leq \theta \leq 180^{\circ}$. Then

$$
\cos \theta=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}
$$

Theorem (Angle between two vectors)

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$ or \mathbb{R}^{3}. Suppose $\|\mathbf{x}\| \neq 0$ and $\|\mathbf{y}\| \neq 0$. Let θ be the angle between \mathbf{x} and \mathbf{y} with $0 \leq \theta \leq 180^{\circ}$. Then

$$
\cos \theta=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}
$$

Theorem (The Cauchy-Schwarz Inequality)

If \mathbf{x} and \mathbf{y} are vectors in \mathbb{R}^{n}, then $\left|\mathbf{x}^{T} \mathbf{y}\right| \leq\|\mathbf{x}\|\|\mathbf{y}\|$.

Theorem (Angle between two vectors)

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$ or \mathbb{R}^{3}. Suppose $\|\mathbf{x}\| \neq 0$ and $\|\mathbf{y}\| \neq 0$. Let θ be the angle between \mathbf{x} and \mathbf{y} with $0 \leq \theta \leq 180^{\circ}$. Then

$$
\cos \theta=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}
$$

Theorem (The Cauchy-Schwarz Inequality)

If \mathbf{x} and \mathbf{y} are vectors in \mathbb{R}^{n}, then $\left|\mathbf{x}^{T} \mathbf{y}\right| \leq\|\mathbf{x}\|\|\mathbf{y}\|$.

Definition (Orthogonal)

If \mathbf{x} and \mathbf{y} are in \mathbb{R}^{n}, we say that \mathbf{x} is orthogonal to \mathbf{y} if $\mathbf{x}^{T} \mathbf{y}=0$. We denote this by writing $\mathbf{x} \perp \mathbf{y}$.

Theorem (Angle between two vectors)

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$ or \mathbb{R}^{3}. Suppose $\|\mathbf{x}\| \neq 0$ and $\|\mathbf{y}\| \neq 0$. Let θ be the angle between \mathbf{x} and \mathbf{y} with $0 \leq \theta \leq 180^{\circ}$. Then

$$
\cos \theta=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}
$$

Theorem (The Cauchy-Schwarz Inequality)

If \mathbf{x} and \mathbf{y} are vectors in \mathbb{R}^{n}, then $\left|\mathbf{x}^{T} \mathbf{y}\right| \leq\|\mathbf{x}\|\|\mathbf{y}\|$.

Definition (Orthogonal)

If \mathbf{x} and \mathbf{y} are in \mathbb{R}^{n}, we say that \mathbf{x} is orthogonal to \mathbf{y} if $\mathbf{x}^{T} \mathbf{y}=0$. We denote this by writing $\mathbf{x} \perp \mathbf{y}$.

1. If $\mathbf{x} \in \mathbb{R}^{n}$ then the set of vectors orthogonal to \mathbf{x} is a subspace of \mathbb{R}^{n}.

Theorem (Angle between two vectors)

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$ or \mathbb{R}^{3}. Suppose $\|\mathbf{x}\| \neq 0$ and $\|\mathbf{y}\| \neq 0$. Let θ be the angle between \mathbf{x} and \mathbf{y} with $0 \leq \theta \leq 180^{\circ}$. Then

$$
\cos \theta=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}
$$

Theorem (The Cauchy-Schwarz Inequality)

If \mathbf{x} and \mathbf{y} are vectors in \mathbb{R}^{n}, then $\left|\mathbf{x}^{T} \mathbf{y}\right| \leq\|\mathbf{x}\|\|\mathbf{y}\|$.

Definition (Orthogonal)

If \mathbf{x} and \mathbf{y} are in \mathbb{R}^{n}, we say that \mathbf{x} is orthogonal to \mathbf{y} if $\mathbf{x}^{T} \mathbf{y}=0$. We denote this by writing $\mathbf{x} \perp \mathbf{y}$.

1. If $\mathbf{x} \in \mathbb{R}^{n}$ then the set of vectors orthogonal to \mathbf{x} is a subspace of \mathbb{R}^{n}.
2. $\mathbf{x} \perp \mathbf{x}$ if and only if $\mathbf{x}=\mathbf{0}$.

Example: find a nonzero vector orthogonal to both $\mathbf{a}_{1}=\left(\begin{array}{r}1 \\ -1 \\ 3\end{array}\right)$ and

$$
\mathbf{a}_{2}=\left(\begin{array}{r}
-1 \\
2 \\
-1
\end{array}\right) .
$$

Example: find a nonzero vector orthogonal to both $\mathbf{a}_{1}=\left(\begin{array}{r}1 \\ -1 \\ 3\end{array}\right)$ and
$\mathbf{a}_{2}=\left(\begin{array}{r}-1 \\ 2 \\ -1\end{array}\right)$. Solution: solve the system $\mathbf{a}_{1}^{T} \mathbf{x}=0, \mathbf{a}_{2}^{T} \mathbf{x}=0$:

Example: find a nonzero vector orthogonal to both $\mathbf{a}_{1}=\left(\begin{array}{r}1 \\ -1 \\ 3\end{array}\right)$ and
$\mathbf{a}_{2}=\left(\begin{array}{r}-1 \\ 2 \\ -1\end{array}\right)$. Solution: solve the system $\mathbf{a}_{1}^{T} \mathbf{x}=0, \mathbf{a}_{2}^{T} \mathbf{x}=0$: This system is equivalent to $A \mathbf{x}=\mathbf{0}$ where $A=\binom{\mathbf{a}_{1}^{T}}{\mathbf{a}_{2}^{T}}$. We solve that by row-reducing A :

$$
\left(\begin{array}{rrr}
1 & -1 & 3 \\
-1 & 2 & -1
\end{array}\right) \xrightarrow{2 \mathrm{EROs}}\left(\begin{array}{lll}
1 & 0 & 5 \\
0 & 1 & 2
\end{array}\right)
$$

Example: find a nonzero vector orthogonal to both $\mathbf{a}_{1}=\left(\begin{array}{r}1 \\ -1 \\ 3\end{array}\right)$ and
$\mathbf{a}_{2}=\left(\begin{array}{r}-1 \\ 2 \\ -1\end{array}\right)$. Solution: solve the system $\mathbf{a}_{1}^{T} \mathbf{x}=0, \mathbf{a}_{2}^{T} \mathbf{x}=0$: This system is equivalent to $A \mathbf{x}=\mathbf{0}$ where $A=\binom{\mathbf{a}_{1}^{T}}{\mathbf{a}_{2}^{T}}$. We solve that by row-reducing A :

$$
\left(\begin{array}{rrr}
1 & -1 & 3 \\
-1 & 2 & -1
\end{array}\right) \xrightarrow{2 \mathrm{EROs}}\left(\begin{array}{lll}
1 & 0 & 5 \\
0 & 1 & 2
\end{array}\right)
$$

Thus, $x_{1}=-5 x_{3}$ and $x_{2}=-2 x_{3}$ and so the vectors $\left(\begin{array}{c}-5 \alpha \\ -2 \alpha \\ \alpha\end{array}\right)$ are orthogonal to \mathbf{a}_{1} and \mathbf{a}_{2}, for any choice of α.

Definition (Scalar and vector projections)

If \mathbf{x} and \mathbf{y} belong to \mathbb{R}^{n} then:
The number $\alpha=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{y}\|}$ is called the scalar projection of \mathbf{x} onto \mathbf{y}.
The vector $\mathbf{p}=\frac{\mathbf{x}^{T} \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} \mathbf{y}$ is called the vector projection of \mathbf{x} onto \mathbf{y}

Definition (Scalar and vector projections)

If \mathbf{x} and \mathbf{y} belong to \mathbb{R}^{n} then:
The number $\alpha=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{y}\|}$ is called the scalar projection of \mathbf{x} onto \mathbf{y}.
The vector $\mathbf{p}=\frac{\mathbf{x}^{T} \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} \mathbf{y}$ is called the vector projection of \mathbf{x} onto \mathbf{y}

Definition (Orthogonal subspaces)

If V and W are subspaces of \mathbb{R}^{n} then we say they are orthogonal subspaces if every vector in V is orthogonal to every vector in W.

Definition (Scalar and vector projections)

If \mathbf{x} and \mathbf{y} belong to \mathbb{R}^{n} then:
The number $\alpha=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{y}\|}$ is called the scalar projection of \mathbf{x} onto \mathbf{y}.
The vector $\mathbf{p}=\frac{\mathbf{x}^{T} \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} \mathbf{y}$ is called the vector projection of \mathbf{x} onto \mathbf{y}

Definition (Orthogonal subspaces)

If V and W are subspaces of \mathbb{R}^{n} then we say they are orthogonal subspaces if every vector in V is orthogonal to every vector in W.

Definition (Orthogonal complement)

If S is a subspace of \mathbb{R}^{n} then the orthogonal complement of S is the set of all vectors that are orthogonal to every vector in S. We denote this set S^{\perp}. Formally:

$$
S^{\perp}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x}^{T} \mathbf{y}=0 \text { for all } \mathbf{y} \in S\right\}
$$

Properties of orthogonal subspaces

Properties of orthogonal subspaces

1. If V and W are orthogonal subspaces of \mathbb{R}^{n} then the only vector that belongs to both V and W is $\mathbf{0}$.

