Diagonalization

D. H. Luecking

MASC

15 April 2024

Definition

An $n \times n$ matrix A is diagonalizable if it is similar to a diagonal matrix.

Definition

An $n \times n$ matrix A is diagonalizable if it is similar to a diagonal matrix. A diagonal matrix is a matrix D with zeros everywhere except possibly on the main diagonal (i.e., $\left.d_{11}, d_{22}, \ldots, d_{n n}\right)$.

Definition

An $n \times n$ matrix A is diagonalizable if it is similar to a diagonal matrix. A diagonal matrix is a matrix D with zeros everywhere except possibly on the main diagonal (i.e., $\left.d_{11}, d_{22}, \ldots, d_{n n}\right)$. A is similar to D means that there is an invertible matrix S such that $D=S^{-1} A S$.

Definition

An $n \times n$ matrix A is diagonalizable if it is similar to a diagonal matrix. A diagonal matrix is a matrix D with zeros everywhere except possibly on the main diagonal (i.e., $\left.d_{11}, d_{22}, \ldots, d_{n n}\right)$. A is similar to D means that there is an invertible matrix S such that $D=S^{-1} A S$.

We have seen that this will happen if \mathbb{R}^{n} has a basis consisting of eigenvectors of A.

Definition

An $n \times n$ matrix A is diagonalizable if it is similar to a diagonal matrix. A diagonal matrix is a matrix D with zeros everywhere except possibly on the main diagonal (i.e., $\left.d_{11}, d_{22}, \ldots, d_{n n}\right)$. A is similar to D means that there is an invertible matrix S such that $D=S^{-1} A S$.

We have seen that this will happen if \mathbb{R}^{n} has a basis consisting of eigenvectors of A. In that case, the columns of S are those eigenvectors and the main diagonal of D consists of the corresponding eigenvalues (in the same order as the eigenvectors appear in S).

Definition

An $n \times n$ matrix A is diagonalizable if it is similar to a diagonal matrix. A diagonal matrix is a matrix D with zeros everywhere except possibly on the main diagonal (i.e., $\left.d_{11}, d_{22}, \ldots, d_{n n}\right)$. A is similar to D means that there is an invertible matrix S such that $D=S^{-1} A S$.

We have seen that this will happen if \mathbb{R}^{n} has a basis consisting of eigenvectors of A. In that case, the columns of S are those eigenvectors and the main diagonal of D consists of the corresponding eigenvalues (in the same order as the eigenvectors appear in S).
In fact, this case is the only way a matrix can be diagonalizable:

Definition

An $n \times n$ matrix A is diagonalizable if it is similar to a diagonal matrix. A diagonal matrix is a matrix D with zeros everywhere except possibly on the main diagonal (i.e., $\left.d_{11}, d_{22}, \ldots, d_{n n}\right)$. A is similar to D means that there is an invertible matrix S such that $D=S^{-1} A S$.

We have seen that this will happen if \mathbb{R}^{n} has a basis consisting of eigenvectors of A. In that case, the columns of S are those eigenvectors and the main diagonal of D consists of the corresponding eigenvalues (in the same order as the eigenvectors appear in S).
In fact, this case is the only way a matrix can be diagonalizable:

Theorem

An $n \times n$ matrix A is diagonalizable if and only if \mathbb{R}^{n} has a basis consisting of eigenvectors of A. It happens when the sum of the dimensions of the eigenspaces is n. In that case the diagonal elements are the eigenvalues of A.

If $D=S^{-1} A S$ then we have $A S=S D$.

If $D=S^{-1} A S$ then we have $A S=S D$. If D is diagonal then we can calculate $S D$: it is the matrix in which column j is column j of S multiplied by the entry $d_{j j}$ of D.

If $D=S^{-1} A S$ then we have $A S=S D$. If D is diagonal then we can calculate $S D$: it is the matrix in which column j is column j of S multiplied by the entry $d_{j j}$ of D. That is, if $S=\left(\begin{array}{llll}\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n}\end{array}\right)$, then $S D=\left(\begin{array}{llll}d_{11} \mathbf{x}_{1} & d_{22} \mathbf{x}_{2} & \cdots & d_{n n} \mathbf{x}_{n}\end{array}\right)$

If $D=S^{-1} A S$ then we have $A S=S D$. If D is diagonal then we can calculate $S D$: it is the matrix in which column j is column j of S multiplied by the entry $d_{j j}$ of D. That is, if $S=\left(\begin{array}{llll}\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n}\end{array}\right)$, then $S D=\left(\begin{array}{llll}d_{11} \mathbf{x}_{1} & d_{22} \mathbf{x}_{2} & \cdots & d_{n n} \mathbf{x}_{n}\end{array}\right)$ Now $A S$ is the matrix $\left(\begin{array}{llll}A \mathbf{x}_{1} & A \mathbf{x}_{2} & \cdots & A \mathbf{x}_{n}\end{array}\right)$

