Eigenvalues and Diagonalization

D. H. Luecking

MASC

17 April 2024

Some Examples

(1) Find the eigenvalues of the matrix $A=\left(\begin{array}{rrr}3 & 0 & 0 \\ 1 & 3 & 1 \\ 2 & -1 & 1\end{array}\right)$

Some Examples

(1) Find the eigenvalues of the matrix $A=\left(\begin{array}{rrr}3 & 0 & 0 \\ 1 & 3 & 1 \\ 2 & -1 & 1\end{array}\right)$

Find $\operatorname{det}(A-\lambda I)$

$$
\left|\begin{array}{ccc}
3-\lambda & 0 & 0 \\
1 & 3-\lambda & 1 \\
2 & -1 & 1-\lambda
\end{array}\right|=(3-\lambda)\left(\lambda^{2}-4 \lambda+4\right)
$$

Equate this to 0 and solve to get $\lambda=3,2,2$.
(2) For each eigenvalue of A, find a basis for its eigenspace.
(2) For each eigenvalue of A, find a basis for its eigenspace.

For $\lambda=3$, the matrix

$$
A-3 I=\left(\begin{array}{rrr}
0 & 0 & 0 \\
1 & 0 & 1 \\
2 & -1 & -2
\end{array}\right) \text { reduces to }\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 4 \\
0 & 0 & 0
\end{array}\right)
$$

(2) For each eigenvalue of A, find a basis for its eigenspace.

For $\lambda=3$, the matrix

$$
A-3 I=\left(\begin{array}{rrr}
0 & 0 & 0 \\
1 & 0 & 1 \\
2 & -1 & -2
\end{array}\right) \text { reduces to }\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 4 \\
0 & 0 & 0
\end{array}\right)
$$

So solutions of $(A-3 I) \mathbf{x}=0$ are $\mathbf{x}=\left(\begin{array}{r}-\alpha \\ -4 \alpha \\ \alpha\end{array}\right)$,
(2) For each eigenvalue of A, find a basis for its eigenspace.

For $\lambda=3$, the matrix

$$
A-3 I=\left(\begin{array}{rrr}
0 & 0 & 0 \\
1 & 0 & 1 \\
2 & -1 & -2
\end{array}\right) \quad \text { reduces to } \quad\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 4 \\
0 & 0 & 0
\end{array}\right)
$$

So solutions of $(A-3 I) \mathbf{x}=0$ are $\mathbf{x}=\left(\begin{array}{r}-\alpha \\ -4 \alpha \\ \alpha\end{array}\right)$, and a basis of this eigenspace is $\left(\begin{array}{r}-1 \\ -4 \\ 1\end{array}\right)$.

For $\lambda=2$ the matrix

$$
A-2 I=\left(\begin{array}{rrr}
1 & 0 & 0 \\
1 & 1 & 1 \\
2 & -1 & -1
\end{array}\right) \quad \text { reduces to } \quad\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

For $\lambda=2$ the matrix

$$
A-2 I=\left(\begin{array}{rrr}
1 & 0 & 0 \\
1 & 1 & 1 \\
2 & -1 & -1
\end{array}\right) \quad \text { reduces to } \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

So solutions of $(A-2 I) \mathbf{x}=0$ are $\mathbf{x}=\left(\begin{array}{r}0 \\ -\alpha \\ \alpha\end{array}\right)$,

For $\lambda=2$ the matrix

$$
A-2 I=\left(\begin{array}{rrr}
1 & 0 & 0 \\
1 & 1 & 1 \\
2 & -1 & -1
\end{array}\right) \quad \text { reduces to } \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

So solutions of $(A-2 I) \mathbf{x}=0$ are $\mathbf{x}=\left(\begin{array}{r}0 \\ -\alpha \\ \alpha\end{array}\right)$, and a basis of this eigenspace is $\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right)$.

