Symmetric Matrices

D. H. Luecking

MASC

17 April 2024

Important note

Important note

Recall that a matrix A is symmetric if $A^{T}=A$.

Important note

Recall that a matrix A is symmetric if $A^{T}=A$.
In section 6.4, our textbook defines Hermitian matrices. These are a type of square matrix that allows the entries to be complex numbers.

Important note

Recall that a matrix A is symmetric if $A^{T}=A$. In section 6.4, our textbook defines Hermitian matrices. These are a type of square matrix that allows the entries to be complex numbers. If the numbers in a matrix are all real, then the operation denoted A^{H} is precisely the transpose A^{T}.

Important note

Recall that a matrix A is symmetric if $A^{T}=A$.
In section 6.4, our textbook defines Hermitian matrices. These are a type of square matrix that allows the entries to be complex numbers. If the numbers in a matrix are all real, then the operation denoted A^{H} is precisely the transpose A^{T}. In this case, Hermitian matrices are precisely the symmetric matrices.

Important note

Recall that a matrix A is symmetric if $A^{T}=A$.
In section 6.4, our textbook defines Hermitian matrices. These are a type of square matrix that allows the entries to be complex numbers. If the numbers in a matrix are all real, then the operation denoted A^{H} is precisely the transpose A^{T}. In this case, Hermitian matrices are precisely the symmetric matrices.
Thus, everything in section 6.4 and following that refers to A^{H} and/or Hermitian matrices is valid for A^{T} and symmetric matrices, provided A has only real number entries.

Theorem

Let A be a symmetric $n \times n$ matrix, and suppose λ_{1} and λ_{2} are two different eigenvalues. If \mathbf{x}_{1} and \mathbf{x}_{2} are the respective eigenvectors then $\mathbf{x}_{1} \perp \mathbf{x}_{2}$.

To see this, consider

$$
\begin{aligned}
\lambda_{1} \mathbf{x}_{1}^{T} \mathbf{x}_{2} & =\left(\lambda_{1} \mathbf{x}_{1}\right)^{T} \mathbf{x}_{2}=\left(A \mathbf{x}_{1}\right)^{T} \mathbf{x}_{2} \\
& =\mathbf{x}_{1}^{T} A^{T} \mathbf{x}_{2}=\mathbf{x}_{1}^{T} A \mathbf{x}_{2} \\
& =\mathbf{x}_{1}^{T}\left(\lambda_{2}\right) \mathbf{x}_{2}=\lambda_{2} \mathbf{x}_{1}^{T} \mathbf{x}_{2}
\end{aligned}
$$

Theorem

Let A be a symmetric $n \times n$ matrix, and suppose λ_{1} and λ_{2} are two different eigenvalues. If \mathbf{x}_{1} and \mathbf{x}_{2} are the respective eigenvectors then $\mathbf{x}_{1} \perp \mathbf{x}_{2}$.

To see this, consider

$$
\begin{aligned}
\lambda_{1} \mathbf{x}_{1}^{T} \mathbf{x}_{2} & =\left(\lambda_{1} \mathbf{x}_{1}\right)^{T} \mathbf{x}_{2}=\left(A \mathbf{x}_{1}\right)^{T} \mathbf{x}_{2} \\
& =\mathbf{x}_{1}^{T} A^{T} \mathbf{x}_{2}=\mathbf{x}_{1}^{T} A \mathbf{x}_{2} \\
& =\mathbf{x}_{1}^{T}\left(\lambda_{2}\right) \mathbf{x}_{2}=\lambda_{2} \mathbf{x}_{1}^{T} \mathbf{x}_{2}
\end{aligned}
$$

By subtraction, $\left(\lambda_{1}-\lambda_{2}\right) \mathbf{x}_{1}^{T} \mathbf{x}_{2}=0$. Since $\lambda_{1}-\lambda_{2} \neq 0$, we conclude that $\mathbf{x}_{1}^{T} \mathbf{x}_{2}=0$.

Theorem

Let A be a symmetric $n \times n$ matrix, and suppose \mathbf{x} is an eigenvector for A. If $\mathbf{y} \perp \mathbf{x}$ then $A \mathbf{y} \perp \mathbf{x}$.

