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Important note

Recall that a matrix A is symmetric if AT = A.

In section 6.4, our textbook defines Hermitian matrices. These are a type of square
matrix that allows the entries to be complex numbers. If the numbers in a matrix are
all real, then the operation denoted A is precisely the transpose AT In this case,
Hermitian matrices are precisely the symmetric matrices.

Thus, everything in section 6.4 and following that refers to A" and/or Hermitian
matrices is valid for AT and symmetric matrices, provided A has only real number
entries.
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Theorem

Let A be a symmetric n X n matrix, and suppose A1 and Ay are two different
eigenvalues. If x1 and xo are the respective eigenvectors then x1 | Xo.

To see this, consider

)\1X{X2 == (>\1X1)TX2 == (AXl)TXQ
=xIATxy = xT Ax,

= X,{()\Q)XQ == AQX{XQ
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Theorem

Let A be a symmetric n X n matrix, and suppose A1 and Ay are two different
eigenvalues. If x1 and xo are the respective eigenvectors then x1 | Xo.

To see this, consider

)\1X{X2 == (>\1X1) X9 = (AXl) X2
=xIATxy = xT Ax,
= X,{()\Q)XQ == AQX{XQ
By subtraction, (A1 — A2)x] x2 = 0. Since A\; — A2 # 0, we conclude that x!xy = 0.

Theorem

Let A be a symmetric n X n matrix, and suppose x is an eigenvector for A. Ify 1 x
then Ay 1 x.
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If A is the eigenvalue associated to x, then

(Ay)Tx =yTATx = yT Ax = \yTx = 0.
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Theorem

If A is a symmetric matrix then all eigenvalues are real, and there an orthonormal basis
for R™ consisting of eigenvectors of A.
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If X is the eigenvalue associated to x, then

(Ay)Tx =yTATx = yT Ax = \yTx = 0.

Theorem

If A is a symmetric matrix then all eigenvalues are real, and there an orthonormal basis
for R™ consisting of eigenvectors of A.

Proving the first part really requires the introduction of complex numbers, Hermitian
matrices and A, so we'll skip that.

Except to say that if A = A and x is an eigenvector with eigenvalue ), then
0 < (Ax)H Ax = xT A" Ax = xH A%x = \2xHx

Whence, A2 > 0 and so A must be real.
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To prove the second part we need two things: let () be any orthogonal matrix:

1. If A is symmetric, then QT AQ is also symmetric. This is because
(QTAQ)" = QTAT(QT)" = QTAQ

2. QT AQ has the same eigenvalues as A (but maybe different eigenvectors). If x is
an eigenvector with eigenvalue A and y = Q7'x then

(QTAQ)y = QTAQQx = QTAx = A\QTx = )y.

To prove that A has a basis of eigenvectors, start with any eigenvector x; with
eigenvalue \;. We can arrange for ||x1|| = 1. Let S = Span(x;)*. Let q2,q3,...q,
be an orthonormal basis for S. Consider the orthogonal matrix

Q= [ X1 Q2 - dp ] Now, because Aq; L x; for each j,

R e il

where B is an n — 1 X n — 1 symmetric matrix.
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Note that B is the representing matrix for A : S — S relative to the basis qg, .. ., qx.
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Note that B is the representing matrix for A : S — S relative to the basis qg, .. ., qx.
Any eigenvalue/eigenvector pair for B becomes an eigenvalue/eigenvector pair for A
with the eigenvector contained in S. Call any such (normalized) eigenvector xa.

We can repeat this process for Span(xl,:)ig)l to get another eigenvector, and so on.

This works until there are no more nonzero vectors in Span(xi, Xa,...)". At that
point, the span must be all of R™.

=N O
N = O

2
Example: Find an orthonormal basis of eigenvectors for A= | 0
0
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Note that B is the representing matrix for A : S — S relative to the basis qg, .. ., qx.
Any eigenvalue/eigenvector pair for B becomes an eigenvalue/eigenvector pair for A
with the eigenvector contained in S. Call any such (normalized) eigenvector xa.