Properties of orthogonal subspaces

1. If V and W are orthogonal subspaces of \mathbb{R}^{n} then the only vector that belongs to both V and W is $\mathbf{0}$.
2. For any subspace S, S^{\perp} is also a subspace.

Properties of orthogonal subspaces

1. If V and W are orthogonal subspaces of \mathbb{R}^{n} then the only vector that belongs to both V and W is $\mathbf{0}$.
2. For any subspace S, S^{\perp} is also a subspace.

We have seen that any product like $A \mathbf{x}$ is a linear combination of the columns of A.

Properties of orthogonal subspaces

1. If V and W are orthogonal subspaces of \mathbb{R}^{n} then the only vector that belongs to both V and W is $\mathbf{0}$.
2. For any subspace S, S^{\perp} is also a subspace.

We have seen that any product like $A \mathbf{x}$ is a linear combination of the columns of A. If A and $n \times k$ matrix, we define

$$
\mathcal{R}(A)=\left\{\mathbf{b} \in \mathbb{R}^{n} \mid \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \in \mathbb{R}^{k}\right\}
$$

Properties of orthogonal subspaces

1. If V and W are orthogonal subspaces of \mathbb{R}^{n} then the only vector that belongs to both V and W is $\mathbf{0}$.
2. For any subspace S, S^{\perp} is also a subspace.

We have seen that any product like $A \mathbf{x}$ is a linear combination of the columns of A. If A and $n \times k$ matrix, we define

$$
\mathcal{R}(A)=\left\{\mathbf{b} \in \mathbb{R}^{n} \mid \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \in \mathbb{R}^{k}\right\}
$$

This is the column space of A.

Properties of orthogonal subspaces

1. If V and W are orthogonal subspaces of \mathbb{R}^{n} then the only vector that belongs to both V and W is $\mathbf{0}$.
2. For any subspace S, S^{\perp} is also a subspace.

We have seen that any product like $A \mathbf{x}$ is a linear combination of the columns of A. If A and $n \times k$ matrix, we define

$$
\mathcal{R}(A)=\left\{\mathbf{b} \in \mathbb{R}^{n} \mid \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \in \mathbb{R}^{k}\right\}
$$

This is the column space of A.
What is $\mathcal{R}(A)^{\perp}$?

Properties of orthogonal subspaces

1. If V and W are orthogonal subspaces of \mathbb{R}^{n} then the only vector that belongs to both V and W is $\mathbf{0}$.
2. For any subspace S, S^{\perp} is also a subspace.

We have seen that any product like $A \mathbf{x}$ is a linear combination of the columns of A. If A and $n \times k$ matrix, we define

$$
\mathcal{R}(A)=\left\{\mathbf{b} \in \mathbb{R}^{n} \mid \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \in \mathbb{R}^{k}\right\}
$$

This is the column space of A.
What is $\mathcal{R}(A)^{\perp}$?
The solution space of a homogeneous $k \times n$ system of linear equations is a subspace of \mathbb{R}^{n}. It is also the nullspace $\mathcal{N}(A)$ if A is the system matrix.

Properties of orthogonal subspaces

1. If V and W are orthogonal subspaces of \mathbb{R}^{n} then the only vector that belongs to both V and W is $\mathbf{0}$.
2. For any subspace S, S^{\perp} is also a subspace.

We have seen that any product like $A \mathbf{x}$ is a linear combination of the columns of A. If A and $n \times k$ matrix, we define

$$
\mathcal{R}(A)=\left\{\mathbf{b} \in \mathbb{R}^{n} \mid \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \in \mathbb{R}^{k}\right\}
$$

This is the column space of A.
What is $\mathcal{R}(A)^{\perp}$?
The solution space of a homogeneous $k \times n$ system of linear equations is a subspace of \mathbb{R}^{n}. It is also the nullspace $\mathcal{N}(A)$ if A is the system matrix.
What is $\mathcal{N}(A)^{\perp}$?

Theorem (Orthogonal complements of matrix spaces)
$\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$ and $\mathcal{N}(A)^{\perp}=\mathcal{R}\left(A^{T}\right)$.

Theorem (Orthogonal complements of matrix spaces)

$\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$ and $\mathcal{N}(A)^{\perp}=\mathcal{R}\left(A^{T}\right)$.

Theorem (Dimension sum)

If S is a subspace of \mathbb{R}^{n} then $\operatorname{dim} S+\operatorname{dim} S^{\perp}=n$. Furthermore, if $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{r}\right\}$ is a basis for S and $\left\{\mathbf{x}_{r+1}, \ldots, \mathbf{x}_{n}\right\}$ is a basis for S^{\perp}, then $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ is a basis for \mathbb{R}^{n}.

Theorem (Orthogonal decomposition)

If S is a subspace of \mathbb{R}^{n} then every vector \mathbf{x} in \mathbb{R}^{n} can be written uniquely as a sum $\mathbf{x}=\mathbf{u}+\mathbf{v}$ with $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$.

Theorem (The double \perp)

If S is a subspace of \mathbb{R}^{n} then $\left(S^{\perp}\right)^{\perp}=S$.

Application: for which vectors \mathbf{b} does the equation $A \mathbf{x}=\mathbf{b}$ have a solution?

Application: for which vectors \mathbf{b} does the equation $A \mathbf{x}=\mathbf{b}$ have a solution? The existence of \mathbf{x} such that $A \mathbf{x}=\mathbf{b}$ means that \mathbf{b} is in the column space of A.

Application: for which vectors \mathbf{b} does the equation $A \mathbf{x}=\mathbf{b}$ have a solution? The existence of \mathbf{x} such that $A \mathbf{x}=\mathbf{b}$ means that \mathbf{b} is in the column space of A. By the above, \mathbf{b} must be orthogonal to the null space of A^{T}.

Application: for which vectors \mathbf{b} does the equation $A \mathbf{x}=\mathbf{b}$ have a solution? The existence of \mathbf{x} such that $A \mathbf{x}=\mathbf{b}$ means that \mathbf{b} is in the column space of A. By the above, \mathbf{b} must be orthogonal to the null space of A^{T}. If we find a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ for the null space of A^{T}, then the condition for $A \mathbf{x}=\mathbf{b}$ to have a solution is that $\mathbf{v}_{1}^{T} \mathbf{b}=0, \ldots, \mathbf{v}_{k}^{T} \mathbf{b}=0$.
Example: For what vectors \mathbf{b} does the following have a solution?

$$
\begin{aligned}
2 x_{1}+2 x_{2}+4 x_{3} & =b_{1} \\
x_{1}++x_{3} & =b_{2} \\
x_{2}+x_{3} & =b_{3}
\end{aligned}
$$

Application: for which vectors \mathbf{b} does the equation $A \mathbf{x}=\mathbf{b}$ have a solution? The existence of \mathbf{x} such that $A \mathbf{x}=\mathbf{b}$ means that \mathbf{b} is in the column space of A. By the above, \mathbf{b} must be orthogonal to the null space of A^{T}. If we find a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ for the null space of A^{T}, then the condition for $A \mathbf{x}=\mathbf{b}$ to have a solution is that $\mathbf{v}_{1}^{T} \mathbf{b}=0, \ldots, \mathbf{v}_{k}^{T} \mathbf{b}=0$.
Example: For what vectors \mathbf{b} does the following have a solution?

$$
\begin{aligned}
2 x_{1}+2 x_{2}+4 x_{3} & =b_{1} \\
x_{1}+x_{3} & =b_{2} \\
x_{2}+x_{3} & =b_{3}
\end{aligned}
$$

Take the system matrix A, transpose it, and find the null space of A^{T}

Application: for which vectors \mathbf{b} does the equation $A \mathbf{x}=\mathbf{b}$ have a solution? The existence of \mathbf{x} such that $A \mathbf{x}=\mathbf{b}$ means that \mathbf{b} is in the column space of A. By the above, \mathbf{b} must be orthogonal to the null space of A^{T}. If we find a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ for the null space of A^{T}, then the condition for $A \mathbf{x}=\mathbf{b}$ to have a solution is that $\mathbf{v}_{1}^{T} \mathbf{b}=0, \ldots, \mathbf{v}_{k}^{T} \mathbf{b}=0$.
Example: For what vectors \mathbf{b} does the following have a solution?

$$
\begin{aligned}
2 x_{1}+2 x_{2}+4 x_{3} & =b_{1} \\
x_{1}+x_{3} & =b_{2} \\
x_{2}+x_{3} & =b_{3}
\end{aligned}
$$

Take the system matrix A, transpose it, and find the null space of A^{T}

$$
\left(\begin{array}{lll}
2 & 1 & 0 \\
2 & 0 & 1 \\
4 & 1 & 1
\end{array}\right) \xrightarrow{6 \mathrm{EROs}}\left(\begin{array}{ccc}
1 & 0 & 1 / 2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) \text { i.e. }\left\{\begin{array}{r}
x_{1}+(1 / 2) x_{3}=0 \\
x_{2}-x_{3}=0
\end{array}\right.
$$

Then $\mathcal{N}\left(A^{T}\right)$ is spanned by one vector $\left(\begin{array}{c}-1 / 2 \\ 1 \\ 1\end{array}\right)$.

