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Recall the matrix example from Chapter 1:

A =

 0.7 0.2
0.3 0.8



We stated without explanation that the vectors v1 =

 1
−1

 and v2 =

 2
3

 were

special in that Av1 = (1/2)v1 and Av2 = v2.

These two vectors were important because the linear transformation of multiplication
by A has a particularly nice representing matrix with respect to the basis B = [v1,v2].

That representing matrix is

 1/2 0
0 1

. Because, if x = c1v1 + c2v2 then

Ax = (1/2)c1v1 + c2v2. That is, 1/2 0
0 1

 [x]B = [Ax]B.
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Another way to put this is that if S =

 1 2
−1 3

 then

S−1AS =

 1/2 0
0 1



Things would be pretty nice if every matrix had a basis, with respect to which the
representing matrix is a diagonal matrix.

This is not quite true, but many do have such a basis.

Precisely what one needs are vectors x that are not 0 and satisfy Ax = λx for some
scalar λ.

Definition

If A is an n× n matrix and x ∈ Rn is a nonzero vector such that Ax = λx for some
scalar λ then x is called an eigenvector for A and λ is an eigenvalue. For a given
eigenvalue λ, the set of solutions of Ax = λx is called the eigenspace associated to λ.

Every eigenvector has an associated eigenvalue. It turns out to be easier to find the
eigenvalues first.
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Theorem

If λ is an eigenvalue associated to an eigenvector x, then A− λI must be singular and
therefore det(A− λI) = 0.

This is true because the eigenvector x must satisfy

Ax = λx

Ax− λx = 0

(A− λI)x = 0 (I the identity matrix)

The last formulation says that x must be a nonvero vector in the nullspace of A− λI.
That is, the nullity of A− λI is greater than zero. This means the rank of A− λI
must be less than n and so A− λI is not invertible.

This theorem gives us the means to find eigenvalues: Equate det(A− λI) to zero and
solve for λ.

Let’s apply this to the matrix A =

 0.7 0.2
0.3 0.8


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We get

det(A− λI) =

∣∣∣∣ 0.7− λ 0.2
0.3 0.8− λ

∣∣∣∣ = λ2 − 1.5λ+ 0.5 = (λ− 1)(λ− 0.5)

Thus the eigenvalues are λ = 1 and λ = 1/2.

To get an eigenvector for λ = 1, we
need to solve (A− I)x = 0:

(A− I)x =

 −0.3 0.2
0.3 −0.2

x = 0

Row-reducing leads to x1 = (2/3)x2 and so the null space of A− I is{ (2/3)α
α

 α ∈ R
}

Any nonzero vector in this set is an eigenvector with eigenvalue λ = 1. Selecting α = 3

gives us

 2
3

 but any other convenient multiple is also an eigenvector.
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For eigenvalue λ = 1/2 we do the same to A− (1/2)I:

(A− (1/2)I)x =

 0.2 0.2
0.3 0.3

x = 0

The solution of this leads to x1 = −x2 and the eigenspace is{ −α
α

 α ∈ R
}

Normally we want a basis for each eigenspace. If we put these together, we hope to
get a basis for all of Rn.

Theorem

If x is an eigenvector for A with eigenvalue λ, then x is also an eigenvector for αA
with eigenvalue αλ.
If x is an eigenvector for A with eigenvalue λ, then x is also an eigenvector for A2

with eigenvalue λ2.

If Ax = λx then αAx = αλx, and A2x = A(Ax) = A(λx) = λ(Ax) = λ(λx).

6 / 12
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Theorem

If v1,v2, . . . ,vr is a basis for the eigenspace of A associated to λ1 and vr+1, . . . ,vm

is a basis for the eigenspace of A associated to λ2 with λ2 ̸= λ1, then
{v1,v2, . . . ,vm} is independent.

Suppose
(c1v1 + · · ·+ crvr) + (cr+1vr+1 + · · ·+ cmvm) = 0

Multiply this by λ1 to get

λ1(c1v1 + · · ·+ crvr) + λ1(cr+1vr+1 + · · ·+ cmvm) = 0

Multiply the same sum by A to get

λ1(c1v1 + · · ·+ crvr) + λ2(cr+1vr+1 + · · ·+ cmvm) = 0

Subtract the last two equations to get

(λ1 − λ2)(cr+1vr+1 + · · ·+ cmvm) = 0

By independence, cr+1 = cr+2 = · · · = cm = 0. That means the first equation becomes
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(c1v1 + · · ·+ crvr) = 0

and by independence again, c1 = c2 = · · · = cr = 0.

Ideally, we want a basis of eigenvectors. If we have that, say B = [v1,v1, . . . ,vn] is a
basis and Avj = λjvj for every j, then we have the following:

Suppose [x]B =


c1
...
cn

. This means that x = c1v1 + · · ·+ cnvn and therefore

Ax = λ1c1v1 + · · ·+ λncnvn. So,

[Ax]B =


λ1c1
...

