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Definition (Scalar product)

If x and y ∈ Rn then the scalar product of x and y is xTy

In terms of the coordinates, if x =


x1
x2
...
xn

 and y =


y1
y2
...
yn

, then

xTy = x1y1 + x2y2 + · · ·+ xnyn = yTx.

Definition (Norm)

We write ∥x∥ = (xTx)1/2 and call this the norm of x.

In terms of coordinates ∥x∥ = (x21 + x22 + · · ·+ x2n)
1/2.

1. The scalar product of αx and βy is (αx)T (βy) = αβ(xTy)

2. The norm of αx is ∥αx∥ = |α| ∥x∥. Note that if α = 1/ ∥x∥ the ∥αx∥ = 1.
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Theorem (Angle between two vectors)

Let x,y ∈ R2 or R3. Suppose ∥x∥ ≠ 0 and ∥y∥ ≠ 0. Let θ be the angle between x
and y with 0 ≤ θ ≤ 180◦. Then

cos θ =
xTy

∥x∥ ∥y∥
.

Theorem (The Cauchy-Schwarz Inequality)

If x and y are vectors in Rn, then |xTy| ≤ ∥x∥ ∥y∥.

Definition (Orthogonal)

If x and y are in Rn, we say that x is orthogonal to y if xTy = 0. We denote this by
writing x ⊥ y.

1. If x ∈ Rn then the set of vectors orthogonal to x is a subspace of Rn.

2. x ⊥ x if and only if x = 0.
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Example: find a nonzero vector orthogonal to both a1 =


1

−1
3

 and

a2 =


−1
2

−1

.

Solution: solve the system aT1 x = 0, aT2 x = 0: This system is

equivalent to Ax = 0 where A =

 aT1
aT2

. We solve that by row-reducing A:

 1 −1 3
−1 2 −1

 2EROs−−−−→
 1 0 5

0 1 2


Thus, x1 = −5x3 and x2 = −2x3 and so the vectors


−5α
−2α
α

 are orthogonal to a1

and a2, for any choice of α.
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Definition (Scalar and vector projections)

If x and y belong to Rn then:

The number α =
xTy

∥y∥
is called the scalar projection of x onto y.

The vector p =
xTy

yTy
y is called the vector projection of x onto y

Definition (Orthogonal subspaces)

If V and W are subspaces of Rn then we say they are orthogonal subspaces if every
vector in V is orthogonal to every vector in W .

Definition (Orthogonal complement)

If S is a subspace of Rn then the orthogonal complement of S is the set of all vectors
that are orthogonal to every vector in S. We denote this set S⊥. Formally:

S⊥ = {x ∈ Rn | xTy = 0 for all y ∈ S}.
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Properties of orthogonal subspaces

1. If V and W are orthogonal subspaces of Rn then the only vector that belongs to
both V and W is 0.

2. For any subspace S, S⊥ is also a subspace.

We have seen that any product like Ax is a linear combination of the columns of A. If
A and n× k matrix, we define

R(A) = {b ∈ Rn | b = Ax for some x ∈ Rk}

This is the column space of A.

What is R(A)⊥?

The solution space of a homogeneous k × n system of linear equations is a subspace of
Rn. It is also the nullspace N (A) if A is the system matrix.

What is N (A)⊥?
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Theorem (Orthogonal complements of matrix spaces)

R(A)⊥ = N (AT ) and N (A)⊥ = R(AT ).

Theorem (Dimension sum)

If S is a subspace of Rn then dimS + dimS⊥ = n. Furthermore, if {x1, . . . ,xr} is a
basis for S and {xr+1, . . . ,xn} is a basis for S⊥, then {x1, . . . ,xn} is a basis for Rn.

Theorem (Orthogonal decomposition)

If S is a subspace of Rn then every vector x in Rn can be written uniquely as a sum
x = u+ v with u ∈ S and v ∈ S⊥.

Theorem (The double ⊥)

If S is a subspace of Rn then (S⊥)⊥ = S.
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Application: for which vectors b does the equation Ax = b have a solution?