Then $\mathcal{N}\left(A^{T}\right)$ is spanned by one vector $\left(\begin{array}{c}-1 / 2 \\ 1 \\ 1\end{array}\right)$. So, we conclude that a solution exists if and only if \mathbf{b} is orthogonal to this:

$$
\left(\begin{array}{ccc}
-1 / 2 & 1 & 1
\end{array}\right) \mathbf{b}=-(1 / 2) b_{1}+b_{2}+b_{3}=0
$$

Then $\mathcal{N}\left(A^{T}\right)$ is spanned by one vector $\left(\begin{array}{c}-1 / 2 \\ 1 \\ 1\end{array}\right)$. So, we conclude that a solution exists if and only if \mathbf{b} is orthogonal to this:

$$
\left(\begin{array}{ccc}
-1 / 2 & 1 & 1
\end{array}\right) \mathbf{b}=-(1 / 2) b_{1}+b_{2}+b_{3}=0
$$

Another application:
If we have an inconsistent equation $A \mathbf{x}=\mathbf{b}$ (i.e., one which has no solution), we can multiply it by A^{T} and we get $A^{T} A \mathbf{x}=A^{T} \mathbf{b} \ldots$

Then $\mathcal{N}\left(A^{T}\right)$ is spanned by one vector $\left(\begin{array}{c}-1 / 2 \\ 1 \\ 1\end{array}\right)$. So, we conclude that a solution exists if and only if \mathbf{b} is orthogonal to this:

$$
\left(\begin{array}{ccc}
-1 / 2 & 1 & 1
\end{array}\right) \mathbf{b}=-(1 / 2) b_{1}+b_{2}+b_{3}=0
$$

Another application:
If we have an inconsistent equation $A \mathbf{x}=\mathbf{b}$ (i.e., one which has no solution), we can multiply it by A^{T} and we get $A^{T} A \mathbf{x}=A^{T} \mathbf{b} \ldots$ which must have a solution.

Then $\mathcal{N}\left(A^{T}\right)$ is spanned by one vector $\left(\begin{array}{c}-1 / 2 \\ 1 \\ 1\end{array}\right)$. So, we conclude that a solution exists if and only if \mathbf{b} is orthogonal to this:

$$
\left(\begin{array}{ccc}
-1 / 2 & 1 & 1
\end{array}\right) \mathbf{b}=-(1 / 2) b_{1}+b_{2}+b_{3}=0
$$

Another application:
If we have an inconsistent equation $A \mathbf{x}=\mathbf{b}$ (i.e., one which has no solution), we can multiply it by A^{T} and we get $A^{T} A \mathbf{x}=A^{T} \mathbf{b} \ldots$ which must have a solution. That solution $\hat{\mathbf{x}}$ has the property that $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to the column space of A and has the smallest norm among all \mathbf{x} in \mathbb{R}^{n}.

Then $\mathcal{N}\left(A^{T}\right)$ is spanned by one vector $\left(\begin{array}{c}-1 / 2 \\ 1 \\ 1\end{array}\right)$. So, we conclude that a solution exists if and only if \mathbf{b} is orthogonal to this:

$$
\left(\begin{array}{ccc}
-1 / 2 & 1 & 1
\end{array}\right) \mathbf{b}=-(1 / 2) b_{1}+b_{2}+b_{3}=0
$$

Another application:
If we have an inconsistent equation $A \mathbf{x}=\mathbf{b}$ (i.e., one which has no solution), we can multiply it by A^{T} and we get $A^{T} A \mathbf{x}=A^{T} \mathbf{b} \ldots$ which must have a solution. That solution $\hat{\mathbf{x}}$ has the property that $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to the column space of A and has the smallest norm among all \mathbf{x} in \mathbb{R}^{n}.
This vector $\hat{\mathbf{x}}$ is called the least squares solution to $A \mathbf{x}=\mathbf{b}$.

An example:

An example:
Find the least squares solution of the following system:

$$
\left(\begin{array}{rr}
1 & 1 \\
-2 & 3 \\
2 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right)
$$

An example:
Find the least squares solution of the following system:

$$
\left(\begin{array}{rr}
1 & 1 \\
-2 & 3 \\
2 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right)
$$

Multiplying by the transpose gives

$$
\left(\begin{array}{rr}
9 & -7 \\
-7 & 11
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{5}{4}
$$

An example:
Find the least squares solution of the following system:

$$
\left(\begin{array}{rr}
1 & 1 \\
-2 & 3 \\
2 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right)
$$

Multiplying by the transpose gives

$$
\left(\begin{array}{rr}
9 & -7 \\
-7 & 11
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{5}{4}
$$

This has a solution $\hat{\mathbf{x}}=\binom{83 / 50}{71 / 50}=\binom{1.66}{1.42}$.

If we want to see how close we have come, we find

$$
A \hat{\mathrm{x}}=\left(\begin{array}{c}
3.08 \\
0.94 \\
1.9
\end{array}\right)
$$

these values differ from $(3,1,2)^{T}$ by $(-0.08,0.06,0.1)^{T}$ which has norm $\sqrt{0.02} \approx 0.1414$

If we want to see how close we have come, we find

$$
A \hat{\mathrm{x}}=\left(\begin{array}{c}
3.08 \\
0.94 \\
1.9
\end{array}\right)
$$

these values differ from $(3,1,2)^{T}$ by $(-0.08,0.06,0.1)^{T}$ which has norm $\sqrt{0.02} \approx 0.1414$
In any problem $A \mathbf{x}=\mathbf{b}$, the difference $r(\mathbf{x})=\mathbf{b}-A \mathbf{x}$ is called the residual vector assosiated to \mathbf{x}.

If we want to see how close we have come, we find

$$
A \hat{\mathrm{x}}=\left(\begin{array}{c}
3.08 \\
0.94 \\
1.9
\end{array}\right)
$$

these values differ from $(3,1,2)^{T}$ by $(-0.08,0.06,0.1)^{T}$ which has norm $\sqrt{0.02} \approx 0.1414$
In any problem $A \mathbf{x}=\mathbf{b}$, the difference $r(\mathbf{x})=\mathbf{b}-A \mathbf{x}$ is called the residual vector assosiated to \mathbf{x}. The least squares solution is a vector $\hat{\mathbf{x}}$ that gives the residual vector the smallest possible norm.
Using the method of least squares to get vectors orthogonal to a subspace.

If we want to see how close we have come, we find

$$
A \hat{\mathrm{x}}=\left(\begin{array}{c}
3.08 \\
0.94 \\
1.9
\end{array}\right)
$$

these values differ from $(3,1,2)^{T}$ by $(-0.08,0.06,0.1)^{T}$ which has norm $\sqrt{0.02} \approx 0.1414$
In any problem $A \mathbf{x}=\mathbf{b}$, the difference $r(\mathbf{x})=\mathbf{b}-A \mathbf{x}$ is called the residual vector assosiated to \mathbf{x}. The least squares solution is a vector $\hat{\mathbf{x}}$ that gives the residual vector the smallest possible norm.
Using the method of least squares to get vectors orthogonal to a subspace.
If S is a subspace of \mathbb{R}^{n} and \mathbf{b} is a vector in \mathbb{R}^{n}, we know that there exist unique vectors $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$ such that $\mathbf{b}=\mathbf{u}+\mathbf{v}$.

If we want to see how close we have come, we find

$$
A \hat{\mathrm{x}}=\left(\begin{array}{c}
3.08 \\
0.94 \\
1.9
\end{array}\right)
$$

these values differ from $(3,1,2)^{T}$ by $(-0.08,0.06,0.1)^{T}$ which has norm $\sqrt{0.02} \approx 0.1414$
In any problem $A \mathbf{x}=\mathbf{b}$, the difference $r(\mathbf{x})=\mathbf{b}-A \mathbf{x}$ is called the residual vector assosiated to \mathbf{x}. The least squares solution is a vector $\hat{\mathbf{x}}$ that gives the residual vector the smallest possible norm.
Using the method of least squares to get vectors orthogonal to a subspace.
If S is a subspace of \mathbb{R}^{n} and \mathbf{b} is a vector in \mathbb{R}^{n}, we know that there exist unique vectors $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$ such that $\mathbf{b}=\mathbf{u}+\mathbf{v}$. The method of least squares allows us to find them.