If λ is the eigenvalue associated to \mathbf{x}, then

$$
(A \mathbf{y})^{T} \mathbf{x}=\mathbf{y}^{T} A^{T} \mathbf{x}=\mathbf{y}^{T} A \mathbf{x}=\lambda \mathbf{y}^{T} \mathbf{x}=0
$$

If λ is the eigenvalue associated to \mathbf{x}, then

$$
(A \mathbf{y})^{T} \mathbf{x}=\mathbf{y}^{T} A^{T} \mathbf{x}=\mathbf{y}^{T} A \mathbf{x}=\lambda \mathbf{y}^{T} \mathbf{x}=0
$$

Theorem

If A is a symmetric matrix then all eigenvalues are real, and there an orthonormal basis for \mathbb{R}^{n} consisting of eigenvectors of A.

If λ is the eigenvalue associated to \mathbf{x}, then

$$
(A \mathbf{y})^{T} \mathbf{x}=\mathbf{y}^{T} A^{T} \mathbf{x}=\mathbf{y}^{T} A \mathbf{x}=\lambda \mathbf{y}^{T} \mathbf{x}=0
$$

Theorem

If A is a symmetric matrix then all eigenvalues are real, and there an orthonormal basis for \mathbb{R}^{n} consisting of eigenvectors of A.

Proving the first part really requires the introduction of complex numbers, Hermitian matrices and A^{H}, so we'll skip that.

If λ is the eigenvalue associated to \mathbf{x}, then

$$
(A \mathbf{y})^{T} \mathbf{x}=\mathbf{y}^{T} A^{T} \mathbf{x}=\mathbf{y}^{T} A \mathbf{x}=\lambda \mathbf{y}^{T} \mathbf{x}=0
$$

Theorem

If A is a symmetric matrix then all eigenvalues are real, and there an orthonormal basis for \mathbb{R}^{n} consisting of eigenvectors of A.

Proving the first part really requires the introduction of complex numbers, Hermitian matrices and A^{H}, so we'll skip that.
Except to say that if $A^{H}=A$ and \mathbf{x} is an eigenvector with eigenvalue λ, then

$$
0 \leq(A \mathbf{x})^{H} A \mathbf{x}=\mathbf{x}^{H} A^{H} A \mathbf{x}=\mathbf{x}^{H} A^{2} \mathbf{x}=\lambda^{2} \mathbf{x}^{H} \mathbf{x}
$$

If λ is the eigenvalue associated to \mathbf{x}, then

$$
(A \mathbf{y})^{T} \mathbf{x}=\mathbf{y}^{T} A^{T} \mathbf{x}=\mathbf{y}^{T} A \mathbf{x}=\lambda \mathbf{y}^{T} \mathbf{x}=0
$$

Theorem

If A is a symmetric matrix then all eigenvalues are real, and there an orthonormal basis for \mathbb{R}^{n} consisting of eigenvectors of A.

Proving the first part really requires the introduction of complex numbers, Hermitian matrices and A^{H}, so we'll skip that.
Except to say that if $A^{H}=A$ and x is an eigenvector with eigenvalue λ, then

$$
0 \leq(A \mathbf{x})^{H} A \mathbf{x}=\mathbf{x}^{H} A^{H} A \mathbf{x}=\mathbf{x}^{H} A^{2} \mathbf{x}=\lambda^{2} \mathbf{x}^{H} \mathbf{x}
$$

Whence, $\lambda^{2} \geq 0$ and so λ must be real.

To prove the second part we need two things:

To prove the second part we need two things: let Q be any orthogonal matrix:

1. If A is symmetric, then $Q^{T} A Q$ is also symmetric.

To prove the second part we need two things: let Q be any orthogonal matrix:

1. If A is symmetric, then $Q^{T} A Q$ is also symmetric. This is because $\left(Q^{T} A Q\right)^{T}=Q^{T} A^{T}\left(Q^{T}\right)^{T}=Q^{T} A Q$

To prove the second part we need two things: let Q be any orthogonal matrix:

1. If A is symmetric, then $Q^{T} A Q$ is also symmetric. This is because $\left(Q^{T} A Q\right)^{T}=Q^{T} A^{T}\left(Q^{T}\right)^{T}=Q^{T} A Q$
2. $Q^{T} A Q$ has the same eigenvalues as A (but maybe different eigenvectors).