We can repeat this process for Span(xl,:)ig)l to get another eigenvector, and so on.
This works until there are no more nonzero vectors in Span(xj,Xs,...)". At that
point, the span must be all of R™.

2 00
Example: Find an orthonormal basis of eigenvectors for A= | 0 2 1
01 2
2—A 0 0
Eigenvalues: 0 2-X 1 [=2-N(2-XN2-1)=(2-N)(\2—4)+3).
0 1 2-X

Equate to zero to get A = 1,2, 3.
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For A = 1, the matrix

100 100
A-T=]01 1] B8 1011
01 1 00 0
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For A = 1, the matrix

10 0 10 0
A—T=101 1| Bzl 09 1 1
01 1 000

T
A basis for the eigenspace is [ 0 -1 1 ] . Normalize to get

ar= (0 -1/vZ 1/v3 ]T.
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For A = 1, the matrix

A-T=

O O =
— = O
— = O
O O =
O = O
O = O

A basis for the eigenspace is [ 0

T
qi = ( 0 —1/v2 1/v2 ] .
For A = 2 the matrix
0
A—-2] = 0
0

R3—R>

T
-1 1 ] . Normalize to get

R3<—>R1

= o O
O = O
o O O
O O =
O = O
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For A = 1, the matrix

10 0 10 0
A—T=101 1| Bzl 09 1 1
01 1 000

T
A basis for the eigenspace is [ 0 -1 1 ] . Normalize to get

T
q1=(0 ~1//32 1/\/5] .
For A\ = 2 the matrix
000 010
A—or=]o0 0 1| B2y 1 o9 0 1
010 00 0

T
A basis for the eigenspace is qo = ( 1 00 ) . The norm is already 1. Note that
qi L qo.
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For A = 3 the matrix

1 0 10 0
A—3 = 0 -1 1 | 2ER% 1o 1 -1
0 -1 00 0
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For A = 3 the matrix

1 0 10 0
A—3 = 0 -1 1 | 2ER% 1o 1 -1
0 1 —1 00 0

T
A basis for the eigenspace is ( 011 ) . Normalize to get

T
qs = ( 0 1/vV2 1/V2 ] . Note that both q; L q3 and q2 L qs3.
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Since all three eigenvalues are different, we automatically got a basis of R3.
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For example: let A= 1 1 2 1
1 1 2
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For example: let A= | 1 2 1 | For this matrix det(A — A\I) = —(\ — 1)2(\ — 4),
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giving eigenvalues A =1,1,4.
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Since all three eigenvalues are different, we automatically got a basis of R3. Since A
was symmetric, we automatically got orthogonal eigenvectors.

This need not be so automatic.
2 11

For example: let A= | 1 2 1 | For this matrix det(A — A\I) = —(\ — 1)2(\ — 4),

1 1 2

giving eigenvalues A =1,1,4.

T
For A = 4 we get a one-dimensional eigenspace with basis ( 1 11 ] )

For A =1, the matrix A — [ is

11 1 11 1
11 1| =810 0 0
11 1) B Looo
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The last matrix corresponds to the equation x1 + zo + 3 = 0.
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T
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These are not orthogonal, though they are a basis for the eigenspace. If we want an
orthonormal basis we can apply the Gram-Schmidt process to these two to get

basis gives us

[—1/\@ 1/v2 0] and (—1/\@ “1/V6 2/V6 ]T
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The last matrix corresponds to the equation x1 + 22 + 3 = 0. Setting X9 = « and

T
x3 = [ we get solutions x = [ —a—f8 a B ] . And the usual way to obtain a

(—1 10]Tand(—101]T

These are not orthogonal, though they are a basis for the eigenspace. If we want an
orthonormal basis we can apply the Gram-Schmidt process to these two to get

basis gives us

[—1/\@ 1/v2 0] and (—1/\@ “1/V6 2/V6 ]T

These two are orthogonal to the eigenvector for A = 4. If we normalize that we get
( 1/vV3 1/V/3 1/V3 ] and the three together give us an orthonormal basis for R?
of eigenvectors for A.
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