If S is $\mathcal{R}(A)$ for some matrix then, by what we have seen, the least squares solution $\hat{\mathbf{x}}$ of $A \mathbf{x}=\mathbf{b}$

If S is $\mathcal{R}(A)$ for some matrix then, by what we have seen, the least squares solution $\hat{\mathbf{x}}$ of $A \mathbf{x}=\mathbf{b}$ (which satisfies $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$)

If S is $\mathcal{R}(A)$ for some matrix then, by what we have seen, the least squares solution $\hat{\mathbf{x}}$ of $A \mathbf{x}=\mathbf{b}$ (which satisfies $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$) has the following property: $A \hat{\mathbf{x}}$ is the closest element of $\mathcal{R}(A)$ to \mathbf{b} and the residual vector $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to $\mathcal{R}(A)$. That is $\mathbf{u}=A \hat{\mathbf{x}}$ and $\mathbf{v}=\mathbf{b}-A \hat{\mathbf{x}}$.

If S is $\mathcal{R}(A)$ for some matrix then, by what we have seen, the least squares solution $\hat{\mathbf{x}}$ of $A \mathbf{x}=\mathbf{b}$ (which satisfies $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$) has the following property: $A \hat{\mathbf{x}}$ is the closest element of $\mathcal{R}(A)$ to \mathbf{b} and the residual vector $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to $\mathcal{R}(A)$. That is $\mathbf{u}=A \hat{\mathbf{x}}$ and $\mathbf{v}=\mathbf{b}-A \hat{\mathbf{x}}$.
But every subspace S of \mathbb{R}^{n} is the column space of some matrix: take any basis of S (or any set of vectors whose span is S) and make them the columns of a matrix A. Then $S=\mathcal{R}(A)$.
Example: Let S be the span of $(1,1,2,0)^{T}$ and $(0,1,2,-2)^{T}$ and let $\mathbf{b}=(1,1,1,1)^{T}$. Find the vectors $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$ such that $\mathbf{b}=\mathbf{u}+\mathbf{v}$.

If S is $\mathcal{R}(A)$ for some matrix then, by what we have seen, the least squares solution $\hat{\mathbf{x}}$ of $A \mathbf{x}=\mathbf{b}$ (which satisfies $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$) has the following property: $A \hat{\mathbf{x}}$ is the closest element of $\mathcal{R}(A)$ to \mathbf{b} and the residual vector $\mathbf{b}-A \hat{\mathbf{x}}$ is orthogonal to $\mathcal{R}(A)$. That is $\mathbf{u}=A \hat{\mathbf{x}}$ and $\mathbf{v}=\mathbf{b}-A \hat{\mathbf{x}}$.
But every subspace S of \mathbb{R}^{n} is the column space of some matrix: take any basis of S (or any set of vectors whose span is S) and make them the columns of a matrix A. Then $S=\mathcal{R}(A)$.
Example: Let S be the span of $(1,1,2,0)^{T}$ and $(0,1,2,-2)^{T}$ and let $\mathbf{b}=(1,1,1,1)^{T}$. Find the vectors $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$ such that $\mathbf{b}=\mathbf{u}+\mathbf{v}$.
Now S is the column space of the 4×2 matrix A below and we need the least squares solution of

$$
\left(\begin{array}{rr}
1 & 0 \\
1 & 1 \\
2 & 2 \\
0 & -2
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

Multiplying by A^{T} we get

$$
\left(\begin{array}{ll}
6 & 5 \\
5 & 9
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{4}{1}
$$

which has solution $\hat{\mathbf{x}}=(31 / 29,-14 / 29)^{T}$.

Multiplying by A^{T} we get

$$
\left(\begin{array}{ll}
6 & 5 \\
5 & 9
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{4}{1}
$$

which has solution $\hat{\mathbf{x}}=(31 / 29,-14 / 29)^{T}$. Then $\mathbf{u}=A \hat{\mathbf{x}}=(31 / 29,17 / 29,34 / 29,28 / 29)^{T}$

Multiplying by A^{T} we get

$$
\left(\begin{array}{ll}
6 & 5 \\
5 & 9
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{4}{1}
$$

which has solution $\hat{\mathbf{x}}=(31 / 29,-14 / 29)^{T}$. Then
$\mathbf{u}=A \hat{\mathbf{x}}=(31 / 29,17 / 29,34 / 29,28 / 29)^{T}$ and $\mathbf{v}=\mathbf{b}-A \hat{\mathbf{x}}=(-2 / 29,12 / 29,-5 / 29,1 / 29)$.

Multiplying by A^{T} we get

$$
\left(\begin{array}{ll}
6 & 5 \\
5 & 9
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{4}{1}
$$

which has solution $\hat{\mathbf{x}}=(31 / 29,-14 / 29)^{T}$. Then
$\mathbf{u}=A \hat{\mathbf{x}}=(31 / 29,17 / 29,34 / 29,28 / 29)^{T}$ and
$\mathbf{v}=\mathbf{b}-A \hat{\mathbf{x}}=(-2 / 29,12 / 29,-5 / 29,1 / 29)$.

Definition (Orthogonal/orthonormal set)

A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is called orthogonal if $\mathbf{v}_{i} \perp \mathbf{v}_{j}$ for every $i \neq j$.

Multiplying by A^{T} we get

$$
\left(\begin{array}{ll}
6 & 5 \\
5 & 9
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{4}{1}
$$

which has solution $\hat{\mathbf{x}}=(31 / 29,-14 / 29)^{T}$. Then
$\mathbf{u}=A \hat{\mathbf{x}}=(31 / 29,17 / 29,34 / 29,28 / 29)^{T}$ and
$\mathbf{v}=\mathbf{b}-A \hat{\mathbf{x}}=(-2 / 29,12 / 29,-5 / 29,1 / 29)$.

Definition (Orthogonal/orthonormal set)

A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is called orthogonal if $\mathbf{v}_{i} \perp \mathbf{v}_{j}$ for every $i \neq j$. It is called orthonormal if it is orthogonal and also $\left\|\mathbf{v}_{j}\right\|=1$ for every j.

Multiplying by A^{T} we get

$$
\left(\begin{array}{ll}
6 & 5 \\
5 & 9
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{4}{1}
$$

which has solution $\hat{\mathbf{x}}=(31 / 29,-14 / 29)^{T}$. Then
$\mathbf{u}=A \hat{\mathbf{x}}=(31 / 29,17 / 29,34 / 29,28 / 29)^{T}$ and
$\mathbf{v}=\mathbf{b}-A \hat{\mathbf{x}}=(-2 / 29,12 / 29,-5 / 29,1 / 29)$.

Definition (Orthogonal/orthonormal set)

A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is called orthogonal if $\mathbf{v}_{i} \perp \mathbf{v}_{j}$ for every $i \neq j$. It is called orthonormal if it is orthogonal and also $\left\|\mathbf{v}_{j}\right\|=1$ for every j.

If a set of nonzero vectors is orthogonal, we can make it orthonormal simply by multiplying each \mathbf{v}_{j} by $\left(1 /\left\|\mathbf{v}_{j}\right\|\right)$.

Multiplying by A^{T} we get

$$
\left(\begin{array}{ll}
6 & 5 \\
5 & 9
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{4}{1}
$$

which has solution $\hat{\mathbf{x}}=(31 / 29,-14 / 29)^{T}$. Then
$\mathbf{u}=A \hat{\mathbf{x}}=(31 / 29,17 / 29,34 / 29,28 / 29)^{T}$ and
$\mathbf{v}=\mathbf{b}-A \hat{\mathbf{x}}=(-2 / 29,12 / 29,-5 / 29,1 / 29)$.

Definition (Orthogonal/orthonormal set)

A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is called orthogonal if $\mathbf{v}_{i} \perp \mathbf{v}_{j}$ for every $i \neq j$. It is called orthonormal if it is orthogonal and also $\left\|\mathbf{v}_{j}\right\|=1$ for every j.

If a set of nonzero vectors is orthogonal, we can make it orthonormal simply by multiplying each \mathbf{v}_{j} by $\left(1 /\left\|\mathbf{v}_{j}\right\|\right)$.

Theorem (Orthogonal \Rightarrow independent)

If a set of nonzero vectors is orthogonal, then it is independent.

Theorem (Orthogonal bases)

Every nonzero subspace of \mathbb{R}^{n} has a basis that is orthonormal.

Theorem (Orthogonal bases)

Every nonzero subspace of \mathbb{R}^{n} has a basis that is orthonormal.

Theorem (Formula for the projection)

Let S is a subspace of \mathbb{R}^{n} and let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ be an orthogonal basis for S. If \mathbf{v} is any vector in \mathbb{R}^{n} and \mathbf{p} the element of S that is closest to \mathbf{v}, then

$$
\mathbf{p}=\sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{j}
$$

Theorem (Orthogonal bases)

Every nonzero subspace of \mathbb{R}^{n} has a basis that is orthonormal.

Theorem (Formula for the projection)

Let S is a subspace of \mathbb{R}^{n} and let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ be an orthogonal basis for S. If \mathbf{v} is any vector in \mathbb{R}^{n} and \mathbf{p} the element of S that is closest to \mathbf{v}, then

$$
\mathbf{p}=\sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{j}
$$

Notice that each term in the sum $\sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{j}$ has the same formula as the vector projection of \mathbf{v} onto \mathbf{v}_{j}.