To prove the second part we need two things: let Q be any orthogonal matrix:

1. If A is symmetric, then $Q^{T} A Q$ is also symmetric. This is because $\left(Q^{T} A Q\right)^{T}=Q^{T} A^{T}\left(Q^{T}\right)^{T}=Q^{T} A Q$
2. $Q^{T} A Q$ has the same eigenvalues as A (but maybe different eigenvectors). If \mathbf{x} is an eigenvector with eigenvalue λ and $\mathbf{y}=Q^{T} \mathbf{x}$ then $\left(Q^{T} A Q\right) \mathbf{y}=Q^{T} A Q Q^{T} \mathbf{x}=Q^{T} A \mathbf{x}=\lambda Q^{T} \mathbf{x}=\lambda \mathbf{y}$.

To prove the second part we need two things: let Q be any orthogonal matrix:

1. If A is symmetric, then $Q^{T} A Q$ is also symmetric. This is because $\left(Q^{T} A Q\right)^{T}=Q^{T} A^{T}\left(Q^{T}\right)^{T}=Q^{T} A Q$
2. $Q^{T} A Q$ has the same eigenvalues as A (but maybe different eigenvectors). If \mathbf{x} is an eigenvector with eigenvalue λ and $\mathbf{y}=Q^{T} \mathbf{x}$ then
$\left(Q^{T} A Q\right) \mathbf{y}=Q^{T} A Q Q^{T} \mathbf{x}=Q^{T} A \mathbf{x}=\lambda Q^{T} \mathbf{x}=\lambda \mathbf{y}$.
To prove that A has a basis of eigenvectors, start with any eigenvector \mathbf{x}_{1} with eigenvalue λ_{1}. We can arrange for $\left\|\mathrm{x}_{1}\right\|=1$.

To prove the second part we need two things: let Q be any orthogonal matrix:

1. If A is symmetric, then $Q^{T} A Q$ is also symmetric. This is because $\left(Q^{T} A Q\right)^{T}=Q^{T} A^{T}\left(Q^{T}\right)^{T}=Q^{T} A Q$
2. $Q^{T} A Q$ has the same eigenvalues as A (but maybe different eigenvectors). If \mathbf{x} is an eigenvector with eigenvalue λ and $\mathbf{y}=Q^{T} \mathbf{x}$ then
$\left(Q^{T} A Q\right) \mathbf{y}=Q^{T} A Q Q^{T} \mathbf{x}=Q^{T} A \mathbf{x}=\lambda Q^{T} \mathbf{x}=\lambda \mathbf{y}$.
To prove that A has a basis of eigenvectors, start with any eigenvector \mathbf{x}_{1} with eigenvalue λ_{1}. We can arrange for $\left\|\mathbf{x}_{1}\right\|=1$. Let $S=\operatorname{Span}\left(\mathbf{x}_{1}\right)^{\perp}$.

To prove the second part we need two things: let Q be any orthogonal matrix:

1. If A is symmetric, then $Q^{T} A Q$ is also symmetric. This is because

$$
\left(Q^{T} A Q\right)^{T}=Q^{T} A^{T}\left(Q^{T}\right)^{T}=Q^{T} A Q
$$

2. $Q^{T} A Q$ has the same eigenvalues as A (but maybe different eigenvectors). If \mathbf{x} is an eigenvector with eigenvalue λ and $\mathbf{y}=Q^{T} \mathbf{x}$ then
$\left(Q^{T} A Q\right) \mathbf{y}=Q^{T} A Q Q^{T} \mathbf{x}=Q^{T} A \mathbf{x}=\lambda Q^{T} \mathbf{x}=\lambda \mathbf{y}$.
To prove that A has a basis of eigenvectors, start with any eigenvector \mathbf{x}_{1} with eigenvalue λ_{1}. We can arrange for $\left\|\mathbf{x}_{1}\right\|=1$. Let $S=\operatorname{Span}\left(\mathbf{x}_{1}\right)^{\perp}$. Let $\mathbf{q}_{2}, \mathbf{q}_{3}, \ldots \mathbf{q}_{n}$ be an orthonormal basis for S. Consider the orthogonal matrix $Q=\left(\begin{array}{llll}\mathbf{x}_{1} & \mathbf{q}_{2} & \cdots & \mathbf{q}_{n}\end{array}\right)$. Now, because $A \mathbf{q}_{j} \perp \mathbf{x}_{1}$ for each j,

$$
Q^{T} A Q=\left(\begin{array}{c|c}
\lambda_{1} & \mathbf{0} \\
\hline \mathbf{0} & B
\end{array}\right)
$$

where B is an $n-1 \times n-1$ symmetric matrix.

