Eigenvalues and Eigenvectors

D. H. Luecking

MASC

12 April 2024

Recall the matrix example from Chapter 1 :

$$
A=\left(\begin{array}{ll}
0.7 & 0.2 \\
0.3 & 0.8
\end{array}\right)
$$

Recall the matrix example from Chapter 1:

$$
A=\left(\begin{array}{ll}
0.7 & 0.2 \\
0.3 & 0.8
\end{array}\right)
$$

We stated without explanation that the vectors $\mathbf{v}_{1}=\binom{1}{-1}$ and $\mathbf{v}_{2}=\binom{2}{3}$ were special in that $A \mathbf{v}_{1}=(1 / 2) \mathbf{v}_{1}$ and $A \mathbf{v}_{2}=\mathbf{v}_{2}$.

Recall the matrix example from Chapter 1:

$$
A=\left(\begin{array}{ll}
0.7 & 0.2 \\
0.3 & 0.8
\end{array}\right)
$$

We stated without explanation that the vectors $\mathbf{v}_{1}=\binom{1}{-1}$ and $\mathbf{v}_{2}=\binom{2}{3}$ were special in that $A \mathbf{v}_{1}=(1 / 2) \mathbf{v}_{1}$ and $A \mathbf{v}_{2}=\mathbf{v}_{2}$.
These two vectors were important because the linear transformation of multiplication by A has a particularly nice representing matrix with respect to the basis $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]$.

Recall the matrix example from Chapter 1:

$$
A=\left(\begin{array}{ll}
0.7 & 0.2 \\
0.3 & 0.8
\end{array}\right)
$$

We stated without explanation that the vectors $\mathbf{v}_{1}=\binom{1}{-1}$ and $\mathbf{v}_{2}=\binom{2}{3}$ were special in that $A \mathbf{v}_{1}=(1 / 2) \mathbf{v}_{1}$ and $A \mathbf{v}_{2}=\mathbf{v}_{2}$.
These two vectors were important because the linear transformation of multiplication by A has a particularly nice representing matrix with respect to the basis $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]$. That representing matrix is $\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & 1\end{array}\right)$.

Recall the matrix example from Chapter 1 :

$$
A=\left(\begin{array}{ll}
0.7 & 0.2 \\
0.3 & 0.8
\end{array}\right)
$$

We stated without explanation that the vectors $\mathbf{v}_{1}=\binom{1}{-1}$ and $\mathbf{v}_{2}=\binom{2}{3}$ were special in that $A \mathbf{v}_{1}=(1 / 2) \mathbf{v}_{1}$ and $A \mathbf{v}_{2}=\mathbf{v}_{2}$.
These two vectors were important because the linear transformation of multiplication by A has a particularly nice representing matrix with respect to the basis $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]$. That representing matrix is $\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & 1\end{array}\right)$. Because, if $\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}$ then $A \mathbf{x}=(1 / 2) c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}$.

Recall the matrix example from Chapter 1 :

$$
A=\left(\begin{array}{ll}
0.7 & 0.2 \\
0.3 & 0.8
\end{array}\right)
$$

We stated without explanation that the vectors $\mathbf{v}_{1}=\binom{1}{-1}$ and $\mathbf{v}_{2}=\binom{2}{3}$ were special in that $A \mathbf{v}_{1}=(1 / 2) \mathbf{v}_{1}$ and $A \mathbf{v}_{2}=\mathbf{v}_{2}$.
These two vectors were important because the linear transformation of multiplication by A has a particularly nice representing matrix with respect to the basis $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]$. That representing matrix is $\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & 1\end{array}\right)$. Because, if $\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}$ then $A \mathbf{x}=(1 / 2) c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}$. That is,

$$
\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right)[\mathbf{x}]_{\mathcal{B}}=[A \mathbf{x}]_{\mathcal{B}}
$$

Another way to put this is that if $S=\left(\begin{array}{rr}1 & 2 \\ -1 & 3\end{array}\right)$ then

$$
S^{-1} A S=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right)
$$

Another way to put this is that if $S=\left(\begin{array}{rr}1 & 2 \\ -1 & 3\end{array}\right)$ then

$$
S^{-1} A S=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right)
$$

Things would be pretty nice if every matrix had a basis, with respect to which the representing matrix is a diagonal matrix.

Another way to put this is that if $S=\left(\begin{array}{rr}1 & 2 \\ -1 & 3\end{array}\right)$ then

$$
S^{-1} A S=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right)
$$

Things would be pretty nice if every matrix had a basis, with respect to which the representing matrix is a diagonal matrix.
This is not quite true, but many do have such a basis.

Another way to put this is that if $S=\left(\begin{array}{rr}1 & 2 \\ -1 & 3\end{array}\right)$ then

$$
S^{-1} A S=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right)
$$

Things would be pretty nice if every matrix had a basis, with respect to which the representing matrix is a diagonal matrix.
This is not quite true, but many do have such a basis.
Precisely what one needs are vectors \mathbf{x} that are not $\mathbf{0}$ and satisfy $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar λ.

Definition

If A is an $n \times n$ matrix and $\mathbf{x} \in \mathbb{R}^{n}$ is a nonzero vector such that $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar λ then \mathbf{x} is called an eigenvector for A and λ is an eigenvalue. For a given eigenvalue λ, the set of solutions of $A \mathbf{x}=\lambda \mathbf{x}$ is called the eigenspace associated to λ.