Theorem (Orthogonal bases)

Every nonzero subspace of \mathbb{R}^{n} has a basis that is orthonormal.

Theorem (Formula for the projection)

Let S is a subspace of \mathbb{R}^{n} and let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ be an orthogonal basis for S. If \mathbf{v} is any vector in \mathbb{R}^{n} and \mathbf{p} the element of S that is closest to \mathbf{v}, then

$$
\mathbf{p}=\sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{j}
$$

Notice that each term in the sum $\sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{j}$ has the same formula as the vector projection of \mathbf{v} onto \mathbf{v}_{j}. We will call \mathbf{p} the projection of \mathbf{v} onto $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right)$.

There are many vector spaces with a type of product similar to the scalar product in \mathbb{R}^{n}.

Definition (Inner product)

If V is a vector space, then an inner product is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V a real number, denoted $\langle\mathbf{x}, \mathbf{y}\rangle$, satisfying

There are many vector spaces with a type of product similar to the scalar product in \mathbb{R}^{n}.

Definition (Inner product)

If V is a vector space, then an inner product is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V a real number, denoted $\langle\mathbf{x}, \mathbf{y}\rangle$, satisfying

1. $\langle\mathbf{0}, \mathbf{0}\rangle=0$, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle\mathbf{x}, \mathbf{x}\rangle>0$.

There are many vector spaces with a type of product similar to the scalar product in \mathbb{R}^{n}.

Definition (Inner product)

If V is a vector space, then an inner product is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V a real number, denoted $\langle\mathbf{x}, \mathbf{y}\rangle$, satisfying

1. $\langle\mathbf{0}, \mathbf{0}\rangle=0$, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle\mathbf{x}, \mathbf{x}\rangle>0$.
2. $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$, for every \mathbf{x}, \mathbf{y} in V

There are many vector spaces with a type of product similar to the scalar product in \mathbb{R}^{n}.

Definition (Inner product)

If V is a vector space, then an inner product is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V a real number, denoted $\langle\mathbf{x}, \mathbf{y}\rangle$, satisfying

1. $\langle\mathbf{0}, \mathbf{0}\rangle=0$, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle\mathbf{x}, \mathbf{x}\rangle>0$.
2. $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$, for every \mathbf{x}, \mathbf{y} in V
3. $\langle\alpha \mathbf{y}+\beta \mathbf{z}, \mathbf{x}\rangle=\alpha\langle\mathbf{y}, \mathbf{x}\rangle+\beta\langle\mathbf{z}, \mathbf{x}\rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R}.

There are many vector spaces with a type of product similar to the scalar product in \mathbb{R}^{n}.

Definition (Inner product)

If V is a vector space, then an inner product is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V a real number, denoted $\langle\mathbf{x}, \mathbf{y}\rangle$, satisfying

1. $\langle\mathbf{0}, \mathbf{0}\rangle=0$, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle\mathbf{x}, \mathbf{x}\rangle>0$.
2. $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$, for every \mathbf{x}, \mathbf{y} in V
3. $\langle\alpha \mathbf{y}+\beta \mathbf{z}, \mathbf{x}\rangle=\alpha\langle\mathbf{y}, \mathbf{x}\rangle+\beta\langle\mathbf{z}, \mathbf{x}\rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R}.

A vector space with an inner product defined on it is called an inner product space.
One way to create an inner product is to produce a linear one-to-one correspondence from V to a vector space that already has an inner product.

There are many vector spaces with a type of product similar to the scalar product in \mathbb{R}^{n}.

Definition (Inner product)

If V is a vector space, then an inner product is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V a real number, denoted $\langle\mathbf{x}, \mathbf{y}\rangle$, satisfying

1. $\langle\mathbf{0}, \mathbf{0}\rangle=0$, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle\mathbf{x}, \mathbf{x}\rangle>0$.
2. $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$, for every \mathbf{x}, \mathbf{y} in V
3. $\langle\alpha \mathbf{y}+\beta \mathbf{z}, \mathbf{x}\rangle=\alpha\langle\mathbf{y}, \mathbf{x}\rangle+\beta\langle\mathbf{z}, \mathbf{x}\rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R}.

A vector space with an inner product defined on it is called an inner product space.
One way to create an inner product is to produce a linear one-to-one correspondence from V to a vector space that already has an inner product.
\mathbb{R}^{n} can have inner products different from the scalar product.

There are many vector spaces with a type of product similar to the scalar product in \mathbb{R}^{n}.

Definition (Inner product)

If V is a vector space, then an inner product is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V a real number, denoted $\langle\mathbf{x}, \mathbf{y}\rangle$, satisfying

1. $\langle\mathbf{0}, \mathbf{0}\rangle=0$, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle\mathbf{x}, \mathbf{x}\rangle>0$.
2. $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$, for every \mathbf{x}, \mathbf{y} in V
3. $\langle\alpha \mathbf{y}+\beta \mathbf{z}, \mathbf{x}\rangle=\alpha\langle\mathbf{y}, \mathbf{x}\rangle+\beta\langle\mathbf{z}, \mathbf{x}\rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R}.

A vector space with an inner product defined on it is called an inner product space.
One way to create an inner product is to produce a linear one-to-one correspondence from V to a vector space that already has an inner product.
\mathbb{R}^{n} can have inner products different from the scalar product. If A is any invertible $n \times n$ matrix, then

$$
\langle\mathbf{x}, \mathbf{y}\rangle=(A \mathbf{x})^{T} A \mathbf{y}=\mathbf{x}^{T} A^{T} A \mathbf{y}
$$

is an example of an inner product.

Definition (Induced norm)
If V is a vector space with an inner product $\langle\mathbf{x}, \mathbf{y}\rangle$, then $\|\mathbf{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$. This is called the norm induced by this inner product.

Definition (Induced norm)

If V is a vector space with an inner product $\langle\mathbf{x}, \mathbf{y}\rangle$, then $\|\mathbf{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$. This is called the norm induced by this inner product.

Definition (Orthogonal)

If V is a vector space with an inner product $\langle\mathbf{x}, \mathbf{y}\rangle$, then we say \mathbf{x} is orthogonal to \mathbf{y} if $\langle\mathbf{x}, \mathbf{y}\rangle=0$. and we express this by $\mathbf{x} \perp \mathbf{y}$.

Definition (Induced norm)

If V is a vector space with an inner product $\langle\mathbf{x}, \mathbf{y}\rangle$, then $\|\mathbf{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$. This is called the norm induced by this inner product.

Definition (Orthogonal)

If V is a vector space with an inner product $\langle\mathbf{x}, \mathbf{y}\rangle$, then we say \mathbf{x} is orthogonal to \mathbf{y} if $\langle\mathbf{x}, \mathbf{y}\rangle=0$. and we express this by $\mathbf{x} \perp \mathbf{y}$.

Theorem (Pythagorean Formula)

If $\mathbf{x} \perp \mathbf{y}$ then $\|\mathbf{x}+\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}$.

Theorem (Cauchy-Schwarz Inequality)

For any \mathbf{x} and \mathbf{y} in an inner product space,

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\|
$$

Theorem (Triangle Inequality)

For any pair of vectors \mathbf{x} and $\mathbf{y},\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.

Theorem (Triangle Inequality)

For any pair of vectors \mathbf{x} and $\mathbf{y},\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.
This allows us to express the distance between vectors by $d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$

Theorem (Triangle Inequality)

For any pair of vectors \mathbf{x} and $\mathbf{y},\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.
This allows us to express the distance between vectors by $d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$ Here is an example of an inner product for \mathcal{P}_{3}. Define

$$
\langle p, q\rangle=p(0) q(0)+p(1) q(1)+p(-1) q(-1) .
$$

Theorem (Triangle Inequality)

For any pair of vectors \mathbf{x} and $\mathbf{y},\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.
This allows us to express the distance between vectors by $d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$ Here is an example of an inner product for \mathcal{P}_{3}. Define

$$
\langle p, q\rangle=p(0) q(0)+p(1) q(1)+p(-1) q(-1)
$$

In this inner product space, the polynomials x and x^{2} are orthogonal to each other. Also the constant polynomial 1 is orthogonal to x but not to x^{2}. Exercise: $1-x^{2}$ is orthogonal to both x and x^{2}.

Definition (Scalar/vector projection)

For vectors \mathbf{x}, \mathbf{y} in $V, \mathbf{y} \neq \mathbf{0}$, the scalar projection of \mathbf{x} onto \mathbf{y} is

$$
\alpha=\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{y}\|}
$$

Definition (Scalar/vector projection)

For vectors \mathbf{x}, \mathbf{y} in $V, \mathbf{y} \neq \mathbf{0}$, the scalar projection of \mathbf{x} onto \mathbf{y} is

$$
\alpha=\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{y}\|}
$$

and the vector projection of \mathbf{x} onto \mathbf{y} is

$$
\mathbf{p}=\alpha \frac{1}{\|\mathbf{y}\|} \mathbf{y}=\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\langle\mathbf{y}, \mathbf{y}\rangle} \mathbf{y}
$$

Definition (Orthogonal/orthonormal set)

A set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is said to be orthogonal if $\mathbf{v}_{i} \perp \mathbf{v}_{j}$ for each $i \neq j$. If it is orthogonal and $\left\|\mathbf{v}_{j}\right\|=1$ for each j, we call it orthonormal.

