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Important note

Recall that a matrix A is symmetric if AT = A.

In section 6.4, our textbook defines Hermitian matrices. These are a type of square
matrix that allows the entries to be complex numbers. If the numbers in a matrix are
all real, then the operation denoted AH is precisely the transpose AT . In this case,
Hermitian matrices are precisely the symmetric matrices.

Thus, everything in section 6.4 and following that refers to AH and/or Hermitian
matrices is valid for AT and symmetric matrices, provided A has only real number
entries.
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Theorem

Let A be a symmetric n× n matrix, and suppose λ1 and λ2 are two different
eigenvalues. If x1 and x2 are the respective eigenvectors then x1 ⊥ x2.

To see this, consider

λ1x
T
1 x2 = (λ1x1)

Tx2 = (Ax1)
Tx2

= xT
1 A

Tx2 = xT
1 Ax2

= xT
1 (λ2)x2 = λ2x

T
1 x2

By subtraction, (λ1 − λ2)x
T
1 x2 = 0. Since λ1 − λ2 ̸= 0, we conclude that xT

1 x2 = 0.

Theorem

Let A be a symmetric n× n matrix, and suppose x is an eigenvector for A. If y ⊥ x
then Ay ⊥ x.
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If λ is the eigenvalue associated to x, then

(Ay)Tx = yTATx = yTAx = λyTx = 0.

Theorem

If A is a symmetric matrix then all eigenvalues are real, and there an orthonormal basis
for Rn consisting of eigenvectors of A.

Proving the first part really requires the introduction of complex numbers, Hermitian
matrices and AH , so we’ll skip that.

Except to say that if AH = A and x is an eigenvector with eigenvalue λ, then

0 ≤ (Ax)HAx = xHAHAx = xHA2x = λ2xHx

Whence, λ2 ≥ 0 and so λ must be real.
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To prove the second part we need two things:

let Q be any orthogonal matrix:

1. If A is symmetric, then QTAQ is also symmetric. This is because
(QTAQ)T = QTAT (QT )T = QTAQ

2. QTAQ has the same eigenvalues as A (but maybe different eigenvectors). If x is
an eigenvector with eigenvalue λ and y = QTx then
(QTAQ)y = QTAQQTx = QTAx = λQTx = λy.

To prove that A has a basis of eigenvectors, start with any eigenvector x1 with
eigenvalue λ1. We can arrange for ∥x1∥ = 1. Let S = Span(x1)

⊥. Let q2,q3, . . .qn

be an orthonormal basis for S. Consider the orthogonal matrix

Q =
 x1 q2 · · · qn

. Now, because Aqj ⊥ x1 for each j,

QTAQ =

 λ1 0

0 B

 ,

where B is an n− 1× n− 1 symmetric matrix.
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Note that B is the representing matrix for A : S → S relative to the basis q2, . . . ,qn.

Any eigenvalue/eigenvector pair for B becomes an eigenvalue/eigenvector pair for A
with the eigenvector contained in S. Call any such (normalized) eigenvector x2.

We can repeat this process for Span(x1,x2)
⊥ to get another eigenvector, and so on.

This works until there are no more nonzero vectors in Span(x1,x2, . . . )
⊥. At that

point, the span must be all of Rn.

Example: Find an orthonormal basis of eigenvectors for A =


2 0 0
0 2 1
0 1 2


Eigenvalues:

∣∣∣∣∣∣
2− λ 0 0
0 2− λ 1
0 1 2− λ

∣∣∣∣∣∣ = (2− λ)((2− λ)2 − 1) = (2− λ)(λ2 − 4λ+3).

Equate to zero to get λ = 1, 2, 3.
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For λ = 1, the matrix

A− I =


1 0 0
0 1 1
0 1 1

 R3−R2−−−−→


1 0 0
0 1 1
0 0 0



A basis for the eigenspace is
 0 −1 1

T
. Normalize to get

q1 =
 0 −1/

√
2 1/

√
2
T

.