For $\lambda=2$ the matrix

$$
A-2 I=\left(\begin{array}{rrr}
1 & 0 & 0 \\
1 & 1 & 1 \\
2 & -1 & -1
\end{array}\right) \quad \text { reduces to } \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

So solutions of $(A-2 I) \mathbf{x}=0$ are $\mathbf{x}=\left(\begin{array}{r}0 \\ -\alpha \\ \alpha\end{array}\right)$, and a basis of this eigenspace is $\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right)$.
(3) We can conclude that A is not diagonalizable.
(1) Find the eigenvalues of the matrix $B=\left(\begin{array}{rrr}2 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & -2 & 0\end{array}\right)$

The determinant of $B-\lambda I$ is

$$
\left|\begin{array}{ccc}
2-\lambda & 1 & 1 \\
0 & 3-\lambda & 1 \\
0 & -2 & -\lambda
\end{array}\right|=(2-\lambda)\left(\lambda^{2}-3 \lambda+2\right)
$$

(1) Find the eigenvalues of the matrix $B=\left(\begin{array}{rrr}2 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & -2 & 0\end{array}\right)$

The determinant of $B-\lambda I$ is

$$
\left|\begin{array}{ccc}
2-\lambda & 1 & 1 \\
0 & 3-\lambda & 1 \\
0 & -2 & -\lambda
\end{array}\right|=(2-\lambda)\left(\lambda^{2}-3 \lambda+2\right)
$$

Equate this to 0 and solve to get $\lambda=2,2,1$.
(2) For each eigenvalue of A, find a basis for its eigenspace.
(2) For each eigenvalue of A, find a basis for its eigenspace.

For $\lambda=2$ the matrix

$$
B-2 I=\left(\begin{array}{ccc}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & -2 & -2
\end{array}\right) \text { reduces to }\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

(2) For each eigenvalue of A, find a basis for its eigenspace.

For $\lambda=2$ the matrix

$$
B-2 I=\left(\begin{array}{ccc}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & -2 & -2
\end{array}\right) \text { reduces to }\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

So solutions of $(B-2 I) \mathbf{x}=0$ are $\mathbf{x}=\left(\begin{array}{r}\alpha \\ -\beta \\ \beta\end{array}\right)$,
(2) For each eigenvalue of A, find a basis for its eigenspace.

For $\lambda=2$ the matrix

$$
B-2 I=\left(\begin{array}{ccc}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & -2 & -2
\end{array}\right) \text { reduces to }\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

So solutions of $(B-2 I) \mathbf{x}=0$ are $\mathbf{x}=\left(\begin{array}{r}\alpha \\ -\beta \\ \beta\end{array}\right)$, and a basis of this eigenspace is $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right)$.

For $\lambda=1$ the matrix

$$
B-I=\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & -2 & -1
\end{array}\right) \quad \text { reduces to } \quad\left(\begin{array}{rrr}
1 & 0 & 1 / 2 \\
0 & 1 & 1 / 2 \\
0 & 0 & 0
\end{array}\right)
$$

For $\lambda=1$ the matrix

$$
B-I=\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & -2 & -1
\end{array}\right) \quad \text { reduces to } \quad\left(\begin{array}{rrr}
1 & 0 & 1 / 2 \\
0 & 1 & 1 / 2 \\
0 & 0 & 0
\end{array}\right)
$$

So solutions of $(B-I) \mathbf{x}=0$ are $\mathbf{x}=\left(\begin{array}{c}-\alpha / 2 \\ -\alpha / 2 \\ \alpha\end{array}\right)$,

For $\lambda=1$ the matrix

$$
B-I=\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & -2 & -1
\end{array}\right) \quad \text { reduces to } \quad\left(\begin{array}{rrr}
1 & 0 & 1 / 2 \\
0 & 1 & 1 / 2 \\
0 & 0 & 0
\end{array}\right)
$$

So solutions of $(B-I) \mathbf{x}=0$ are $\mathbf{x}=\left(\begin{array}{c}-\alpha / 2 \\ -\alpha / 2 \\ \alpha\end{array}\right)$, and a basis of this eigenspace is $\left(\begin{array}{r}-1 \\ -1 \\ 2\end{array}\right)$.

