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Some Examples

(1) Find the eigenvalues of the matrix A =


3 0 0
1 3 1
2 −1 1



Find det(A− λI) ∣∣∣∣∣∣
3− λ 0 0
1 3− λ 1
2 −1 1− λ

∣∣∣∣∣∣ = (3− λ)(λ2 − 4λ+ 4)

Equate this to 0 and solve to get λ = 3, 2, 2.
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(2) For each eigenvalue of A, find a basis for its eigenspace.

For λ = 3, the matrix

A− 3I =


0 0 0
1 0 1
2 −1 −2

 reduces to


1 0 1
0 1 4
0 0 0


So solutions of (A− 3I)x = 0 are x =


−α

−4α
α

, and a basis of this eigenspace is
−1
−4
1

.
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For λ = 2 the matrix

A− 2I =


1 0 0
1 1 1
2 −1 −1

 reduces to


1 0 0
0 1 1
0 0 0



So solutions of (A− 2I)x = 0 are x =


0

−α
α

, and a basis of this eigenspace is
0

−1
1

.

(3) We can conclude that A is not diagonalizable.
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(1) Find the eigenvalues of the matrix B =


2 1 1
0 3 1
0 −2 0


The determinant of B − λI is∣∣∣∣∣∣

2− λ 1 1
0 3− λ 1
0 −2 −λ

∣∣∣∣∣∣ = (2− λ)(λ2 − 3λ+ 2)

Equate this to 0 and solve to get λ = 2, 2, 1.
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0 0 0


So solutions of (B − 2I)x = 0 are x =
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α

−β
β
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For λ = 1 the matrix

B − I =


1 1 1
0 2 1
0 −2 −1

 reduces to


1 0 1/2
0 1 1/2
0 0 0



So solutions of (B − I)x = 0 are x =


−α/2
−α/2
α

, and a basis of this eigenspace is
−1
−1
2

.

(3) We can conclude that B is diagonalizable. The invertible matrix

S =


1 0 −1
0 −1 −1
0 1 2

, consisting of the eigenvectors of B, will satisfy

S−1BS =


2 0 0
0 2 0
0 0 1

.
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In both these cases, there was a double root.

In the second case the eigenspace was
2-dimensional, but in the first it was only 1-dimensional.

There is a theory about this: The dimension of the eigenspace can be anything from 1
to the multiplicity of the root.

If A is n× n, the degree of the characteristic polynomial det(A− λI) is n. The theory
of polynomials says that the sum of the multiplicities (counting complex roots) is n.
Thus, if any eigenspace has dimension less than the multiplicity, the dimensions cannot
add up to n and A will not be diagonizable.

A matrix without real eigenvalues

The matrix R =

 0 −1
1 0

 satisfies det(R− λI) = λ2 + 1. If we equate this to 0

and solve we get λ = ±
√
−1 = ±i. If we try to find eigenvectors, we solve

(R− iI)x = 0 we get x =

 iα
α

. If we solve (R+ iI)x = 0 we get x =

 −iα
α

.
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The problem with this is that neither of these eigenvectors belongs to R2.

For a
complete analysis we would need to expand our concept of vector spaces to allow
complex numbers for scalars. A very complete and useful theory results, but is beyond
what I intend to cover in this course.

Note that the matrix R is a rotation matrix: a 90◦ rotation. Clearly, Rx is always
orthogonal to x and so there cannot be any nonzero vectors in R2 such that Rx is a
real multiple of x.

Other rotation matrices Rθ =

 cos θ − sin θ
sin θ cos θ

 also do not have real eigenvalues

unless θ is 0 or 180◦. The complex eigenvalues are λ = cos θ ± i sin θ.

And the eigenvectors are the same as before: for λ = cos θ + i sin θ they are multiples
of (i, 1)T , and for λ = cos θ − i sin θ they are multiples of (−i, 1)T .
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