If $D=S^{-1} A S$ then we have $A S=S D$. If D is diagonal then we can calculate $S D$: it is the matrix in which column j is column j of S multiplied by the entry $d_{j j}$ of D. That is, if $S=\left(\begin{array}{llll}\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n}\end{array}\right)$, then $S D=\left(\begin{array}{llll}d_{11} \mathbf{x}_{1} & d_{22} \mathbf{x}_{2} & \cdots & d_{n n} \mathbf{x}_{n}\end{array}\right)$ Now $A S$ is the matrix $\left(\begin{array}{llll}A \mathbf{x}_{1} & A \mathbf{x}_{2} & \cdots & A \mathbf{x}_{n}\end{array}\right)$ Comparing these, if $A S=S D$ we must have $A \mathbf{x}_{j}=d_{j j} \mathbf{x}_{j}$.

If $D=S^{-1} A S$ then we have $A S=S D$. If D is diagonal then we can calculate $S D$: it is the matrix in which column j is column j of S multiplied by the entry $d_{j j}$ of D. That is, if $S=\left(\begin{array}{llll}\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n}\end{array}\right)$, then $S D=\left(\begin{array}{llll}d_{11} \mathbf{x}_{1} & d_{22} \mathbf{x}_{2} & \cdots & d_{n n} \mathbf{x}_{n}\end{array}\right)$ Now $A S$ is the matrix $\left(\begin{array}{cccc}A \mathbf{x}_{1} & A \mathbf{x}_{2} & \cdots & A \mathbf{x}_{n}\end{array}\right)$ Comparing these, if $A S=S D$ we must have $A \mathbf{x}_{j}=d_{j j} \mathbf{x}_{j}$. That is, $D=S^{-1} A S$ can only be diagonal if the columns of S are eigenvectors and the diagonal of D are eigenvalues.

If $D=S^{-1} A S$ then we have $A S=S D$. If D is diagonal then we can calculate $S D$: it is the matrix in which column j is column j of S multiplied by the entry $d_{j j}$ of D. That is, if $S=\left(\begin{array}{llll}\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n}\end{array}\right)$, then $S D=\left(\begin{array}{llll}d_{11} \mathbf{x}_{1} & d_{22} \mathbf{x}_{2} & \cdots & d_{n n} \mathbf{x}_{n}\end{array}\right)$ Now $A S$ is the matrix $\left(\begin{array}{cccc}A \mathbf{x}_{1} & A \mathbf{x}_{2} & \cdots & A \mathbf{x}_{n}\end{array}\right)$ Comparing these, if $A S=S D$ we must have $A \mathbf{x}_{j}=d_{j j} \mathbf{x}_{j}$. That is, $D=S^{-1} A S$ can only be diagonal if the columns of S are eigenvectors and the diagonal of D are eigenvalues.
Finally, for S to be invertible, its columns must be independent and so they are a basis for \mathbb{R}^{n}.

Example: Diagonalize the forllowing matrix $A=\left(\begin{array}{cc}0.7 & 0.2 \\ 0.3 & 0.8\end{array}\right)$

Example: Diagonalize the forllowing matrix $A=\left(\begin{array}{cc}0.7 & 0.2 \\ 0.3 & 0.8\end{array}\right)$
This means: find S and D where S is invertible, D is diagonal, and $S^{-1} A S=D$.

Example: Diagonalize the forllowing matrix $A=\left(\begin{array}{cc}0.7 & 0.2 \\ 0.3 & 0.8\end{array}\right)$
This means: find S and D where S is invertible, D is diagonal, and $S^{-1} A S=D$. We already have the information needed to do this:

$$
S=\left(\begin{array}{rr}
-1 & 2 \\
1 & 3
\end{array}\right), \quad \text { and } \quad D=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right)
$$

Example: Diagonalize the forllowing matrix $A=\left(\begin{array}{ll}0.7 & 0.2 \\ 0.3 & 0.8\end{array}\right)$
This means: find S and D where S is invertible, D is diagonal, and $S^{-1} A S=D$.
We already have the information needed to do this:

$$
S=\left(\begin{array}{rr}
-1 & 2 \\
1 & 3
\end{array}\right), \quad \text { and } \quad D=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right)
$$

To check this, find S^{-1} and check that $D=S^{-1} A S$:

$$
\begin{aligned}
\left(\begin{array}{rr}
-3 / 5 & 2 / 5 \\
1 / 5 & 1 / 5
\end{array}\right)\left(\begin{array}{ll}
0.7 & 0.2 \\
0.3 & 0.8
\end{array}\right)\left(\begin{array}{rr}
-1 & 2 \\
1 & 3
\end{array}\right) & =\left(\begin{array}{rr}
-3 / 5 & 2 / 5 \\
1 / 5 & 1 / 5
\end{array}\right)\left(\begin{array}{rr}
-0.5 & 2 \\
0.5 & 3
\end{array}\right) \\
& =\left(\begin{array}{cc}
0.5 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Example: Diagonalize the following matrix, or else prove it is not diagonalizable:

$$
A=\left(\begin{array}{rrr}
1 & 1 & -1 \\
0 & 2 & 0 \\
-1 & 1 & 1
\end{array}\right)
$$