Note that B is the representing matrix for $A: S \rightarrow S$ relative to the basis $\mathbf{q}_{2}, \ldots, \mathbf{q}_{n}$.

Note that B is the representing matrix for $A: S \rightarrow S$ relative to the basis $\mathbf{q}_{2}, \ldots, \mathbf{q}_{n}$. Any eigenvalue/eigenvector pair for B becomes an eigenvalue/eigenvector pair for A with the eigenvector contained in S.

Note that B is the representing matrix for $A: S \rightarrow S$ relative to the basis $\mathbf{q}_{2}, \ldots, \mathbf{q}_{n}$. Any eigenvalue/eigenvector pair for B becomes an eigenvalue/eigenvector pair for A with the eigenvector contained in S. Call any such (normalized) eigenvector \mathbf{x}_{2}.

Note that B is the representing matrix for $A: S \rightarrow S$ relative to the basis $\mathbf{q}_{2}, \ldots, \mathbf{q}_{n}$. Any eigenvalue/eigenvector pair for B becomes an eigenvalue/eigenvector pair for A with the eigenvector contained in S. Call any such (normalized) eigenvector \mathbf{x}_{2}.
We can repeat this process for $\operatorname{Span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)^{\perp}$ to get another eigenvector, and so on. This works until there are no more nonzero vectors in $\operatorname{Span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots\right)^{\perp}$.

Note that B is the representing matrix for $A: S \rightarrow S$ relative to the basis $\mathbf{q}_{2}, \ldots, \mathbf{q}_{n}$. Any eigenvalue/eigenvector pair for B becomes an eigenvalue/eigenvector pair for A with the eigenvector contained in S. Call any such (normalized) eigenvector \mathbf{x}_{2}. We can repeat this process for $\operatorname{Span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)^{\perp}$ to get another eigenvector, and so on. This works until there are no more nonzero vectors in $\operatorname{Span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots\right)^{\perp}$. At that point, the span must be all of \mathbb{R}^{n}.

Note that B is the representing matrix for $A: S \rightarrow S$ relative to the basis $\mathbf{q}_{2}, \ldots, \mathbf{q}_{n}$. Any eigenvalue/eigenvector pair for B becomes an eigenvalue/eigenvector pair for A with the eigenvector contained in S. Call any such (normalized) eigenvector \mathbf{x}_{2}.
We can repeat this process for $\operatorname{Span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)^{\perp}$ to get another eigenvector, and so on. This works until there are no more nonzero vectors in $\operatorname{Span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots\right)^{\perp}$. At that point, the span must be all of \mathbb{R}^{n}.
Example: Find an orthonormal basis of eigenvectors for $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2\end{array}\right)$

Note that B is the representing matrix for $A: S \rightarrow S$ relative to the basis $\mathbf{q}_{2}, \ldots, \mathbf{q}_{n}$. Any eigenvalue/eigenvector pair for B becomes an eigenvalue/eigenvector pair for A with the eigenvector contained in S. Call any such (normalized) eigenvector \mathbf{x}_{2}.
We can repeat this process for $\operatorname{Span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)^{\perp}$ to get another eigenvector, and so on. This works until there are no more nonzero vectors in $\operatorname{Span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots\right)^{\perp}$. At that point, the span must be all of \mathbb{R}^{n}.
Example: Find an orthonormal basis of eigenvectors for $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2\end{array}\right)$
Eigenvalues: $\left|\begin{array}{ccc}2-\lambda & 0 & 0 \\ 0 & 2-\lambda & 1 \\ 0 & 1 & 2-\lambda\end{array}\right|=(2-\lambda)\left((2-\lambda)^{2}-1\right)=(2-\lambda)\left(\lambda^{2}-4 \lambda+3\right)$.
Equate to zero to get $\lambda=1,2,3$.