Another way to put this is that if $S=\left(\begin{array}{rr}1 & 2 \\ -1 & 3\end{array}\right)$ then

$$
S^{-1} A S=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right)
$$

Things would be pretty nice if every matrix had a basis, with respect to which the representing matrix is a diagonal matrix.
This is not quite true, but many do have such a basis.
Precisely what one needs are vectors \mathbf{x} that are not $\mathbf{0}$ and satisfy $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar λ.

Definition

If A is an $n \times n$ matrix and $\mathbf{x} \in \mathbb{R}^{n}$ is a nonzero vector such that $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar λ then \mathbf{x} is called an eigenvector for A and λ is an eigenvalue. For a given eigenvalue λ, the set of solutions of $A \mathbf{x}=\lambda \mathbf{x}$ is called the eigenspace associated to λ.

Every eigenvector has an associated eigenvalue.

Another way to put this is that if $S=\left(\begin{array}{rr}1 & 2 \\ -1 & 3\end{array}\right)$ then

$$
S^{-1} A S=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right)
$$

Things would be pretty nice if every matrix had a basis, with respect to which the representing matrix is a diagonal matrix.
This is not quite true, but many do have such a basis.
Precisely what one needs are vectors \mathbf{x} that are not $\mathbf{0}$ and satisfy $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar λ.

Definition

If A is an $n \times n$ matrix and $\mathbf{x} \in \mathbb{R}^{n}$ is a nonzero vector such that $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar λ then \mathbf{x} is called an eigenvector for A and λ is an eigenvalue. For a given eigenvalue λ, the set of solutions of $A \mathbf{x}=\lambda \mathbf{x}$ is called the eigenspace associated to λ.

Every eigenvector has an associated eigenvalue. It turns out to be easier to find the eigenvalues first.

Theorem
If λ is an eigenvalue associated to an eigenvector \mathbf{x}, then $A-\lambda I$ must be singular and therefore $\operatorname{det}(A-\lambda I)=0$.

Theorem

If λ is an eigenvalue associated to an eigenvector \mathbf{x}, then $A-\lambda I$ must be singular and therefore $\operatorname{det}(A-\lambda I)=0$.

This is true because the eigenvector \mathbf{x} must satisfy

$$
\begin{gathered}
A \mathbf{x}=\lambda \mathbf{x} \\
A \mathbf{x}-\lambda \mathbf{x}=\mathbf{0} \\
(A-\lambda I) \mathbf{x}=\mathbf{0} \quad(I \text { the identity matrix })
\end{gathered}
$$

Theorem

If λ is an eigenvalue associated to an eigenvector \mathbf{x}, then $A-\lambda I$ must be singular and therefore $\operatorname{det}(A-\lambda I)=0$.

This is true because the eigenvector \mathbf{x} must satisfy

$$
\begin{gathered}
A \mathbf{x}=\lambda \mathbf{x} \\
A \mathbf{x}-\lambda \mathbf{x}=\mathbf{0} \\
(A-\lambda I) \mathbf{x}=\mathbf{0} \quad(I \text { the identity matrix })
\end{gathered}
$$

The last formulation says that \mathbf{x} must be a nonvero vector in the nullspace of $A-\lambda I$.

Theorem

If λ is an eigenvalue associated to an eigenvector \mathbf{x}, then $A-\lambda I$ must be singular and therefore $\operatorname{det}(A-\lambda I)=0$.

This is true because the eigenvector \mathbf{x} must satisfy

$$
\begin{gathered}
A \mathbf{x}=\lambda \mathbf{x} \\
A \mathbf{x}-\lambda \mathbf{x}=\mathbf{0} \\
(A-\lambda I) \mathbf{x}=\mathbf{0} \quad(I \text { the identity matrix })
\end{gathered}
$$

The last formulation says that \mathbf{x} must be a nonvero vector in the nullspace of $A-\lambda I$. That is, the nullity of $A-\lambda I$ is greater than zero.

Theorem

If λ is an eigenvalue associated to an eigenvector \mathbf{x}, then $A-\lambda I$ must be singular and therefore $\operatorname{det}(A-\lambda I)=0$.

This is true because the eigenvector \mathbf{x} must satisfy

$$
\begin{gathered}
A \mathbf{x}=\lambda \mathbf{x} \\
A \mathbf{x}-\lambda \mathbf{x}=\mathbf{0} \\
(A-\lambda I) \mathbf{x}=\mathbf{0} \quad(I \text { the identity matrix })
\end{gathered}
$$

The last formulation says that \mathbf{x} must be a nonvero vector in the nullspace of $A-\lambda I$. That is, the nullity of $A-\lambda I$ is greater than zero. This means the rank of $A-\lambda I$ must be less than n and so $A-\lambda I$ is not invertible.

Theorem

If λ is an eigenvalue associated to an eigenvector \mathbf{x}, then $A-\lambda I$ must be singular and therefore $\operatorname{det}(A-\lambda I)=0$.