For $\lambda=1$ the matrix

$$
B-I=\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & -2 & -1
\end{array}\right) \quad \text { reduces to } \quad\left(\begin{array}{rrr}
1 & 0 & 1 / 2 \\
0 & 1 & 1 / 2 \\
0 & 0 & 0
\end{array}\right)
$$

So solutions of $(B-I) \mathbf{x}=0$ are $\mathbf{x}=\left(\begin{array}{c}-\alpha / 2 \\ -\alpha / 2 \\ \alpha\end{array}\right)$, and a basis of this eigenspace is $\left(\begin{array}{r}-1 \\ -1 \\ 2\end{array}\right)$.
(3) We can conclude that B is diagonalizable.

For $\lambda=1$ the matrix

$$
B-I=\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & -2 & -1
\end{array}\right) \quad \text { reduces to } \quad\left(\begin{array}{rrr}
1 & 0 & 1 / 2 \\
0 & 1 & 1 / 2 \\
0 & 0 & 0
\end{array}\right)
$$

So solutions of $(B-I) \mathbf{x}=0$ are $\mathbf{x}=\left(\begin{array}{c}-\alpha / 2 \\ -\alpha / 2 \\ \alpha\end{array}\right)$, and a basis of this eigenspace is $\left(\begin{array}{r}-1 \\ -1 \\ 2\end{array}\right)$.
(3) We can conclude that B is diagonalizable. The invertible matrix
$S=\left(\begin{array}{rrr}1 & 0 & -1 \\ 0 & -1 & -1 \\ 0 & 1 & 2\end{array}\right)$, consisting of the eigenvectors of B,

For $\lambda=1$ the matrix

$$
B-I=\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & -2 & -1
\end{array}\right) \quad \text { reduces to } \quad\left(\begin{array}{rrr}
1 & 0 & 1 / 2 \\
0 & 1 & 1 / 2 \\
0 & 0 & 0
\end{array}\right)
$$

So solutions of $(B-I) \mathbf{x}=0$ are $\mathbf{x}=\left(\begin{array}{c}-\alpha / 2 \\ -\alpha / 2 \\ \alpha\end{array}\right)$, and a basis of this eigenspace is $\left(\begin{array}{r}-1 \\ -1 \\ 2\end{array}\right)$.
(3) We can conclude that B is diagonalizable. The invertible matrix
$S=\left(\begin{array}{rrr}1 & 0 & -1 \\ 0 & -1 & -1 \\ 0 & 1 & 2\end{array}\right)$, consisting of the eigenvectors of B, will satisfy
$S^{-1} B S=\left(\begin{array}{ccc}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$.

In both these cases, there was a double root.

In both these cases, there was a double root. In the second case the eigenspace was 2-dimensional, but in the first it was only 1-dimensional.

In both these cases, there was a double root. In the second case the eigenspace was 2-dimensional, but in the first it was only 1-dimensional.
There is a theory about this: The dimension of the eigenspace can be anything from 1 to the multiplicity of the root.

In both these cases, there was a double root. In the second case the eigenspace was 2-dimensional, but in the first it was only 1-dimensional.
There is a theory about this: The dimension of the eigenspace can be anything from 1 to the multiplicity of the root.
If A is $n \times n$, the degree of the characteristic polynomial $\operatorname{det}(A-\lambda I)$ is n. The theory of polynomials says that the sum of the multiplicities (counting complex roots) is n.

In both these cases, there was a double root. In the second case the eigenspace was 2-dimensional, but in the first it was only 1-dimensional.
There is a theory about this: The dimension of the eigenspace can be anything from 1 to the multiplicity of the root.
If A is $n \times n$, the degree of the characteristic polynomial $\operatorname{det}(A-\lambda I)$ is n. The theory of polynomials says that the sum of the multiplicities (counting complex roots) is n. Thus, if any eigenspace has dimension less than the multiplicity, the dimensions cannot add up to n and A will not be diagonizable.