For λ = 2 the matrix

A− 2I =


0 0 0
0 0 1
0 1 0

 R3↔R1−−−−−→


0 1 0
0 0 1
0 0 0


A basis for the eigenspace is q2 =

 1 0 0
T

. The norm is already 1. Note that

q1 ⊥ q2.
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For λ = 3 the matrix

A− 3I =


−1 0 0
0 −1 1
0 1 −1

 3 EROs−−−−→


1 0 0
0 1 −1
0 0 0



A basis for the eigenspace is
 0 1 1

T
. Normalize to get

q3 =
 0 1/

√
2 1/

√
2
T

. Note that both q1 ⊥ q3 and q2 ⊥ q3.
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Since all three eigenvalues are different, we automatically got a basis of R3.

Since A
was symmetric, we automatically got orthogonal eigenvectors.

This need not be so automatic.

For example: let A =


2 1 1
1 2 1
1 1 2

 For this matrix det(A− λI) = −(λ− 1)2(λ− 4),

giving eigenvalues λ = 1, 1, 4.

For λ = 4 we get a one-dimensional eigenspace with basis
 1 1 1

T
.

For λ = 1, the matrix A− I is
1 1 1
1 1 1
1 1 1

 R2−R1−−−−→
R3−R1


1 1 1
0 0 0
0 0 0



9 / 10



Since all three eigenvalues are different, we automatically got a basis of R3. Since A
was symmetric, we automatically got orthogonal eigenvectors.

This need not be so automatic.

For example: let A =


2 1 1
1 2 1
1 1 2

 For this matrix det(A− λI) = −(λ− 1)2(λ− 4),

giving eigenvalues λ = 1, 1, 4.

For λ = 4 we get a one-dimensional eigenspace with basis
 1 1 1

T
.

For λ = 1, the matrix A− I is
1 1 1
1 1 1
1 1 1

 R2−R1−−−−→
R3−R1


1 1 1
0 0 0
0 0 0



9 / 10



Since all three eigenvalues are different, we automatically got a basis of R3. Since A
was symmetric, we automatically got orthogonal eigenvectors.

This need not be so automatic.

For example: let A =


2 1 1
1 2 1
1 1 2

 For this matrix det(A− λI) = −(λ− 1)2(λ− 4),

giving eigenvalues λ = 1, 1, 4.

For λ = 4 we get a one-dimensional eigenspace with basis
 1 1 1

T
.

For λ = 1, the matrix A− I is
1 1 1
1 1 1
1 1 1

 R2−R1−−−−→
R3−R1


1 1 1
0 0 0
0 0 0



9 / 10



Since all three eigenvalues are different, we automatically got a basis of R3. Since A
was symmetric, we automatically got orthogonal eigenvectors.

This need not be so automatic.

For example: let A =


2 1 1
1 2 1
1 1 2



For this matrix det(A− λI) = −(λ− 1)2(λ− 4),

giving eigenvalues λ = 1, 1, 4.

For λ = 4 we get a one-dimensional eigenspace with basis
 1 1 1

T
.

For λ = 1, the matrix A− I is
1 1 1
1 1 1
1 1 1

 R2−R1−−−−→
R3−R1


1 1 1
0 0 0
0 0 0



9 / 10



Since all three eigenvalues are different, we automatically got a basis of R3. Since A
was symmetric, we automatically got orthogonal eigenvectors.

This need not be so automatic.

For example: let A =


2 1 1
1 2 1
1 1 2

 For this matrix det(A− λI) = −(λ− 1)2(λ− 4),

giving eigenvalues λ = 1, 1, 4.

For λ = 4 we get a one-dimensional eigenspace with basis
 1 1 1

T
.

For λ = 1, the matrix A− I is
1 1 1
1 1 1
1 1 1

 R2−R1−−−−→
R3−R1
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The last matrix corresponds to the equation x1 + x2 + x3 = 0.

Setting x2 = α and

x3 = β we get solutions x =
 −α− β α β

T
. And the usual way to obtain a

basis gives us  −1 1 0
T

and
 −1 0 1

T

These are not orthogonal, though they are a basis for the eigenspace. If we want an
orthonormal basis we can apply the Gram-Schmidt process to these two to get −1/

√
2 1/

√
2 0

 and
 −1/

√
6 −1/

√
6 2/

√
6
T

These two are orthogonal to the eigenvector for λ = 4. If we normalize that we get 1/
√
3 1/

√
3 1/

√
3
 and the three together give us an orthonormal basis for R3

of eigenvectors for A.
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