This is true because the eigenvector \mathbf{x} must satisfy

$$
\begin{gathered}
A \mathbf{x}=\lambda \mathbf{x} \\
A \mathbf{x}-\lambda \mathbf{x}=\mathbf{0} \\
(A-\lambda I) \mathbf{x}=\mathbf{0} \quad(I \text { the identity matrix })
\end{gathered}
$$

The last formulation says that \mathbf{x} must be a nonvero vector in the nullspace of $A-\lambda I$. That is, the nullity of $A-\lambda I$ is greater than zero. This means the rank of $A-\lambda I$ must be less than n and so $A-\lambda I$ is not invertible.

This theorem gives us the means to find eigenvalues:

Theorem

If λ is an eigenvalue associated to an eigenvector \mathbf{x}, then $A-\lambda I$ must be singular and therefore $\operatorname{det}(A-\lambda I)=0$.

This is true because the eigenvector \mathbf{x} must satisfy

$$
\begin{gathered}
A \mathbf{x}=\lambda \mathbf{x} \\
A \mathbf{x}-\lambda \mathbf{x}=\mathbf{0} \\
(A-\lambda I) \mathbf{x}=\mathbf{0} \quad(I \text { the identity matrix })
\end{gathered}
$$

The last formulation says that \mathbf{x} must be a nonvero vector in the nullspace of $A-\lambda I$. That is, the nullity of $A-\lambda I$ is greater than zero. This means the rank of $A-\lambda I$ must be less than n and so $A-\lambda I$ is not invertible.

This theorem gives us the means to find eigenvalues: Equate $\operatorname{det}(A-\lambda I)$ to zero and solve for λ.

Theorem

If λ is an eigenvalue associated to an eigenvector \mathbf{x}, then $A-\lambda I$ must be singular and therefore $\operatorname{det}(A-\lambda I)=0$.

This is true because the eigenvector \mathbf{x} must satisfy

$$
\begin{gathered}
A \mathbf{x}=\lambda \mathbf{x} \\
A \mathbf{x}-\lambda \mathbf{x}=\mathbf{0} \\
(A-\lambda I) \mathbf{x}=\mathbf{0} \quad(I \text { the identity matrix })
\end{gathered}
$$

The last formulation says that \mathbf{x} must be a nonvero vector in the nullspace of $A-\lambda I$. That is, the nullity of $A-\lambda I$ is greater than zero. This means the rank of $A-\lambda I$ must be less than n and so $A-\lambda I$ is not invertible.

This theorem gives us the means to find eigenvalues: Equate $\operatorname{det}(A-\lambda I)$ to zero and solve for λ.
Let's apply this to the matrix $A=\left(\begin{array}{cc}0.7 & 0.2 \\ 0.3 & 0.8\end{array}\right)$

We get

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
0.7-\lambda & 0.2 \\
0.3 & 0.8-\lambda
\end{array}\right|=\lambda^{2}-1.5 \lambda+0.5=(\lambda-1)(\lambda-0.5)
$$

Thus the eigenvalues are $\lambda=1$ and $\lambda=1 / 2$.

We get

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
0.7-\lambda & 0.2 \\
0.3 & 0.8-\lambda
\end{array}\right|=\lambda^{2}-1.5 \lambda+0.5=(\lambda-1)(\lambda-0.5)
$$

Thus the eigenvalues are $\lambda=1$ and $\lambda=1 / 2$. To get an eigenvector for $\lambda=1$, we need to solve $(A-I) \mathbf{x}=0$:

$$
(A-I) \mathbf{x}=\left(\begin{array}{rr}
-0.3 & 0.2 \\
0.3 & -0.2
\end{array}\right) \mathbf{x}=\mathbf{0}
$$

We get

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
0.7-\lambda & 0.2 \\
0.3 & 0.8-\lambda
\end{array}\right|=\lambda^{2}-1.5 \lambda+0.5=(\lambda-1)(\lambda-0.5)
$$

Thus the eigenvalues are $\lambda=1$ and $\lambda=1 / 2$. To get an eigenvector for $\lambda=1$, we need to solve $(A-I) \mathbf{x}=0$:

$$
(A-I) \mathbf{x}=\left(\begin{array}{rr}
-0.3 & 0.2 \\
0.3 & -0.2
\end{array}\right) \mathbf{x}=\mathbf{0}
$$

Row-reducing leads to $x_{1}=(2 / 3) x_{2}$ and so the null space of $A-I$ is

$$
\left\{\left.\binom{(2 / 3) \alpha}{\alpha} \right\rvert\, \alpha \in \mathbb{R}\right\}
$$

We get

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
0.7-\lambda & 0.2 \\
0.3 & 0.8-\lambda
\end{array}\right|=\lambda^{2}-1.5 \lambda+0.5=(\lambda-1)(\lambda-0.5)
$$

Thus the eigenvalues are $\lambda=1$ and $\lambda=1 / 2$. To get an eigenvector for $\lambda=1$, we need to solve $(A-I) \mathbf{x}=0$:

$$
(A-I) \mathbf{x}=\left(\begin{array}{rr}
-0.3 & 0.2 \\
0.3 & -0.2
\end{array}\right) \mathbf{x}=\mathbf{0}
$$

Row-reducing leads to $x_{1}=(2 / 3) x_{2}$ and so the null space of $A-I$ is

$$
\left\{\left.\binom{(2 / 3) \alpha}{\alpha} \right\rvert\, \alpha \in \mathbb{R}\right\}
$$

Any nonzero vector in this set is an eigenvector with eigenvalue $\lambda=1$.