Just as in \mathbb{R}^{n} we have

1. Every finite dimensional subset of V has an orthonomal basis.

Definition (Orthogonal/orthonormal set)

A set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is said to be orthogonal if $\mathbf{v}_{i} \perp \mathbf{v}_{j}$ for each $i \neq j$. If it is orthogonal and $\left\|\mathbf{v}_{j}\right\|=1$ for each j, we call it orthonormal.

Just as in \mathbb{R}^{n} we have

1. Every finite dimensional subset of V has an orthonomal basis.
2. If S is a subspace of V with an orthogonal basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ and \mathbf{x} is any vector in V. Then the closest vector in S to x is

$$
\mathbf{p}=\sum_{j=1}^{r} \frac{\left\langle\mathbf{x}, \mathbf{v}_{j}\right\rangle}{\left\langle\mathbf{v}_{j}, \mathbf{v}_{j}\right\rangle} \mathbf{v}_{j}
$$

and $\mathbf{x}-\mathbf{p}$ is orthogonal to S.

Definition (Orthogonal/orthonormal set)

A set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is said to be orthogonal if $\mathbf{v}_{i} \perp \mathbf{v}_{j}$ for each $i \neq j$. If it is orthogonal and $\left\|\mathbf{v}_{j}\right\|=1$ for each j, we call it orthonormal.

Just as in \mathbb{R}^{n} we have

1. Every finite dimensional subset of V has an orthonomal basis.
2. If S is a subspace of V with an orthogonal basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ and \mathbf{x} is any vector in V. Then the closest vector in S to \mathbf{x} is

$$
\mathbf{p}=\sum_{j=1}^{r} \frac{\left\langle\mathbf{x}, \mathbf{v}_{j}\right\rangle}{\left\langle\mathbf{v}_{j}, \mathbf{v}_{j}\right\rangle} \mathbf{v}_{j}
$$

and $\mathbf{x}-\mathbf{p}$ is orthogonal to S.
3. If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ an orthonormal basis for S then $\mathbf{p}=\sum_{j=1}^{r}\left\langle\mathbf{x}, \mathbf{u}_{j}\right\rangle \mathbf{u}_{j}$

Definition (Orthogonal/orthonormal set)

A set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is said to be orthogonal if $\mathbf{v}_{i} \perp \mathbf{v}_{j}$ for each $i \neq j$. If it is orthogonal and $\left\|\mathbf{v}_{j}\right\|=1$ for each j, we call it orthonormal.

Just as in \mathbb{R}^{n} we have

1. Every finite dimensional subset of V has an orthonomal basis.
2. If S is a subspace of V with an orthogonal basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ and \mathbf{x} is any vector in V. Then the closest vector in S to x is

$$
\mathbf{p}=\sum_{j=1}^{r} \frac{\left\langle\mathbf{x}, \mathbf{v}_{j}\right\rangle}{\left\langle\mathbf{v}_{j}, \mathbf{v}_{j}\right\rangle} \mathbf{v}_{j}
$$

and $\mathbf{x}-\mathbf{p}$ is orthogonal to S.
3. If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ an orthonormal basis for S then $\mathbf{p}=\sum_{j=1}^{r}\left\langle\mathbf{x}, \mathbf{u}_{j}\right\rangle \mathbf{u}_{j}$
4. Every orthogonal set of nonzero vectors is independent.

Matrices with orthogonal columns

In this discussion, all vectors will be in \mathbb{R}^{n} for some n. Orthogonality will mean $\mathbf{x}^{T} \mathbf{y}=0$.

Matrices with orthogonal columns

In this discussion, all vectors will be in \mathbb{R}^{n} for some n. Orthogonality will mean $\mathbf{x}^{T} \mathbf{y}=0$.
If A is an $n \times k$ matrix with orthonormal columns, then $k \leq n$ because the columns are independent so there can't be more than n of them.

Matrices with orthogonal columns

In this discussion, all vectors will be in \mathbb{R}^{n} for some n. Orthogonality will mean $\mathbf{x}^{T} \mathbf{y}=0$.
If A is an $n \times k$ matrix with orthonormal columns, then $k \leq n$ because the columns are independent so there can't be more than n of them. Also, the rank of A is k and the nullity is 0 .
The columns of A being orthonormal means $A^{T} A=I$, the $k \times k$ identity matrix. The matrix $A A^{T}$ doesn't have to be the identity unless A is a square matrix. In general, $A A^{T}$ is the projection matrix for $\mathcal{R}(A): A A^{T} \mathbf{b}$ is the closest vector in $\mathcal{R}(A)$ to \mathbf{b}.

Matrices with orthogonal columns

In this discussion, all vectors will be in \mathbb{R}^{n} for some n. Orthogonality will mean $\mathbf{x}^{T} \mathbf{y}=0$.
If A is an $n \times k$ matrix with orthonormal columns, then $k \leq n$ because the columns are independent so there can't be more than n of them. Also, the rank of A is k and the nullity is 0 .
The columns of A being orthonormal means $A^{T} A=I$, the $k \times k$ identity matrix. The matrix $A A^{T}$ doesn't have to be the identity unless A is a square matrix. In general, $A A^{T}$ is the projection matrix for $\mathcal{R}(A): A A^{T} \mathbf{b}$ is the closest vector in $\mathcal{R}(A)$ to \mathbf{b}. If it happens that $n=k$ so that A is a square matrix, then $A^{T} A=I$ tells us that A is invertible and $A^{-1}=A^{T}$.

Matrices with orthogonal columns

In this discussion, all vectors will be in \mathbb{R}^{n} for some n. Orthogonality will mean $\mathbf{x}^{T} \mathbf{y}=0$.
If A is an $n \times k$ matrix with orthonormal columns, then $k \leq n$ because the columns are independent so there can't be more than n of them. Also, the rank of A is k and the nullity is 0 .
The columns of A being orthonormal means $A^{T} A=I$, the $k \times k$ identity matrix. The matrix $A A^{T}$ doesn't have to be the identity unless A is a square matrix. In general, $A A^{T}$ is the projection matrix for $\mathcal{R}(A): A A^{T} \mathbf{b}$ is the closest vector in $\mathcal{R}(A)$ to \mathbf{b}. If it happens that $n=k$ so that A is a square matrix, then $A^{T} A=I$ tells us that A is invertible and $A^{-1}=A^{T}$. In this case only, we also have $A A^{T}=I$ and this tells us that A^{T} also has orthonormal columns.

Definition (Orthogonal matrix)
An orthogonal matrix is a square matrix with orthonormal columns. Equivalently, an orthogonal matrix A is a square matrix satisfying $A^{-1}=A^{T}$.

Definition (Orthogonal matrix)

An orthogonal matrix is a square matrix with orthonormal columns. Equivalently, an orthogonal matrix A is a square matrix satisfying $A^{-1}=A^{T}$.

The product of two (or more) orthogonal matrices is an orthogonal matrices.

Definition (Orthogonal matrix)

An orthogonal matrix is a square matrix with orthonormal columns. Equivalently, an orthogonal matrix A is a square matrix satisfying $A^{-1}=A^{T}$.

The product of two (or more) orthogonal matrices is an orthogonal matrices.
For an orthonormal basis \mathcal{B}, if Q is the matrix whose columns are the vectors in \mathcal{B}, then Q is the transition matrix from \mathcal{B} to \mathcal{E} and Q^{T} is the transition matrix from \mathcal{E} to \mathcal{B}.

Definition (Orthogonal matrix)

An orthogonal matrix is a square matrix with orthonormal columns. Equivalently, an orthogonal matrix A is a square matrix satisfying $A^{-1}=A^{T}$.

The product of two (or more) orthogonal matrices is an orthogonal matrices.
For an orthonormal basis \mathcal{B}, if Q is the matrix whose columns are the vectors in \mathcal{B}, then Q is the transition matrix from \mathcal{B} to \mathcal{E} and Q^{T} is the transition matrix from \mathcal{E} to \mathcal{B}. The following can be used instead of a transition matrix, and it works for any inner product space:

Definition (Orthogonal matrix)

An orthogonal matrix is a square matrix with orthonormal columns. Equivalently, an orthogonal matrix A is a square matrix satisfying $A^{-1}=A^{T}$.