The
existence of x such that Ax = b means that b is in the column space of A. By the
above, b must be orthogonal to the null space of AT . If we find a basis {v1, . . . ,vk}
for the null space of AT , then the condition for Ax = b to have a solution is that
vT
1 b = 0, . . . ,vT

k b = 0.

Example: For what vectors b does the following have a solution?

2x1 + 2x2 + 4x3 = b1

x1 + + x3 = b2

x2 + x3 = b3

Take the system matrix A, transpose it, and find the null space of AT
2 1 0
2 0 1
4 1 1

 6 EROs−−−−→


1 0 1/2
0 1 −1
0 0 0

 i.e.

{
x1 + (1/2)x3 = 0

x2 − x3 = 0
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Then N (AT ) is spanned by one vector


−1/2
1
1

.

So, we conclude that a solution

exists if and only if b is orthogonal to this: −1/2 1 1
b = −(1/2)b1 + b2 + b3 = 0

Another application:

If we have an inconsistent equation Ax = b (i.e., one which has no solution), we can
multiply it by AT and we get ATAx = ATb . . . which must have a solution. That
solution x̂ has the property that b−Ax̂ is orthogonal to the column space of A and
has the smallest norm among all x in Rn.

This vector x̂ is called the least squares solution to Ax = b.
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An example:

Find the least squares solution of the following system:
1 1

−2 3
2 −1


 x1

x2

 =


3
1
2


Multiplying by the transpose gives 9 −7

−7 11

 x1
x2

 =

 5
4


This has a solution x̂ =

 83/50
71/50

 =

 1.66
1.42

.
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If we want to see how close we have come, we find

Ax̂ =


3.08
0.94
1.9


these values differ from (3, 1, 2)T by (−0.08, 0.06, 0.1)T which has norm√
0.02 ≈ 0.1414

In any problem Ax = b, the difference r(x) = b−Ax is called the residual vector
assosiated to x. The least squares solution is a vector x̂ that gives the residual vector
the smallest possible norm.

Using the method of least squares to get vectors orthogonal to a subspace.

If S is a subspace of Rn and b is a vector in Rn, we know that there exist unique
vectors u ∈ S and v ∈ S⊥ such that b = u+ v. The method of least squares allows
us to find them.
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If S is R(A) for some matrix then, by what we have seen, the least squares solution x̂
of Ax = b

(which satisfies ATAx̂ = ATb) has the following property: Ax̂ is the
closest element of R(A) to b and the residual vector b−Ax̂ is orthogonal to R(A).
That is u = Ax̂ and v = b−Ax̂.

But every subspace S of Rn is the column space of some matrix: take any basis of S
(or any set of vectors whose span is S) and make them the columns of a matrix A.
Then S = R(A).

Example: Let S be the span of (1, 1, 2, 0)T and (0, 1, 2,−2)T and let b = (1, 1, 1, 1)T .
Find the vectors u ∈ S and v ∈ S⊥ such that b = u+ v.

Now S is the column space of the 4× 2 matrix A below and we need the least squares
solution of 

1 0
1 1
2 2
0 −2


 x1

x2

 =


1
1
1
1


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Multiplying by AT we get  6 5
5 9

 x1
x2

 =

 4
1


which has solution x̂ = (31/29,−14/29)T .

Then
u = Ax̂ = (31/29, 17/29, 34/29, 28/29)T and
v = b−Ax̂ = (−2/29, 12/29,−5/29, 1/29).

Definition (Orthogonal/orthonormal set)

A set of vectors {v1,v2, . . . ,vr} is called orthogonal if vi ⊥ vj for every i ̸= j.
It is called orthonormal if it is orthogonal and also ∥vj∥ = 1 for every j.

If a set of nonzero vectors is orthogonal, we can make it orthonormal simply by
multiplying each vj by (1/ ∥vj∥).