We get

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
0.7-\lambda & 0.2 \\
0.3 & 0.8-\lambda
\end{array}\right|=\lambda^{2}-1.5 \lambda+0.5=(\lambda-1)(\lambda-0.5)
$$

Thus the eigenvalues are $\lambda=1$ and $\lambda=1 / 2$. To get an eigenvector for $\lambda=1$, we need to solve $(A-I) \mathbf{x}=0$:

$$
(A-I) \mathbf{x}=\left(\begin{array}{rr}
-0.3 & 0.2 \\
0.3 & -0.2
\end{array}\right) \mathbf{x}=\mathbf{0}
$$

Row-reducing leads to $x_{1}=(2 / 3) x_{2}$ and so the null space of $A-I$ is

$$
\left\{\left.\binom{(2 / 3) \alpha}{\alpha} \right\rvert\, \alpha \in \mathbb{R}\right\}
$$

Any nonzero vector in this set is an eigenvector with eigenvalue $\lambda=1$. Selecting $\alpha=3$ gives us $\binom{2}{3}$ but any other convenient multiple is also an eigenvector.

For eigenvalue $\lambda=1 / 2$ we do the same to $A-(1 / 2) I$:

$$
(A-(1 / 2) I) \mathbf{x}=\left(\begin{array}{ll}
0.2 & 0.2 \\
0.3 & 0.3
\end{array}\right) \mathbf{x}=0
$$

For eigenvalue $\lambda=1 / 2$ we do the same to $A-(1 / 2) I$:

$$
(A-(1 / 2) I) \mathbf{x}=\left(\begin{array}{ll}
0.2 & 0.2 \\
0.3 & 0.3
\end{array}\right) \mathbf{x}=0
$$

The solution of this leads to $x_{1}=-x_{2}$ and the eigenspace is

$$
\left\{\left.\binom{-\alpha}{\alpha} \right\rvert\, \alpha \in \mathbb{R}\right\}
$$

For eigenvalue $\lambda=1 / 2$ we do the same to $A-(1 / 2) I$:

$$
(A-(1 / 2) I) \mathbf{x}=\left(\begin{array}{ll}
0.2 & 0.2 \\
0.3 & 0.3
\end{array}\right) \mathbf{x}=0
$$

The solution of this leads to $x_{1}=-x_{2}$ and the eigenspace is

$$
\left\{\left.\binom{-\alpha}{\alpha} \right\rvert\, \alpha \in \mathbb{R}\right\}
$$

Normally we want a basis for each eigenspace. If we put these together, we hope to get a basis for all of \mathbb{R}^{n}.

For eigenvalue $\lambda=1 / 2$ we do the same to $A-(1 / 2) I$:

$$
(A-(1 / 2) I) \mathbf{x}=\left(\begin{array}{ll}
0.2 & 0.2 \\
0.3 & 0.3
\end{array}\right) \mathbf{x}=0
$$

The solution of this leads to $x_{1}=-x_{2}$ and the eigenspace is

$$
\left\{\left.\binom{-\alpha}{\alpha} \right\rvert\, \alpha \in \mathbb{R}\right\}
$$

Normally we want a basis for each eigenspace. If we put these together, we hope to get a basis for all of \mathbb{R}^{n}.

Theorem

If \mathbf{x} is an eigenvector for A with eigenvalue λ, then \mathbf{x} is also an eigenvector for αA with eigenvalue $\alpha \lambda$.

For eigenvalue $\lambda=1 / 2$ we do the same to $A-(1 / 2) I$:

$$
(A-(1 / 2) I) \mathbf{x}=\left(\begin{array}{ll}
0.2 & 0.2 \\
0.3 & 0.3
\end{array}\right) \mathbf{x}=0
$$

The solution of this leads to $x_{1}=-x_{2}$ and the eigenspace is

$$
\left\{\left.\binom{-\alpha}{\alpha} \right\rvert\, \alpha \in \mathbb{R}\right\}
$$

Normally we want a basis for each eigenspace. If we put these together, we hope to get a basis for all of \mathbb{R}^{n}.

Theorem

If \mathbf{x} is an eigenvector for A with eigenvalue λ, then \mathbf{x} is also an eigenvector for αA with eigenvalue $\alpha \lambda$.
If \mathbf{x} is an eigenvector for A with eigenvalue λ, then \mathbf{x} is also an eigenvector for A^{2} with eigenvalue λ^{2}.

For eigenvalue $\lambda=1 / 2$ we do the same to $A-(1 / 2) I$:

$$
(A-(1 / 2) I) \mathbf{x}=\left(\begin{array}{ll}
0.2 & 0.2 \\
0.3 & 0.3
\end{array}\right) \mathbf{x}=0
$$

The solution of this leads to $x_{1}=-x_{2}$ and the eigenspace is

$$
\left\{\left.\binom{-\alpha}{\alpha} \right\rvert\, \alpha \in \mathbb{R}\right\}
$$

Normally we want a basis for each eigenspace. If we put these together, we hope to get a basis for all of \mathbb{R}^{n}.

Theorem

If \mathbf{x} is an eigenvector for A with eigenvalue λ, then \mathbf{x} is also an eigenvector for αA with eigenvalue $\alpha \lambda$.
If \mathbf{x} is an eigenvector for A with eigenvalue λ, then \mathbf{x} is also an eigenvector for A^{2} with eigenvalue λ^{2}.