In both these cases, there was a double root. In the second case the eigenspace was 2-dimensional, but in the first it was only 1-dimensional.
There is a theory about this: The dimension of the eigenspace can be anything from 1 to the multiplicity of the root.
If A is $n \times n$, the degree of the characteristic polynomial $\operatorname{det}(A-\lambda I)$ is n. The theory of polynomials says that the sum of the multiplicities (counting complex roots) is n. Thus, if any eigenspace has dimension less than the multiplicity, the dimensions cannot add up to n and A will not be diagonizable.

A matrix without real eigenvalues

In both these cases, there was a double root. In the second case the eigenspace was 2-dimensional, but in the first it was only 1-dimensional.
There is a theory about this: The dimension of the eigenspace can be anything from 1 to the multiplicity of the root.
If A is $n \times n$, the degree of the characteristic polynomial $\operatorname{det}(A-\lambda I)$ is n. The theory of polynomials says that the sum of the multiplicities (counting complex roots) is n. Thus, if any eigenspace has dimension less than the multiplicity, the dimensions cannot add up to n and A will not be diagonizable.

A matrix without real eigenvalues

The matrix $R=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$ satisfies $\operatorname{det}(R-\lambda I)=\lambda^{2}+1$.

In both these cases, there was a double root. In the second case the eigenspace was 2-dimensional, but in the first it was only 1-dimensional.
There is a theory about this: The dimension of the eigenspace can be anything from 1 to the multiplicity of the root.
If A is $n \times n$, the degree of the characteristic polynomial $\operatorname{det}(A-\lambda I)$ is n. The theory of polynomials says that the sum of the multiplicities (counting complex roots) is n. Thus, if any eigenspace has dimension less than the multiplicity, the dimensions cannot add up to n and A will not be diagonizable.

A matrix without real eigenvalues

The matrix $R=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$ satisfies $\operatorname{det}(R-\lambda I)=\lambda^{2}+1$. If we equate this to 0 and solve we get $\lambda= \pm \sqrt{-1}= \pm i$.

In both these cases, there was a double root. In the second case the eigenspace was 2-dimensional, but in the first it was only 1-dimensional.
There is a theory about this: The dimension of the eigenspace can be anything from 1 to the multiplicity of the root.
If A is $n \times n$, the degree of the characteristic polynomial $\operatorname{det}(A-\lambda I)$ is n. The theory of polynomials says that the sum of the multiplicities (counting complex roots) is n. Thus, if any eigenspace has dimension less than the multiplicity, the dimensions cannot add up to n and A will not be diagonizable.

A matrix without real eigenvalues

The matrix $R=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$ satisfies $\operatorname{det}(R-\lambda I)=\lambda^{2}+1$. If we equate this to 0 and solve we get $\lambda= \pm \sqrt{-1}= \pm i$. If we try to find eigenvectors, we solve $(R-i I) \mathbf{x}=\mathbf{0}$ we get $\mathbf{x}=\binom{i \alpha}{\alpha}$.

In both these cases, there was a double root. In the second case the eigenspace was 2-dimensional, but in the first it was only 1-dimensional.
There is a theory about this: The dimension of the eigenspace can be anything from 1 to the multiplicity of the root.
If A is $n \times n$, the degree of the characteristic polynomial $\operatorname{det}(A-\lambda I)$ is n. The theory of polynomials says that the sum of the multiplicities (counting complex roots) is n. Thus, if any eigenspace has dimension less than the multiplicity, the dimensions cannot add up to n and A will not be diagonizable.

A matrix without real eigenvalues

The matrix $R=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$ satisfies $\operatorname{det}(R-\lambda I)=\lambda^{2}+1$. If we equate this to 0 and solve we get $\lambda= \pm \sqrt{-1}= \pm i$. If we try to find eigenvectors, we solve $(R-i I) \mathbf{x}=\mathbf{0}$ we get $\mathbf{x}=\binom{i \alpha}{\alpha}$. If we solve $(R+i I) \mathbf{x}=\mathbf{0}$ we get $\mathbf{x}=\binom{-i \alpha}{\alpha}$.