The product of two (or more) orthogonal matrices is an orthogonal matrices.
For an orthonormal basis \mathcal{B}, if Q is the matrix whose columns are the vectors in \mathcal{B}, then Q is the transition matrix from \mathcal{B} to \mathcal{E} and Q^{T} is the transition matrix from \mathcal{E} to \mathcal{B}. The following can be used instead of a transition matrix, and it works for any inner product space:

Theorem (Coordinates for orthonormal bases)

If $\mathcal{B}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right]$ is an orthonormal basis in an inner product space V and \mathbf{v} is any vector in V, then

$$
\mathbf{v}=\left\langle\mathbf{v}, \mathbf{u}_{1}\right\rangle \mathbf{u}_{1}+\left\langle\mathbf{v}, \mathbf{u}_{2}\right\rangle \mathbf{u}_{2}+\cdots\left\langle\mathbf{v}, \mathbf{u}_{n}\right\rangle \mathbf{u}_{n}
$$

Definition (Orthogonal matrix)

An orthogonal matrix is a square matrix with orthonormal columns. Equivalently, an orthogonal matrix A is a square matrix satisfying $A^{-1}=A^{T}$.

The product of two (or more) orthogonal matrices is an orthogonal matrices.
For an orthonormal basis \mathcal{B}, if Q is the matrix whose columns are the vectors in \mathcal{B}, then Q is the transition matrix from \mathcal{B} to \mathcal{E} and Q^{T} is the transition matrix from \mathcal{E} to \mathcal{B}.
The following can be used instead of a transition matrix, and it works for any inner product space:

Theorem (Coordinates for orthonormal bases)

If $\mathcal{B}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right]$ is an orthonormal basis in an inner product space V and \mathbf{v} is any vector in V, then

$$
\mathbf{v}=\left\langle\mathbf{v}, \mathbf{u}_{1}\right\rangle \mathbf{u}_{1}+\left\langle\mathbf{v}, \mathbf{u}_{2}\right\rangle \mathbf{u}_{2}+\cdots\left\langle\mathbf{v}, \mathbf{u}_{n}\right\rangle \mathbf{u}_{n}
$$

As we have seen before, if $\mathbf{v}=c_{1} \mathbf{u}_{1}+\cdots+c_{n} \mathbf{u}_{n}$ then

$$
\left\langle\mathbf{v}, \mathbf{u}_{j}\right\rangle=c_{1}\left\langle\mathbf{u}_{1}, \mathbf{u}_{j}\right\rangle+\cdots+c_{n}\left\langle\mathbf{u}_{n}, \mathbf{u}_{j}\right\rangle=c_{j}
$$

Some examples of orthonormal sets and orthogonal matrices

Some examples of orthonormal sets and orthogonal matrices
The set $\mathcal{B}=\left[\mathbf{u}_{1}=\binom{\sqrt{2} / 2}{\sqrt{2} / 2}, \mathbf{u}_{2}=\binom{-\sqrt{2} / 2}{\sqrt{2} / 2}\right]$ is an orthonormal basis in \mathbb{R}^{2}.

Some examples of orthonormal sets and orthogonal matrices
The set $\mathcal{B}=\left[\mathbf{u}_{1}=\binom{\sqrt{2} / 2}{\sqrt{2} / 2}, \mathbf{u}_{2}=\binom{-\sqrt{2} / 2}{\sqrt{2} / 2}\right]$ is an orthonormal basis in \mathbb{R}^{2}.
If we take any other vector, for example $\mathbf{x}=\binom{3}{-1}$,

Some examples of orthonormal sets and orthogonal matrices
The set $\mathcal{B}=\left[\mathbf{u}_{1}=\binom{\sqrt{2} / 2}{\sqrt{2} / 2}, \mathbf{u}_{2}=\binom{-\sqrt{2} / 2}{\sqrt{2} / 2}\right]$ is an orthonormal basis in \mathbb{R}^{2}.
If we take any other vector, for example $\mathbf{x}=\binom{3}{-1}$, we can write
$\mathbf{x}=\left(\mathbf{x}^{T} \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{x}^{T} \mathbf{u}_{2}\right) \mathbf{u}_{2}=\sqrt{2} \mathbf{u}_{1}-2 \sqrt{2} \mathbf{u}_{2}$.

Some examples of orthonormal sets and orthogonal matrices
The set $\mathcal{B}=\left[\mathbf{u}_{1}=\binom{\sqrt{2} / 2}{\sqrt{2} / 2}, \mathbf{u}_{2}=\binom{-\sqrt{2} / 2}{\sqrt{2} / 2}\right]$ is an orthonormal basis in \mathbb{R}^{2}.
If we take any other vector, for example $\mathbf{x}=\binom{3}{-1}$, we can write
$\mathbf{x}=\left(\mathbf{x}^{T} \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{x}^{T} \mathbf{u}_{2}\right) \mathbf{u}_{2}=\sqrt{2} \mathbf{u}_{1}-2 \sqrt{2} \mathbf{u}_{2}$. That is, $[\mathbf{x}]_{\mathcal{B}}=\binom{\sqrt{2}}{-2 \sqrt{2}}$

Some examples of orthonormal sets and orthogonal matrices
The set $\mathcal{B}=\left[\mathbf{u}_{1}=\binom{\sqrt{2} / 2}{\sqrt{2} / 2}, \mathbf{u}_{2}=\binom{-\sqrt{2} / 2}{\sqrt{2} / 2}\right]$ is an orthonormal basis in \mathbb{R}^{2}.
If we take any other vector, for example $\mathbf{x}=\binom{3}{-1}$, we can write
$\mathbf{x}=\left(\mathbf{x}^{T} \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{x}^{T} \mathbf{u}_{2}\right) \mathbf{u}_{2}=\sqrt{2} \mathbf{u}_{1}-2 \sqrt{2} \mathbf{u}_{2}$. That is, $[\mathbf{x}]_{\mathcal{B}}=\binom{\sqrt{2}}{-2 \sqrt{2}}$
Moreover, $Q=\left(\begin{array}{rr}\sqrt{2} / 2 & -\sqrt{2} / 2 \\ \sqrt{2} / 2 & \sqrt{2} / 2\end{array}\right)$ is an orthogonal matrix

Some examples of orthonormal sets and orthogonal matrices
The set $\mathcal{B}=\left[\mathbf{u}_{1}=\binom{\sqrt{2} / 2}{\sqrt{2} / 2}, \mathbf{u}_{2}=\binom{-\sqrt{2} / 2}{\sqrt{2} / 2}\right]$ is an orthonormal basis in \mathbb{R}^{2}.
If we take any other vector, for example $\mathbf{x}=\binom{3}{-1}$, we can write
$\mathbf{x}=\left(\mathbf{x}^{T} \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{x}^{T} \mathbf{u}_{2}\right) \mathbf{u}_{2}=\sqrt{2} \mathbf{u}_{1}-2 \sqrt{2} \mathbf{u}_{2}$. That is, $[\mathbf{x}]_{\mathcal{B}}=\binom{\sqrt{2}}{-2 \sqrt{2}}$
Moreover, $Q=\left(\begin{array}{rr}\sqrt{2} / 2 & -\sqrt{2} / 2 \\ \sqrt{2} / 2 & \sqrt{2} / 2\end{array}\right)$ is an orthogonal matrix and
$Q^{T}=\left(\begin{array}{rr}\sqrt{2} / 2 & \sqrt{2} / 2 \\ -\sqrt{2} / 2 & \sqrt{2} / 2\end{array}\right)$ is its inverse. Finally, note that $Q^{T} \mathbf{x}=[\mathbf{x}]_{\mathcal{B}}$

A three-dimensional example:

A three-dimensional example:
Here is an orthogonal set: $\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{r}1 \\ 1 \\ -1\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{r}1 \\ -1 \\ 0\end{array}\right)$.

A three-dimensional example:
Here is an orthogonal set: $\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{r}1 \\ 1 \\ -1\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{r}1 \\ -1 \\ 0\end{array}\right)$. Therefore, $\mathcal{B}=\left[\mathbf{u}_{1}=(1 / \sqrt{6}) \mathbf{v}_{1}, \mathbf{u}_{2}=(1 / \sqrt{3}) \mathbf{v}_{2}, \mathbf{u}_{3}=(1 / \sqrt{2}) \mathbf{v}_{3}\right]$ is an orthonormal basis and

A three-dimensional example:
Here is an orthogonal set: $\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{r}1 \\ 1 \\ -1\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{r}1 \\ -1 \\ 0\end{array}\right)$. Therefore, $\mathcal{B}=\left[\mathbf{u}_{1}=(1 / \sqrt{6}) \mathbf{v}_{1}, \mathbf{u}_{2}=(1 / \sqrt{3}) \mathbf{v}_{2}, \mathbf{u}_{3}=(1 / \sqrt{2}) \mathbf{v}_{3}\right]$ is an orthonormal basis and

$$
Q=\left(\begin{array}{rrr}
1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2} \\
1 / \sqrt{6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
2 / \sqrt{6} & -1 / \sqrt{3} & 0
\end{array}\right)
$$

is an orthogonal matrix.