If $A \mathbf{x}=\lambda \mathbf{x}$ then $\alpha A \mathbf{x}=\alpha \lambda \mathbf{x}$,

For eigenvalue $\lambda=1 / 2$ we do the same to $A-(1 / 2) I$:

$$
(A-(1 / 2) I) \mathbf{x}=\left(\begin{array}{ll}
0.2 & 0.2 \\
0.3 & 0.3
\end{array}\right) \mathbf{x}=0
$$

The solution of this leads to $x_{1}=-x_{2}$ and the eigenspace is

$$
\left\{\left.\binom{-\alpha}{\alpha} \right\rvert\, \alpha \in \mathbb{R}\right\}
$$

Normally we want a basis for each eigenspace. If we put these together, we hope to get a basis for all of \mathbb{R}^{n}.

Theorem

If \mathbf{x} is an eigenvector for A with eigenvalue λ, then \mathbf{x} is also an eigenvector for αA with eigenvalue $\alpha \lambda$.
If \mathbf{x} is an eigenvector for A with eigenvalue λ, then \mathbf{x} is also an eigenvector for A^{2} with eigenvalue λ^{2}.

If $A \mathbf{x}=\lambda \mathbf{x}$ then $\alpha A \mathbf{x}=\alpha \lambda \mathbf{x}$, and $A^{2} \mathbf{x}=A(A \mathbf{x})=A(\lambda \mathbf{x})=\lambda(A \mathbf{x})=\lambda(\lambda \mathbf{x})$.

Theorem

If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ is a basis for the eigenspace of A associated to λ_{1} and $\mathbf{v}_{r+1}, \ldots, \mathbf{v}_{m}$ is a basis for the eigenspace of A associated to λ_{2} with $\lambda_{2} \neq \lambda_{1}$, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\}$ is independent.

Theorem

If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ is a basis for the eigenspace of A associated to λ_{1} and $\mathbf{v}_{r+1}, \ldots, \mathbf{v}_{m}$ is a basis for the eigenspace of A associated to λ_{2} with $\lambda_{2} \neq \lambda_{1}$, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\}$ is independent.

Suppose

$$
\left(c_{1} \mathbf{v}_{1}+\cdots+c_{r} \mathbf{v}_{r}\right)+\left(c_{r+1} \mathbf{v}_{r+1}+\cdots+c_{m} \mathbf{v}_{m}\right)=\mathbf{0}
$$

Theorem

If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ is a basis for the eigenspace of A associated to λ_{1} and $\mathbf{v}_{r+1}, \ldots, \mathbf{v}_{m}$ is a basis for the eigenspace of A associated to λ_{2} with $\lambda_{2} \neq \lambda_{1}$, then
$\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\}$ is independent.
Suppose

$$
\left(c_{1} \mathbf{v}_{1}+\cdots+c_{r} \mathbf{v}_{r}\right)+\left(c_{r+1} \mathbf{v}_{r+1}+\cdots+c_{m} \mathbf{v}_{m}\right)=\mathbf{0}
$$

Multiply this by λ_{1} to get

$$
\lambda_{1}\left(c_{1} \mathbf{v}_{1}+\cdots+c_{r} \mathbf{v}_{r}\right)+\lambda_{1}\left(c_{r+1} \mathbf{v}_{r+1}+\cdots+c_{m} \mathbf{v}_{m}\right)=\mathbf{0}
$$

Theorem

If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ is a basis for the eigenspace of A associated to λ_{1} and $\mathbf{v}_{r+1}, \ldots, \mathbf{v}_{m}$ is a basis for the eigenspace of A associated to λ_{2} with $\lambda_{2} \neq \lambda_{1}$, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\}$ is independent.

Suppose

$$
\left(c_{1} \mathbf{v}_{1}+\cdots+c_{r} \mathbf{v}_{r}\right)+\left(c_{r+1} \mathbf{v}_{r+1}+\cdots+c_{m} \mathbf{v}_{m}\right)=\mathbf{0}
$$

Multiply this by λ_{1} to get

$$
\lambda_{1}\left(c_{1} \mathbf{v}_{1}+\cdots+c_{r} \mathbf{v}_{r}\right)+\lambda_{1}\left(c_{r+1} \mathbf{v}_{r+1}+\cdots+c_{m} \mathbf{v}_{m}\right)=\mathbf{0}
$$

Multiply the same sum by A to get

$$
\lambda_{1}\left(c_{1} \mathbf{v}_{1}+\cdots+c_{r} \mathbf{v}_{r}\right)+\lambda_{2}\left(c_{r+1} \mathbf{v}_{r+1}+\cdots+c_{m} \mathbf{v}_{m}\right)=\mathbf{0}
$$

Theorem

If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ is a basis for the eigenspace of A associated to λ_{1} and $\mathbf{v}_{r+1}, \ldots, \mathbf{v}_{m}$ is a basis for the eigenspace of A associated to λ_{2} with $\lambda_{2} \neq \lambda_{1}$, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\}$ is independent.