λncn

 =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 [x]B. Moreover, if

S =
 v1 . . . vn

 (the transition matrix from B to E), then S−1AS is a

diagonal matrix, with eigenvalues of A on the diagonal.
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All this is only possible when there is a basis of eigenvectors.

To get this, we take a
basis of each eigenspace and put them together. This will be independent, but will be
a basis of Rn only if the sum of the dimensions of the eigenspaces is n.

Finding eigenvalues and eigenvectors.

Example.

Find the eigenvalues of A =


2 0 0
0 1 0
0 1 2

. Find the determinant

det(A− λI) =

∣∣∣∣∣∣
2− λ 0 0
0 1− λ 0
0 1 2− λ

∣∣∣∣∣∣ = (2− λ)(1− λ)(2− λ)

So λ = 2 and λ = 1 are eigenvalues of A.

Find the eigenspaces for these eigenvalues.
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The nullspace of A− 2I:
0 0 0
0 −1 0
0 1 0

 2 EROs−−−−→


0 1 0
0 0 0
0 0 0



Then x2 is the only leading variable, x1 and x3 are free and the equation is x2 = 0.
This gives the eigenspace 


α
0
β

 α, β ∈ R


So we get a basis for this eigenspace: v1 =


1
0
0

 and v2 =


0
0
1
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The nullspace of A− I:
1 0 0
0 0 0
0 1 1

 R2↔R3−−−−−→


1 0 0
0 1 1
0 0 0



Then x1 and x2 are the leading variables and x3 is free. The equations are x1 = 0 and
x2 = −x3. This gives the eigenspace


0
−α
α

 α ∈ R


So we get a basis for this eigenspace: v3 =


0

−1
1

.

Because we have altogether 3 independent vectors, we have a basis for R3 consisting of
eigenvectors. If we put the basis vectors in a matrix S and find its inverse S−1, then
the product S−1AS will be a diagonal matrix D with 2, 2, 1 on the diagonal:
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That is, S =


1 0 0
0 0 −1
0 1 1

, S−1 =


1 0 0
0 1 1
0 −1 0



and

D = S−1AS =


2 0 0
0 2 0
0 0 1


Note that A = SDS−1. This allows us to compute successive powers of A easily:

A2 = SDS−1SDS−1 = SDIDS−1 = SD2S−1

A3 = SD2S−1SDS−1 = SD2IDS−1 = SD3S−1

and so on for An = SDnS−1. This is an advantage because Dn =


2n 0 0
0 2n 0
0 0 1n


is essentially trivial to calculate. This works for negative powers as well.

12 / 12



That is, S =


1 0 0
0 0 −1
0 1 1

, S−1 =


1 0 0
0 1 1
0 −1 0

 and

D = S−1AS =


2 0 0
0 2 0
0 0 1



Note that A = SDS−1. This allows us to compute successive powers of A easily:

A2 = SDS−1SDS−1 = SDIDS−1 = SD2S−1

A3 = SD2S−1SDS−1 = SD2IDS−1 = SD3S−1

and so on for An = SDnS−1. This is an advantage because Dn =


2n 0 0
0 2n 0
0 0 1n


is essentially trivial to calculate. This works for negative powers as well.

12 / 12



That is, S =


1 0 0
0 0 −1
0 1 1

, S−1 =


1 0 0
0 1 1
0 −1 0

 and

D = S−1AS =


2 0 0
0 2 0
0 0 1


Note that A = SDS−1. This allows us to compute successive powers of A easily:

A2 = SDS−1SDS−1 = SDIDS−1 = SD2S−1

A3 = SD2S−1SDS−1 = SD2IDS−1 = SD3S−1

and so on for An = SDnS−1.

This is an advantage because Dn =


2n 0 0
0 2n 0
0 0 1n


is essentially trivial to calculate. This works for negative powers as well.

12 / 12



That is, S =


1 0 0
0 0 −1
0 1 1

, S−1 =


1 0 0
0 1 1
0 −1 0

 and

D = S−1AS =


2 0 0
0 2 0
0 0 1


Note that A = SDS−1. This allows us to compute successive powers of A easily:

A2 = SDS−1SDS−1 = SDIDS−1 = SD2S−1

A3 = SD2S−1SDS−1 = SD2IDS−1 = SD3S−1

and so on for An = SDnS−1. This is an advantage because Dn =


2n 0 0
0 2n 0
0 0 1n


is essentially trivial to calculate.

This works for negative powers as well.

12 / 12



That is, S =


1 0 0
0 0 −1
0 1 1

, S−1 =


1 0 0
0 1 1
0 −1 0

 and

D = S−1AS =


2 0 0
0 2 0
0 0 1


Note that A = SDS−1. This allows us to compute successive powers of A easily:

A2 = SDS−1SDS−1 = SDIDS−1 = SD2S−1

A3 = SD2S−1SDS−1 = SD2IDS−1 = SD3S−1

and so on for An = SDnS−1. This is an advantage because Dn =


2n 0 0
0 2n 0
0 0 1n


is essentially trivial to calculate. This works for negative powers as well.

12 / 12