For $\lambda=1$, the matrix

$$
A-I=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) \xrightarrow{R_{3}-R_{2}}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

For $\lambda=1$, the matrix

$$
A-I=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) \xrightarrow{R_{3}-R_{2}}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

A basis for the eigenspace is $\left(\begin{array}{ccc}0 & -1 & 1\end{array}\right)^{T}$. Normalize to get $\mathbf{q}_{1}=\left(\begin{array}{lll}0 & -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)^{T}$.

For $\lambda=1$, the matrix

$$
A-I=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) \xrightarrow{R_{3}-R_{2}}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

A basis for the eigenspace is $\left(\begin{array}{lll}0 & -1 & 1\end{array}\right)^{T}$. Normalize to get
$\mathbf{q}_{1}=\left(\begin{array}{lll}0 & -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)^{T}$.
For $\lambda=2$ the matrix

$$
A-2 I=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \xrightarrow{R_{3} \leftrightarrow R_{1}}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

For $\lambda=1$, the matrix

$$
A-I=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) \xrightarrow{R_{3}-R_{2}}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

A basis for the eigenspace is $\left(\begin{array}{lll}0 & -1 & 1\end{array}\right)^{T}$. Normalize to get
$\mathbf{q}_{1}=\left(\begin{array}{lll}0 & -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)^{T}$.
For $\lambda=2$ the matrix

$$
A-2 I=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \xrightarrow{R_{3} \leftrightarrow R_{1}}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

A basis for the eigenspace is $\mathbf{q}_{2}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$. The norm is already 1 . Note that $\mathbf{q}_{1} \perp \mathbf{q}_{2}$.

For $\lambda=3$ the matrix

$$
A-3 I=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 1 \\
0 & 1 & -1
\end{array}\right) \xrightarrow{3 \mathrm{EROs}}\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

For $\lambda=3$ the matrix

$$
A-3 I=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 1 \\
0 & 1 & -1
\end{array}\right) \xrightarrow{3 \mathrm{ERO}}\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

A basis for the eigenspace is $\left(\begin{array}{lll}0 & 1 & 1\end{array}\right)^{T}$. Normalize to get
$\mathbf{q}_{3}=\left(\begin{array}{lll}0 & 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)^{T}$. Note that both $\mathbf{q}_{1} \perp \mathbf{q}_{3}$ and $\mathbf{q}_{2} \perp \mathbf{q}_{3}$.

Since all three eigenvalues are different, we automatically got a basis of \mathbb{R}^{3}.

Since all three eigenvalues are different, we automatically got a basis of \mathbb{R}^{3}. Since A was symmetric, we automatically got orthogonal eigenvectors.

Since all three eigenvalues are different, we automatically got a basis of \mathbb{R}^{3}. Since A was symmetric, we automatically got orthogonal eigenvectors.
This need not be so automatic.

Since all three eigenvalues are different, we automatically got a basis of \mathbb{R}^{3}. Since A was symmetric, we automatically got orthogonal eigenvectors.
This need not be so automatic.
For example: let $A=\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$

Since all three eigenvalues are different, we automatically got a basis of \mathbb{R}^{3}. Since A was symmetric, we automatically got orthogonal eigenvectors.
This need not be so automatic.
For example: let $A=\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$ For this matrix $\operatorname{det}(A-\lambda I)=-(\lambda-1)^{2}(\lambda-4)$, giving eigenvalues $\lambda=1,1,4$.

Since all three eigenvalues are different, we automatically got a basis of \mathbb{R}^{3}. Since A was symmetric, we automatically got orthogonal eigenvectors.
This need not be so automatic.
For example: let $A=\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$ For this matrix $\operatorname{det}(A-\lambda I)=-(\lambda-1)^{2}(\lambda-4)$, giving eigenvalues $\lambda=1,1,4$.
For $\lambda=4$ we get a one-dimensional eigenspace with basis $\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{T}$.

Since all three eigenvalues are different, we automatically got a basis of \mathbb{R}^{3}. Since A was symmetric, we automatically got orthogonal eigenvectors.
This need not be so automatic.
For example: let $A=\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$ For this matrix $\operatorname{det}(A-\lambda I)=-(\lambda-1)^{2}(\lambda-4)$, giving eigenvalues $\lambda=1,1,4$.
For $\lambda=4$ we get a one-dimensional eigenspace with basis $\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{T}$.
For $\lambda=1$, the matrix $A-I$ is

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \xrightarrow[R_{3}-R_{1}]{R_{2}-R_{1}}\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The last matrix corresponds to the equation $x_{1}+x_{2}+x_{3}=0$.