Suppose

$$
\left(c_{1} \mathbf{v}_{1}+\cdots+c_{r} \mathbf{v}_{r}\right)+\left(c_{r+1} \mathbf{v}_{r+1}+\cdots+c_{m} \mathbf{v}_{m}\right)=\mathbf{0}
$$

Multiply this by λ_{1} to get

$$
\lambda_{1}\left(c_{1} \mathbf{v}_{1}+\cdots+c_{r} \mathbf{v}_{r}\right)+\lambda_{1}\left(c_{r+1} \mathbf{v}_{r+1}+\cdots+c_{m} \mathbf{v}_{m}\right)=\mathbf{0}
$$

Multiply the same sum by A to get

$$
\lambda_{1}\left(c_{1} \mathbf{v}_{1}+\cdots+c_{r} \mathbf{v}_{r}\right)+\lambda_{2}\left(c_{r+1} \mathbf{v}_{r+1}+\cdots+c_{m} \mathbf{v}_{m}\right)=\mathbf{0}
$$

Subtract the last two equations to get

$$
\left(\lambda_{1}-\lambda_{2}\right)\left(c_{r+1} \mathbf{v}_{r+1}+\cdots+c_{m} \mathbf{v}_{m}\right)=\mathbf{0}
$$

Theorem

If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ is a basis for the eigenspace of A associated to λ_{1} and $\mathbf{v}_{r+1}, \ldots, \mathbf{v}_{m}$ is a basis for the eigenspace of A associated to λ_{2} with $\lambda_{2} \neq \lambda_{1}$, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\}$ is independent.

Suppose

$$
\left(c_{1} \mathbf{v}_{1}+\cdots+c_{r} \mathbf{v}_{r}\right)+\left(c_{r+1} \mathbf{v}_{r+1}+\cdots+c_{m} \mathbf{v}_{m}\right)=\mathbf{0}
$$

Multiply this by λ_{1} to get

$$
\lambda_{1}\left(c_{1} \mathbf{v}_{1}+\cdots+c_{r} \mathbf{v}_{r}\right)+\lambda_{1}\left(c_{r+1} \mathbf{v}_{r+1}+\cdots+c_{m} \mathbf{v}_{m}\right)=\mathbf{0}
$$

Multiply the same sum by A to get

$$
\lambda_{1}\left(c_{1} \mathbf{v}_{1}+\cdots+c_{r} \mathbf{v}_{r}\right)+\lambda_{2}\left(c_{r+1} \mathbf{v}_{r+1}+\cdots+c_{m} \mathbf{v}_{m}\right)=\mathbf{0}
$$

Subtract the last two equations to get

$$
\left(\lambda_{1}-\lambda_{2}\right)\left(c_{r+1} \mathbf{v}_{r+1}+\cdots+c_{m} \mathbf{v}_{m}\right)=\mathbf{0}
$$

By independence, $c_{r+1}=c_{r+2}=\cdots=c_{m}=0$. That means the first equation becomes
$\left(c_{1} \mathbf{v}_{1}+\cdots+c_{r} \mathbf{v}_{r}\right)=\mathbf{0}$

$$
\left(c_{1} \mathbf{v}_{1}+\cdots+c_{r} \mathbf{v}_{r}\right)=\mathbf{0}
$$

and by independence again, $c_{1}=c_{2}=\cdots=c_{r}=0$.

$$
\left(c_{1} \mathbf{v}_{1}+\cdots+c_{r} \mathbf{v}_{r}\right)=\mathbf{0}
$$

and by independence again, $c_{1}=c_{2}=\cdots=c_{r}=0$.
Ideally, we want a basis of eigenvectors. If we have that, say $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ is a basis and $A \mathbf{v}_{j}=\lambda_{j} \mathbf{v}_{j}$ for every j, then we have the following:
Suppose $[\mathbf{x}]_{\mathcal{B}}=\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right)$. This means that $\mathbf{x}=c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}$

$$
\left(c_{1} \mathbf{v}_{1}+\cdots+c_{r} \mathbf{v}_{r}\right)=\mathbf{0}
$$

and by independence again, $c_{1}=c_{2}=\cdots=c_{r}=0$.
Ideally, we want a basis of eigenvectors. If we have that, say $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ is a basis and $A \mathbf{v}_{j}=\lambda_{j} \mathbf{v}_{j}$ for every j, then we have the following:
Suppose $[\mathbf{x}]_{\mathcal{B}}=\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right)$. This means that $\mathbf{x}=c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}$ and therefore $A \mathbf{x}=\lambda_{1} c_{1} \mathbf{v}_{1}+\cdots+\lambda_{n} c_{n} \mathbf{v}_{n}$.

$$
\left(c_{1} \mathbf{v}_{1}+\cdots+c_{r} \mathbf{v}_{r}\right)=\mathbf{0}
$$

and by independence again, $c_{1}=c_{2}=\cdots=c_{r}=0$.
Ideally, we want a basis of eigenvectors. If we have that, say $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ is a basis and $A \mathbf{v}_{j}=\lambda_{j} \mathbf{v}_{j}$ for every j, then we have the following:
Suppose $[\mathbf{x}]_{\mathcal{B}}=\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right)$. This means that $\mathbf{x}=c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}$ and therefore $A \mathbf{x}=\lambda_{1} c_{1} \mathbf{v}_{1}+\cdots+\lambda_{n} c_{n} \mathbf{v}_{n}$. So,