Theorem (Orthogonal ⇒ independent)

If a set of nonzero vectors is orthogonal, then it is independent.
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Theorem (Orthogonal bases)

Every nonzero subspace of Rn has a basis that is orthonormal.

Theorem (Formula for the projection)

Let S is a subspace of Rn and let {v1,v2, . . . ,vr} be an orthogonal basis for S. If v is
any vector in Rn and p the element of S that is closest to v, then

p =
r∑

j=1

vTvj

vT
j vj

vj

Notice that each term in the sum
∑r

j=1

vTvj

vT
j vj

vj has the same formula as the vector

projection of v onto vj . We will call p the projection of v onto Span(v1, . . . ,vr).

14 / 1



Theorem (Orthogonal bases)

Every nonzero subspace of Rn has a basis that is orthonormal.

Theorem (Formula for the projection)

Let S is a subspace of Rn and let {v1,v2, . . . ,vr} be an orthogonal basis for S. If v is
any vector in Rn and p the element of S that is closest to v, then

p =
r∑

j=1

vTvj

vT
j vj

vj

Notice that each term in the sum
∑r

j=1

vTvj

vT
j vj

vj has the same formula as the vector

projection of v onto vj . We will call p the projection of v onto Span(v1, . . . ,vr).

14 / 1



Theorem (Orthogonal bases)

Every nonzero subspace of Rn has a basis that is orthonormal.

Theorem (Formula for the projection)

Let S is a subspace of Rn and let {v1,v2, . . . ,vr} be an orthogonal basis for S. If v is
any vector in Rn and p the element of S that is closest to v, then

p =
r∑

j=1

vTvj

vT
j vj

vj

Notice that each term in the sum
∑r

j=1

vTvj

vT
j vj

vj has the same formula as the vector

projection of v onto vj .

We will call p the projection of v onto Span(v1, . . . ,vr).

14 / 1



Theorem (Orthogonal bases)

Every nonzero subspace of Rn has a basis that is orthonormal.

Theorem (Formula for the projection)

Let S is a subspace of Rn and let {v1,v2, . . . ,vr} be an orthogonal basis for S. If v is
any vector in Rn and p the element of S that is closest to v, then

p =
r∑

j=1

vTvj

vT
j vj

vj

Notice that each term in the sum
∑r

j=1

vTvj

vT
j vj

vj has the same formula as the vector

projection of v onto vj . We will call p the projection of v onto Span(v1, . . . ,vr).

14 / 1



There are many vector spaces with a type of product similar to the scalar product in
Rn.

Definition (Inner product)

If V is a vector space, then an inner product is an operation that assigns, to any pair
of vectors x and y in V a real number, denoted ⟨x,y⟩, satisfying

1. ⟨0,0⟩ = 0, and if x ̸= 0 then ⟨x,x⟩ > 0.

2. ⟨x,y⟩ = ⟨y,x⟩, for every x,y in V

3. ⟨αy + βz,x⟩ = α ⟨y,x⟩+ β ⟨z,x⟩, for every x,y, z in V and every α, β in R.

A vector space with an inner product defined on it is called an inner product space.

One way to create an inner product is to produce a linear one-to-one correspondence
from V to a vector space that already has an inner product.

Rn can have inner products different from the scalar product. If A is any invertible
n× n matrix, then

⟨x,y⟩ = (Ax)TAy = xTATAy

is an example of an inner product.
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Definition (Induced norm)

If V is a vector space with an inner product ⟨x,y⟩, then ∥x∥ =
√
⟨x,x⟩. This is called

the norm induced by this inner product.

Definition (Orthogonal)

If V is a vector space with an inner product ⟨x,y⟩, then we say x is orthogonal to y if
⟨x,y⟩ = 0. and we express this by x ⊥ y.

Theorem (Pythagorean Formula)

If x ⊥ y then ∥x+ y∥2 = ∥x∥2 + ∥y∥2.