The last matrix corresponds to the equation $x_{1}+x_{2}+x_{3}=0$. Setting $\mathbf{x}_{2}=\alpha$ and $x_{3}=\beta$ we get solutions $\mathbf{x}=\left(\begin{array}{lll}-\alpha-\beta & \alpha & \beta\end{array}\right)^{T}$.

The last matrix corresponds to the equation $x_{1}+x_{2}+x_{3}=0$. Setting $\mathbf{x}_{2}=\alpha$ and $x_{3}=\beta$ we get solutions $\mathbf{x}=\left(\begin{array}{ccc}-\alpha-\beta & \alpha & \beta\end{array}\right)^{T}$. And the usual way to obtain a basis gives us

$$
\left(\begin{array}{ccc}
-1 & 1 & 0
\end{array}\right)^{T} \text { and }\left(\begin{array}{ccc}
-1 & 0 & 1
\end{array}\right)^{T}
$$

These are not orthogonal, though they are a basis for the eigenspace. If we want an orthonormal basis we can apply the Gram-Schmidt process to these two to get

$$
\left(\begin{array}{lll}
-1 / \sqrt{2} & 1 / \sqrt{2} & 0
\end{array}\right) \text { and }\left(\begin{array}{lll}
-1 / \sqrt{6} & -1 / \sqrt{6} & 2 / \sqrt{6}
\end{array}\right)^{T}
$$

The last matrix corresponds to the equation $x_{1}+x_{2}+x_{3}=0$. Setting $\mathbf{x}_{2}=\alpha$ and $x_{3}=\beta$ we get solutions $\mathbf{x}=\left(\begin{array}{ccc}-\alpha-\beta & \alpha & \beta\end{array}\right)^{T}$. And the usual way to obtain a basis gives us

$$
\left(\begin{array}{ccc}
-1 & 1 & 0
\end{array}\right)^{T} \text { and }\left(\begin{array}{ccc}
-1 & 0 & 1
\end{array}\right)^{T}
$$

These are not orthogonal, though they are a basis for the eigenspace. If we want an orthonormal basis we can apply the Gram-Schmidt process to these two to get

$$
\left(\begin{array}{lll}
-1 / \sqrt{2} & 1 / \sqrt{2} & 0
\end{array}\right) \text { and }\left(\begin{array}{lll}
-1 / \sqrt{6} & -1 / \sqrt{6} & 2 / \sqrt{6}
\end{array}\right)^{T}
$$

These two are orthogonal to the eigenvector for $\lambda=4$. If we normalize that we get $\left(\begin{array}{lll}1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3}\end{array}\right)$

The last matrix corresponds to the equation $x_{1}+x_{2}+x_{3}=0$. Setting $\mathbf{x}_{2}=\alpha$ and $x_{3}=\beta$ we get solutions $\mathbf{x}=\left(\begin{array}{ccc}-\alpha-\beta & \alpha & \beta\end{array}\right)^{T}$. And the usual way to obtain a basis gives us

$$
\left(\begin{array}{ccc}
-1 & 1 & 0
\end{array}\right)^{T} \text { and }\left(\begin{array}{ccc}
-1 & 0 & 1
\end{array}\right)^{T}
$$

These are not orthogonal, though they are a basis for the eigenspace. If we want an orthonormal basis we can apply the Gram-Schmidt process to these two to get

$$
\left(\begin{array}{lll}
-1 / \sqrt{2} & 1 / \sqrt{2} & 0
\end{array}\right) \text { and }\left(\begin{array}{lll}
-1 / \sqrt{6} & -1 / \sqrt{6} & 2 / \sqrt{6}
\end{array}\right)^{T}
$$

These two are orthogonal to the eigenvector for $\lambda=4$. If we normalize that we get $\left(\begin{array}{lll}1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3}\end{array}\right)$ and the three together give us an orthonormal basis for \mathbb{R}^{3} of eigenvectors for A.