$$
[A \mathbf{x}]_{\mathcal{B}}=\left(\begin{array}{c}
\lambda_{1} c_{1} \\
\vdots \\
\lambda_{n} c_{n}
\end{array}\right)=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)[\mathbf{x}]_{\mathcal{B}}
$$

$$
\left(c_{1} \mathbf{v}_{1}+\cdots+c_{r} \mathbf{v}_{r}\right)=\mathbf{0}
$$

and by independence again, $c_{1}=c_{2}=\cdots=c_{r}=0$.
Ideally, we want a basis of eigenvectors. If we have that, say $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ is a basis and $A \mathbf{v}_{j}=\lambda_{j} \mathbf{v}_{j}$ for every j, then we have the following:
Suppose $[\mathbf{x}]_{\mathcal{B}}=\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right)$. This means that $\mathbf{x}=c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}$ and therefore $A \mathbf{x}=\lambda_{1} c_{1} \mathbf{v}_{1}+\cdots+\lambda_{n} c_{n} \mathbf{v}_{n}$. So,
$[A \mathbf{x}]_{\mathcal{B}}=\left(\begin{array}{c}\lambda_{1} c_{1} \\ \vdots \\ \lambda_{n} c_{n}\end{array}\right)=\left(\begin{array}{cccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right)[\mathbf{x}]_{\mathcal{B}}$. Moreover, if
$S=\left(\begin{array}{lll}\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}\end{array}\right)$ (the transition matrix from \mathcal{B} to $\left.\mathcal{E}\right)$, then $S^{-1} A S$ is a diagonal matrix, with eigenvalues of A on the diagonal.

All this is only possible when there is a basis of eigenvectors.

All this is only possible when there is a basis of eigenvectors. To get this, we take a basis of each eigenspace and put them together.

All this is only possible when there is a basis of eigenvectors. To get this, we take a basis of each eigenspace and put them together. This will be independent, but will be a basis of \mathbb{R}^{n} only if the sum of the dimensions of the eigenspaces is n.
Finding eigenvalues and eigenvectors.

All this is only possible when there is a basis of eigenvectors. To get this, we take a basis of each eigenspace and put them together. This will be independent, but will be a basis of \mathbb{R}^{n} only if the sum of the dimensions of the eigenspaces is n.
Finding eigenvalues and eigenvectors.
Example.

All this is only possible when there is a basis of eigenvectors. To get this, we take a basis of each eigenspace and put them together. This will be independent, but will be a basis of \mathbb{R}^{n} only if the sum of the dimensions of the eigenspaces is n.
Finding eigenvalues and eigenvectors.
Example.
Find the eigenvalues of $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 2\end{array}\right)$.

All this is only possible when there is a basis of eigenvectors. To get this, we take a basis of each eigenspace and put them together. This will be independent, but will be a basis of \mathbb{R}^{n} only if the sum of the dimensions of the eigenspaces is n.
Finding eigenvalues and eigenvectors.

Example.

Find the eigenvalues of $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 2\end{array}\right)$. Find the determinant

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
2-\lambda & 0 & 0 \\
0 & 1-\lambda & 0 \\
0 & 1 & 2-\lambda
\end{array}\right|=(2-\lambda)(1-\lambda)(2-\lambda)
$$

All this is only possible when there is a basis of eigenvectors. To get this, we take a basis of each eigenspace and put them together. This will be independent, but will be a basis of \mathbb{R}^{n} only if the sum of the dimensions of the eigenspaces is n.
Finding eigenvalues and eigenvectors.

Example.

Find the eigenvalues of $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 2\end{array}\right)$. Find the determinant

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
2-\lambda & 0 & 0 \\
0 & 1-\lambda & 0 \\
0 & 1 & 2-\lambda
\end{array}\right|=(2-\lambda)(1-\lambda)(2-\lambda)
$$

So $\lambda=2$ and $\lambda=1$ are eigenvalues of A.

All this is only possible when there is a basis of eigenvectors. To get this, we take a basis of each eigenspace and put them together. This will be independent, but will be a basis of \mathbb{R}^{n} only if the sum of the dimensions of the eigenspaces is n.
Finding eigenvalues and eigenvectors.

Example.

Find the eigenvalues of $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 2\end{array}\right)$. Find the determinant

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
2-\lambda & 0 & 0 \\
0 & 1-\lambda & 0 \\
0 & 1 & 2-\lambda
\end{array}\right|=(2-\lambda)(1-\lambda)(2-\lambda)
$$

So $\lambda=2$ and $\lambda=1$ are eigenvalues of A.
Find the eigenspaces for these eigenvalues.

The nullspace of $A-2 I$:

$$
\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & 1 & 0
\end{array}\right) \xrightarrow{2 \mathrm{ERO}}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The nullspace of $A-2 I$:

$$
\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & 1 & 0
\end{array}\right) \xrightarrow{2 \text { EROs }}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Then x_{2} is the only leading variable, x_{1} and x_{3} are free and the equation is $x_{2}=0$.