Theorem (Cauchy-Schwarz Inequality)

For any x and y in an inner product space,

| ⟨x,y⟩ | ≤ ∥x∥ ∥y∥
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Theorem (Triangle Inequality)

For any pair of vectors x and y, ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

This allows us to express the distance between vectors by d(x,y) = ∥x− y∥
Here is an example of an inner product for P3. Define

⟨p, q⟩ = p(0)q(0) + p(1)q(1) + p(−1)q(−1).

In this inner product space, the polynomials x and x2 are orthogonal to each other.
Also the constant polynomial 1 is orthogonal to x but not to x2. Exercise: 1− x2 is
orthogonal to both x and x2.
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Definition (Scalar/vector projection)

For vectors x,y in V , y ̸= 0, the scalar projection of x onto y is

α =
⟨x,y⟩
∥y∥

and the vector projection of x onto y is

p = α
1

∥y∥
y =

⟨x,y⟩
⟨y,y⟩

y
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Definition (Orthogonal/orthonormal set)

A set {v1,v2, . . . ,vr} is said to be orthogonal if vi ⊥ vj for each i ̸= j. If it is
orthogonal and ∥vj∥ = 1 for each j, we call it orthonormal .

Just as in Rn we have

1. Every finite dimensional subset of V has an orthonomal basis.

2. If S is a subspace of V with an orthogonal basis {v1, . . . ,vr} and x is any vector
in V . Then the closest vector in S to x is

p =
r∑

j=1

⟨x,vj⟩
⟨vj ,vj⟩

vj

and x− p is orthogonal to S.

3. If {u1, . . . ,ur} an orthonormal basis for S then p =
∑r

j=1 ⟨x,uj⟩uj

4. Every orthogonal set of nonzero vectors is independent.
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Matrices with orthogonal columns

In this discussion, all vectors will be in Rn for some n. Orthogonality will mean
xTy = 0.

If A is an n× k matrix with orthonormal columns, then k ≤ n because the columns
are independent so there can’t be more than n of them. Also, the rank of A is k and
the nullity is 0.

The columns of A being orthonormal means ATA = I, the k × k identity matrix. The
matrix AAT doesn’t have to be the identity unless A is a square matrix. In general,
AAT is the projection matrix for R(A): AATb is the closest vector in R(A) to b.

If it happens that n = k so that A is a square matrix, then ATA = I tells us that A is
invertible and A−1 = AT . In this case only, we also have AAT = I and this tells us
that AT also has orthonormal columns.
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Definition (Orthogonal matrix)

An orthogonal matrix is a square matrix with orthonormal columns. Equivalently, an
orthogonal matrix A is a square matrix satisfying A−1 = AT .

The product of two (or more) orthogonal matrices is an orthogonal matrices.

For an orthonormal basis B, if Q is the matrix whose columns are the vectors in B, then
Q is the transition matrix from B to E and QT is the transition matrix from E to B.
The following can be used instead of a transition matrix, and it works for any inner
product space:

Theorem (Coordinates for orthonormal bases)

If B = [u1, . . . ,un] is an orthonormal basis in an inner product space V and v is any
vector in V , then

v = ⟨v,u1⟩u1 + ⟨v,u2⟩u2 + · · · ⟨v,un⟩un

As we have seen before, if v = c1u1 + · · ·+ cnun then

⟨v,uj⟩ = c1 ⟨u1,uj⟩+ · · ·+ cn ⟨un,uj⟩ = cj
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Some examples of orthonormal sets and orthogonal matrices

The set B =

[
u1 =

 √
2/2√
2/2

 ,u2 =

 −
√
2/2√
2/2

]
is an orthonormal basis in R2.