Taking any vector, for example $\mathbf{v}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$ we get

$$
[\mathbf{v}]_{\mathcal{B}}=Q^{T} \mathbf{v}=\left(\begin{array}{c}
\mathbf{u}_{1}^{T} \mathbf{v} \\
\mathbf{u}_{2}^{T} \mathbf{v} \\
\mathbf{u}_{3}^{T} \mathbf{v}
\end{array}\right)=\left(\begin{array}{c}
5 / \sqrt{6} \\
2 / \sqrt{3} \\
1 / \sqrt{2}
\end{array}\right)
$$

Taking any vector, for example $\mathbf{v}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$ we get

$$
[\mathbf{v}]_{\mathcal{B}}=Q^{T} \mathbf{v}=\left(\begin{array}{c}
\mathbf{u}_{1}^{T} \mathbf{v} \\
\mathbf{u}_{2}^{T} \mathbf{v} \\
\mathbf{u}_{3}^{T} \mathbf{v}
\end{array}\right)=\left(\begin{array}{c}
5 / \sqrt{6} \\
2 / \sqrt{3} \\
1 / \sqrt{2}
\end{array}\right)
$$

The projection matrix

Taking any vector, for example $\mathbf{v}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$ we get

$$
[\mathbf{v}]_{\mathcal{B}}=Q^{T} \mathbf{v}=\left(\begin{array}{c}
\mathbf{u}_{1}^{T} \mathbf{v} \\
\mathbf{u}_{2}^{T} \mathbf{v} \\
\mathbf{u}_{3}^{T} \mathbf{v}
\end{array}\right)=\left(\begin{array}{c}
5 / \sqrt{6} \\
2 / \sqrt{3} \\
1 / \sqrt{2}
\end{array}\right)
$$

The projection matrix

Let S be a subspace of \mathbb{R}^{n} and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ an orthonormal basis for S.

Taking any vector, for example $\mathbf{v}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$ we get

$$
[\mathbf{v}]_{\mathcal{B}}=Q^{T} \mathbf{v}=\left(\begin{array}{c}
\mathbf{u}_{1}^{T} \mathbf{v} \\
\mathbf{u}_{2}^{T} \mathbf{v} \\
\mathbf{u}_{3}^{T} \mathbf{v}
\end{array}\right)=\left(\begin{array}{c}
5 / \sqrt{6} \\
2 / \sqrt{3} \\
1 / \sqrt{2}
\end{array}\right)
$$

The projection matrix

Let S be a subspace of \mathbb{R}^{n} and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ an orthonormal basis for S. For any vector $\mathbf{b} \in \mathbb{R}^{n}$ we can get the closest vector to S by solving a least squares problem.

Taking any vector, for example $\mathbf{v}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$ we get

$$
[\mathbf{v}]_{\mathcal{B}}=Q^{T} \mathbf{v}=\left(\begin{array}{c}
\mathbf{u}_{1}^{T} \mathbf{v} \\
\mathbf{u}_{2}^{T} \mathbf{v} \\
\mathbf{u}_{3}^{T} \mathbf{v}
\end{array}\right)=\left(\begin{array}{c}
5 / \sqrt{6} \\
2 / \sqrt{3} \\
1 / \sqrt{2}
\end{array}\right)
$$

The projection matrix

Let S be a subspace of \mathbb{R}^{n} and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ an orthonormal basis for S. For any vector $\mathbf{b} \in \mathbb{R}^{n}$ we can get the closest vector to S by solving a least squares problem. Recall: If U is the matrix whose columns are $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$, then we solve $U^{T} U \mathbf{x}=U^{T} \mathbf{b}$ to get $\hat{\mathbf{x}}$,

Taking any vector, for example $\mathbf{v}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$ we get

$$
[\mathbf{v}]_{\mathcal{B}}=Q^{T} \mathbf{v}=\left(\begin{array}{c}
\mathbf{u}_{1}^{T} \mathbf{v} \\
\mathbf{u}_{2}^{T} \mathbf{v} \\
\mathbf{u}_{3}^{T} \mathbf{v}
\end{array}\right)=\left(\begin{array}{c}
5 / \sqrt{6} \\
2 / \sqrt{3} \\
1 / \sqrt{2}
\end{array}\right)
$$

The projection matrix

Let S be a subspace of \mathbb{R}^{n} and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ an orthonormal basis for S. For any vector $\mathbf{b} \in \mathbb{R}^{n}$ we can get the closest vector to S by solving a least squares problem. Recall: If U is the matrix whose columns are $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$, then we solve $U^{T} U \mathbf{x}=U^{T} \mathbf{b}$ to get $\hat{\mathbf{x}}$, and then $U \hat{\mathbf{x}}$ is then the closest vector to \mathbf{b} in the column space of U (which is S).

Taking any vector, for example $\mathbf{v}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$ we get

$$
[\mathbf{v}]_{\mathcal{B}}=Q^{T} \mathbf{v}=\left(\begin{array}{c}
\mathbf{u}_{1}^{T} \mathbf{v} \\
\mathbf{u}_{2}^{T} \mathbf{v} \\
\mathbf{u}_{3}^{T} \mathbf{v}
\end{array}\right)=\left(\begin{array}{c}
5 / \sqrt{6} \\
2 / \sqrt{3} \\
1 / \sqrt{2}
\end{array}\right)
$$

The projection matrix

Let S be a subspace of \mathbb{R}^{n} and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ an orthonormal basis for S. For any vector $\mathbf{b} \in \mathbb{R}^{n}$ we can get the closest vector to S by solving a least squares problem. Recall: If U is the matrix whose columns are $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$, then we solve $U^{T} U \mathbf{x}=U^{T} \mathbf{b}$ to get $\hat{\mathbf{x}}$, and then $U \hat{\mathbf{x}}$ is then the closest vector to \mathbf{b} in the column space of U (which is S).
But, since U has orthogonal columns, the $U^{T} U=I(r \times r)$ and so the solution of $U^{T} U \mathbf{x}=U^{T} \mathbf{b}$ is $\hat{\mathbf{x}}=U^{T} \mathbf{b}$ and the closest vector in S to \mathbf{b} is $U \hat{\mathbf{x}}=U U^{T} \mathbf{b}$.

Taking any vector, for example $\mathbf{v}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$ we get

$$
[\mathbf{v}]_{\mathcal{B}}=Q^{T} \mathbf{v}=\left(\begin{array}{c}
\mathbf{u}_{1}^{T} \mathbf{v} \\
\mathbf{u}_{2}^{T} \mathbf{v} \\
\mathbf{u}_{3}^{T} \mathbf{v}
\end{array}\right)=\left(\begin{array}{c}
5 / \sqrt{6} \\
2 / \sqrt{3} \\
1 / \sqrt{2}
\end{array}\right)
$$

The projection matrix

Let S be a subspace of \mathbb{R}^{n} and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ an orthonormal basis for S. For any vector $\mathbf{b} \in \mathbb{R}^{n}$ we can get the closest vector to S by solving a least squares problem. Recall: If U is the matrix whose columns are $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$, then we solve $U^{T} U \mathbf{x}=U^{T} \mathbf{b}$ to get $\hat{\mathbf{x}}$, and then $U \hat{\mathbf{x}}$ is then the closest vector to \mathbf{b} in the column space of U (which is S).
But, since U has orthogonal columns, the $U^{T} U=I(r \times r)$ and so the solution of $U^{T} U \mathbf{x}=U^{T} \mathbf{b}$ is $\hat{\mathbf{x}}=U^{T} \mathbf{b}$ and the closest vector in S to \mathbf{b} is $U \hat{\mathbf{x}}=U U^{T} \mathbf{b}$.
We call the matrix $P=U U^{T}$ the projection matrix.

Here is an example. Find the projection matrix for the span of
$\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right)$.

Here is an example. Find the projection matrix for the span of
$\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right)$.
Use it to find the projection of $\mathbf{v}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ onto this span.

Here is an example. Find the projection matrix for the span of
$\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right)$.
Use it to find the projection of $\mathbf{v}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ onto this span.
These are orthogonal, but not orthonormal, so we normalize them:

$$
\begin{aligned}
& \mathbf{u}_{1}=\left(\begin{array}{l}
1 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right), \mathbf{u}_{2}=\left(\begin{array}{c}
0 \\
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right), \text { and we get the projection matrix } \\
& P=U U^{T}=\left(\begin{array}{ccc}
1 / 3 & 0 \\
2 / 3 & -1 / \sqrt{2} \\
2 / 3 & 1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 2 / 3 \\
0 & -1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right) \\
&=\left(\begin{array}{ccc}
1 / 9 & 2 / 9 & 2 / 9 \\
2 / 9 & 17 / 18 & -1 / 18 \\
2 / 9 & -1 / 18 & 17 / 18
\end{array}\right)
\end{aligned}
$$

Then $P \mathbf{v}=\left(\begin{array}{c}1 / 3 \\ 7 / 6 \\ 1 / 6\end{array}\right)$.

Then $P \mathbf{v}=\left(\begin{array}{c}1 / 3 \\ 7 / 6 \\ 1 / 6\end{array}\right)$. We can check our work (in part) by determining whether the difference $\mathbf{v}-P \mathbf{v}=\left(\begin{array}{r}2 / 3 \\ -1 / 6 \\ -1 / 6\end{array}\right)$ is orthogonal to both \mathbf{v}_{1} and \mathbf{v}_{2}.