The nullspace of $A-2 I$:

$$
\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & 1 & 0
\end{array}\right) \xrightarrow{2 \text { EROs }}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Then x_{2} is the only leading variable, x_{1} and x_{3} are free and the equation is $x_{2}=0$. This gives the eigenspace

$$
\left\{\left.\left(\begin{array}{c}
\alpha \\
0 \\
\beta
\end{array}\right) \right\rvert\, \alpha, \beta \in \mathbb{R}\right\}
$$

The nullspace of $A-2 I$:

$$
\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & 1 & 0
\end{array}\right) \xrightarrow{2 \mathrm{EROs}}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Then x_{2} is the only leading variable, x_{1} and x_{3} are free and the equation is $x_{2}=0$. This gives the eigenspace

$$
\left\{\left.\left(\begin{array}{c}
\alpha \\
0 \\
\beta
\end{array}\right) \right\rvert\, \alpha, \beta \in \mathbb{R}\right\}
$$

So we get a basis for this eigenspace: $\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $\mathbf{v}_{2}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$

The nullspace of $A-I$:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right) \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

The nullspace of $A-I$:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right) \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Then x_{1} and x_{2} are the leading variables and x_{3} is free. The equations are $x_{1}=0$ and $x_{2}=-x_{3}$. This gives the eigenspace

$$
\left\{\left.\left(\begin{array}{c}
0 \\
-\alpha \\
\alpha
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\}
$$

The nullspace of $A-I$:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right) \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Then x_{1} and x_{2} are the leading variables and x_{3} is free. The equations are $x_{1}=0$ and $x_{2}=-x_{3}$. This gives the eigenspace

$$
\left\{\left.\left(\begin{array}{c}
0 \\
-\alpha \\
\alpha
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\}
$$

So we get a basis for this eigenspace: $\mathbf{v}_{3}=\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right)$.

The nullspace of $A-I$:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right) \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Then x_{1} and x_{2} are the leading variables and x_{3} is free. The equations are $x_{1}=0$ and $x_{2}=-x_{3}$. This gives the eigenspace

$$
\left\{\left.\left(\begin{array}{c}
0 \\
-\alpha \\
\alpha
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\}
$$

So we get a basis for this eigenspace: $\mathbf{v}_{3}=\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right)$.
Because we have altogether 3 independent vectors, we have a basis for \mathbb{R}^{3} consisting of eigenvectors.

The nullspace of $A-I$:

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right) \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Then x_{1} and x_{2} are the leading variables and x_{3} is free. The equations are $x_{1}=0$ and $x_{2}=-x_{3}$. This gives the eigenspace

$$
\left\{\left.\left(\begin{array}{c}
0 \\
-\alpha \\
\alpha
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\}
$$

So we get a basis for this eigenspace: $\mathbf{v}_{3}=\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right)$.
Because we have altogether 3 independent vectors, we have a basis for \mathbb{R}^{3} consisting of eigenvectors. If we put the basis vectors in a matrix S and find its inverse S^{-1}, then the product $S^{-1} A S$ will be a diagonal matrix D with $2,2,1$ on the diagonal:

That is, $S=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 1\end{array}\right), S^{-1}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 0\end{array}\right)$

That is, $S=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 1\end{array}\right), S^{-1}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 0\end{array}\right)$ and
$D=S^{-1} A S=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$

That is, $S=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 1\end{array}\right), S^{-1}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 0\end{array}\right)$ and
$D=S^{-1} A S=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$
Note that $A=S D S^{-1}$. This allows us to compute successive powers of A easily:

$$
\begin{aligned}
& A^{2}=S D S^{-1} S D S^{-1}=S D I D S^{-1}=S D^{2} S^{-1} \\
& A^{3}=S D^{2} S^{-1} S D S^{-1}=S D^{2} I D S^{-1}=S D^{3} S^{-1}
\end{aligned}
$$

and so on for $A^{n}=S D^{n} S^{-1}$.

That is, $S=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 1\end{array}\right), S^{-1}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 0\end{array}\right)$ and
$D=S^{-1} A S=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$
Note that $A=S D S^{-1}$. This allows us to compute successive powers of A easily:

$$
\begin{aligned}
& A^{2}=S D S^{-1} S D S^{-1}=S D I D S^{-1}=S D^{2} S^{-1} \\
& A^{3}=S D^{2} S^{-1} S D S^{-1}=S D^{2} I D S^{-1}=S D^{3} S^{-1}
\end{aligned}
$$

and so on for $A^{n}=S D^{n} S^{-1}$. This is an advantage because $D^{n}=\left(\begin{array}{ccc}2^{n} & 0 & 0 \\ 0 & 2^{n} & 0 \\ 0 & 0 & 1^{n}\end{array}\right)$ is essentially trivial to calculate.

That is, $S=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 1\end{array}\right), S^{-1}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 0\end{array}\right)$ and
$D=S^{-1} A S=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$
Note that $A=S D S^{-1}$. This allows us to compute successive powers of A easily:

$$
\begin{aligned}
& A^{2}=S D S^{-1} S D S^{-1}=S D I D S^{-1}=S D^{2} S^{-1} \\
& A^{3}=S D^{2} S^{-1} S D S^{-1}=S D^{2} I D S^{-1}=S D^{3} S^{-1}
\end{aligned}
$$

and so on for $A^{n}=S D^{n} S^{-1}$. This is an advantage because $D^{n}=\left(\begin{array}{ccc}2^{n} & 0 & 0 \\ 0 & 2^{n} & 0 \\ 0 & 0 & 1^{n}\end{array}\right)$ is essentially trivial to calculate. This works for negative powers as well.