If we take any other vector, for example x =

 3
−1

, we can write

x = (xTu1)u1 + (xTu2)u2 =
√
2 u1 − 2

√
2 u2. That is, [x]B =

 √
2

−2
√
2


Moreover, Q =

 √
2/2 −

√
2/2√

2/2
√
2/2

 is an orthogonal matrix and

QT =

 √
2/2

√
2/2

−
√
2/2

√
2/2

 is its inverse. Finally, note that QTx = [x]B
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A three-dimensional example:

Here is an orthogonal set: v1 =


1
1
2

 ,v2 =


1
1

−1

 ,v3 =


1

−1
0

. Therefore,

B =
[
u1 = (1/

√
6)v1,u2 = (1/

√
3)v2,u3 = (1/

√
2)v3

]
is an orthonormal basis and

Q =


1/
√
6 1/

√
3 1/

√
2

1/
√
6 1/

√
3 −1/

√
2

2/
√
6 −1/

√
3 0


is an orthogonal matrix.
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
is an orthogonal matrix.
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Taking any vector, for example v =


2
1
1

 we get

[v]B = QTv =


uT
1 v

uT
2 v

uT
3 v

 =


5/

√
6

2/
√
3

1/
√
2



The projection matrix

Let S be a subspace of Rn and {u1, . . . ,ur} an orthonormal basis for S. For any
vector b ∈ Rn we can get the closest vector to S by solving a least squares problem.

Recall: If U is the matrix whose columns are u1, . . . ,ur, then we solve UTUx = UTb
to get x̂, and then U x̂ is then the closest vector to b in the column space of U (which
is S).

But, since U has orthogonal columns, the UTU = I (r × r) and so the solution of
UTUx = UTb is x̂ = UTb and the closest vector in S to b is U x̂ = UUTb.

We call the matrix P = UUT the projection matrix .

24 / 1



Taking any vector, for example v =


2
1
1

 we get

[v]B = QTv =


uT
1 v

uT
2 v

uT
3 v

 =


5/

√
6

2/
√
3

1/
√
2


The projection matrix

Let S be a subspace of Rn and {u1, . . . ,ur} an orthonormal basis for S. For any
vector b ∈ Rn we can get the closest vector to S by solving a least squares problem.

Recall: If U is the matrix whose columns are u1, . . . ,ur, then we solve UTUx = UTb
to get x̂, and then U x̂ is then the closest vector to b in the column space of U (which
is S).

But, since U has orthogonal columns, the UTU = I (r × r) and so the solution of
UTUx = UTb is x̂ = UTb and the closest vector in S to b is U x̂ = UUTb.

We call the matrix P = UUT the projection matrix .

24 / 1



Taking any vector, for example v =


2
1
1

 we get

[v]B = QTv =


uT
1 v

uT
2 v

uT
3 v

 =


5/

√
6

2/
√
3

1/
√
2


The projection matrix

Let S be a subspace of Rn and {u1, . . . ,ur} an orthonormal basis for S.

For any
vector b ∈ Rn we can get the closest vector to S by solving a least squares problem.

Recall: If U is the matrix whose columns are u1, . . . ,ur, then we solve UTUx = UTb
to get x̂, and then U x̂ is then the closest vector to b in the column space of U (which
is S).

But, since U has orthogonal columns, the UTU = I (r × r) and so the solution of
UTUx = UTb is x̂ = UTb and the closest vector in S to b is U x̂ = UUTb.

We call the matrix P = UUT the projection matrix .

24 / 1



Taking any vector, for example v =


2
1
1

 we get

[v]B = QTv =


uT
1 v

uT
2 v

uT
3 v

 =


5/

√
6

2/
√
3

1/
√
2


The projection matrix

Let S be a subspace of Rn and {u1, . . . ,ur} an orthonormal basis for S. For any
vector b ∈ Rn we can get the closest vector to S by solving a least squares problem.

Recall: If U is the matrix whose columns are u1, . . . ,ur, then we solve UTUx = UTb
to get x̂, and then U x̂ is then the closest vector to b in the column space of U (which
is S).

But, since U has orthogonal columns, the UTU = I (r × r) and so the solution of
UTUx = UTb is x̂ = UTb and the closest vector in S to b is U x̂ = UUTb.

We call the matrix P = UUT the projection matrix .