Example: Diagonalize the following matrix, or else prove it is not diagonalizable:

$$
A=\left(\begin{array}{rrr}
1 & 1 & -1 \\
0 & 2 & 0 \\
-1 & 1 & 1
\end{array}\right)
$$

First step: find the eigenvalues.

$$
\left|\begin{array}{ccc}
1-\lambda & 1 & 1 \\
0 & 2-\lambda & 0 \\
1 & 1 & 1-\lambda
\end{array}\right|=(2-\lambda)\left((1-\lambda)^{2}-1\right)=(2-\lambda)\left(\lambda^{2}-2 \lambda\right)
$$

Example: Diagonalize the following matrix, or else prove it is not diagonalizable:

$$
A=\left(\begin{array}{rrr}
1 & 1 & -1 \\
0 & 2 & 0 \\
-1 & 1 & 1
\end{array}\right)
$$

First step: find the eigenvalues.

$$
\left|\begin{array}{ccc}
1-\lambda & 1 & 1 \\
0 & 2-\lambda & 0 \\
1 & 1 & 1-\lambda
\end{array}\right|=(2-\lambda)\left((1-\lambda)^{2}-1\right)=(2-\lambda)\left(\lambda^{2}-2 \lambda\right)
$$

Equating this to 0 we get two roots: $\lambda=0$ and a double root $\lambda=2$.

Second step: Find the eigenspaces.

$$
A-2 I=\left(\begin{array}{ccc}
-1 & 1 & 1 \\
0 & 0 & 0 \\
1 & 1 & -1
\end{array}\right) \xrightarrow{5 \mathrm{EROs}}\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Second step: Find the eigenspaces.

$$
A-2 I=\left(\begin{array}{ccc}
-1 & 1 & 1 \\
0 & 0 & 0 \\
1 & 1 & -1
\end{array}\right) \xrightarrow{5 \mathrm{EROs}}\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The equations this gives are $x_{1}=x_{3}$ and $x_{2}=0$. The eigenspace is therefore

$$
\left\{\left.\left(\begin{array}{c}
\alpha \\
0 \\
\alpha
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\} \quad \text { with basis }\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

The eigenspace for $\lambda=0$

$$
A-0 I=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 0 \\
1 & 1 & 1
\end{array}\right) \xrightarrow{3 \mathrm{EROs}}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The eigenspace for $\lambda=0$

$$
A-0 I=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 0 \\
1 & 1 & 1
\end{array}\right) \xrightarrow{3 \mathrm{EROs}}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The equations this gives are $x_{1}=-x_{3}$ and $x_{2}=0$. The eigenspace is therefore

$$
\left\{\left.\left(\begin{array}{c}
-\alpha \\
0 \\
\alpha
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\} \text { with basis }\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

The eigenspace for $\lambda=0$

$$
A-0 I=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 0 \\
1 & 1 & 1
\end{array}\right) \xrightarrow{3 \mathrm{EROs}}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The equations this gives are $x_{1}=-x_{3}$ and $x_{2}=0$. The eigenspace is therefore

$$
\left\{\left.\left(\begin{array}{c}
-\alpha \\
0 \\
\alpha
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\} \text { with basis }\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

This matrix is not diagonalizable because the only two eigenspaces have dimension 1 each for a total of 2 .

The eigenspace for $\lambda=0$

$$
A-0 I=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 0 \\
1 & 1 & 1
\end{array}\right) \xrightarrow{3 \mathrm{EROs}}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The equations this gives are $x_{1}=-x_{3}$ and $x_{2}=0$. The eigenspace is therefore

$$
\left\{\left.\left(\begin{array}{c}
-\alpha \\
0 \\
\alpha
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\} \text { with basis }\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

This matrix is not diagonalizable because the only two eigenspaces have dimension 1 each for a total of 2.
There is one special case where a matrix is assured to be diagonalizable: when there are as many different eigenvalues as the dimension.

The eigenspace for $\lambda=0$

$$
A-0 I=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 0 \\
1 & 1 & 1
\end{array}\right) \xrightarrow{3 \mathrm{EROs}}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The equations this gives are $x_{1}=-x_{3}$ and $x_{2}=0$. The eigenspace is therefore

$$
\left\{\left.\left(\begin{array}{c}
-\alpha \\
0 \\
\alpha
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\} \quad \text { with basis }\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

This matrix is not diagonalizable because the only two eigenspaces have dimension 1 each for a total of 2.
There is one special case where a matrix is assured to be diagonalizable: when there are as many different eigenvalues as the dimension.
This is because each eigenspace has dimension at least one, and in this case there will be n eigenspaces.