The problem with this is that neither of these eigenvectors belongs to \mathbb{R}^{2}.

The problem with this is that neither of these eigenvectors belongs to \mathbb{R}^{2}. For a complete analysis we would need to expand our concept of vector spaces to allow complex numbers for scalars.

The problem with this is that neither of these eigenvectors belongs to \mathbb{R}^{2}. For a complete analysis we would need to expand our concept of vector spaces to allow complex numbers for scalars. A very complete and useful theory results, but is beyond what I intend to cover in this course.

Note that the matrix R is a rotation matrix: a 90° rotation.

The problem with this is that neither of these eigenvectors belongs to \mathbb{R}^{2}. For a complete analysis we would need to expand our concept of vector spaces to allow complex numbers for scalars. A very complete and useful theory results, but is beyond what I intend to cover in this course.
Note that the matrix R is a rotation matrix: a 90° rotation. Clearly, $R \mathrm{x}$ is always orthogonal to \mathbf{x} and so there cannot be any nonzero vectors in \mathbb{R}^{2} such that $R \mathbf{x}$ is a real multiple of \mathbf{x}.
Other rotation matrices $R_{\theta}=\left(\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ also do not have real eigenvalues unless θ is 0 or 180°.

The problem with this is that neither of these eigenvectors belongs to \mathbb{R}^{2}. For a complete analysis we would need to expand our concept of vector spaces to allow complex numbers for scalars. A very complete and useful theory results, but is beyond what I intend to cover in this course.
Note that the matrix R is a rotation matrix: a 90° rotation. Clearly, $R \mathrm{x}$ is always orthogonal to \mathbf{x} and so there cannot be any nonzero vectors in \mathbb{R}^{2} such that $R \mathbf{x}$ is a real multiple of \mathbf{x}.
Other rotation matrices $R_{\theta}=\left(\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ also do not have real eigenvalues unless θ is 0 or 180°. The complex eigenvalues are $\lambda=\cos \theta \pm i \sin \theta$.

The problem with this is that neither of these eigenvectors belongs to \mathbb{R}^{2}. For a complete analysis we would need to expand our concept of vector spaces to allow complex numbers for scalars. A very complete and useful theory results, but is beyond what I intend to cover in this course.
Note that the matrix R is a rotation matrix: a 90° rotation. Clearly, $R \mathrm{x}$ is always orthogonal to \mathbf{x} and so there cannot be any nonzero vectors in \mathbb{R}^{2} such that $R \mathbf{x}$ is a real multiple of \mathbf{x}.
Other rotation matrices $R_{\theta}=\left(\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ also do not have real eigenvalues unless θ is 0 or 180°. The complex eigenvalues are $\lambda=\cos \theta \pm i \sin \theta$.
And the eigenvectors are the same as before: for $\lambda=\cos \theta+i \sin \theta$ they are multiples of $(i, 1)^{T}$,

The problem with this is that neither of these eigenvectors belongs to \mathbb{R}^{2}. For a complete analysis we would need to expand our concept of vector spaces to allow complex numbers for scalars. A very complete and useful theory results, but is beyond what I intend to cover in this course.
Note that the matrix R is a rotation matrix: a 90° rotation. Clearly, $R \mathrm{x}$ is always orthogonal to \mathbf{x} and so there cannot be any nonzero vectors in \mathbb{R}^{2} such that $R \mathbf{x}$ is a real multiple of \mathbf{x}.
Other rotation matrices $R_{\theta}=\left(\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ also do not have real eigenvalues unless θ is 0 or 180°. The complex eigenvalues are $\lambda=\cos \theta \pm i \sin \theta$.
And the eigenvectors are the same as before: for $\lambda=\cos \theta+i \sin \theta$ they are multiples of $(i, 1)^{T}$, and for $\lambda=\cos \theta-i \sin \theta$ they are multiples of $(-i, 1)^{T}$.