24 / 1



Taking any vector, for example v =


2
1
1

 we get

[v]B = QTv =


uT
1 v

uT
2 v

uT
3 v

 =


5/

√
6

2/
√
3

1/
√
2


The projection matrix

Let S be a subspace of Rn and {u1, . . . ,ur} an orthonormal basis for S. For any
vector b ∈ Rn we can get the closest vector to S by solving a least squares problem.

Recall: If U is the matrix whose columns are u1, . . . ,ur, then we solve UTUx = UTb
to get x̂,

and then U x̂ is then the closest vector to b in the column space of U (which
is S).

But, since U has orthogonal columns, the UTU = I (r × r) and so the solution of
UTUx = UTb is x̂ = UTb and the closest vector in S to b is U x̂ = UUTb.

We call the matrix P = UUT the projection matrix .

24 / 1



Taking any vector, for example v =


2
1
1

 we get

[v]B = QTv =


uT
1 v

uT
2 v

uT
3 v

 =


5/

√
6

2/
√
3

1/
√
2


The projection matrix

Let S be a subspace of Rn and {u1, . . . ,ur} an orthonormal basis for S. For any
vector b ∈ Rn we can get the closest vector to S by solving a least squares problem.

Recall: If U is the matrix whose columns are u1, . . . ,ur, then we solve UTUx = UTb
to get x̂, and then U x̂ is then the closest vector to b in the column space of U (which
is S).

But, since U has orthogonal columns, the UTU = I (r × r) and so the solution of
UTUx = UTb is x̂ = UTb and the closest vector in S to b is U x̂ = UUTb.

We call the matrix P = UUT the projection matrix .

24 / 1



Taking any vector, for example v =


2
1
1

 we get

[v]B = QTv =


uT
1 v

uT
2 v

uT
3 v

 =


5/

√
6

2/
√
3

1/
√
2


The projection matrix

Let S be a subspace of Rn and {u1, . . . ,ur} an orthonormal basis for S. For any
vector b ∈ Rn we can get the closest vector to S by solving a least squares problem.

Recall: If U is the matrix whose columns are u1, . . . ,ur, then we solve UTUx = UTb
to get x̂, and then U x̂ is then the closest vector to b in the column space of U (which
is S).

But, since U has orthogonal columns, the UTU = I (r × r) and so the solution of
UTUx = UTb is x̂ = UTb and the closest vector in S to b is U x̂ = UUTb.

We call the matrix P = UUT the projection matrix .

24 / 1



Taking any vector, for example v =


2
1
1

 we get

[v]B = QTv =


uT
1 v

uT
2 v

uT
3 v

 =


5/

√
6

2/
√
3

1/
√
2


The projection matrix

Let S be a subspace of Rn and {u1, . . . ,ur} an orthonormal basis for S. For any
vector b ∈ Rn we can get the closest vector to S by solving a least squares problem.

Recall: If U is the matrix whose columns are u1, . . . ,ur, then we solve UTUx = UTb
to get x̂, and then U x̂ is then the closest vector to b in the column space of U (which
is S).

But, since U has orthogonal columns, the UTU = I (r × r) and so the solution of
UTUx = UTb is x̂ = UTb and the closest vector in S to b is U x̂ = UUTb.

We call the matrix P = UUT the projection matrix .

24 / 1



Here is an example. Find the projection matrix for the span of

v1 =


1
2
2

 ,v2 =


0

−1
1

.

Use it to find the projection of v =


1
1
0

 onto this span.

These are orthogonal, but not orthonormal, so we normalize them:

u1 =


1/3
2/3
2/3

 ,u2 =


0

−1/
√
2

1/
√
2

 , and we get the projection matrix

P = UUT =


1/3 0

2/3 −1/
√
2

2/3 1/
√
2


 1/3 2/3 2/3

0 −1/
√
2 1/

√
2


=


1/9 2/9 2/9
2/9 17/18 −1/18
2/9 −1/18 17/18


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Then Pv =


1/3
7/6
1/6

.

We can check our work (in part) by determining whether the

difference v − Pv =


2/3

−1/6
−1/6

 is orthogonal to both v1 and v2.
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