Eigenvalues and Eigenvectors

D. H. Luecking MASC

12 April 2024

$$A = \left(\begin{array}{rrr} 0.7 & 0.2\\ 0.3 & 0.8 \end{array}\right)$$

$$A = \left(\begin{array}{cc} 0.7 & 0.2 \\ 0.3 & 0.8 \end{array} \right)$$

We stated without explanation that the vectors $\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ were special in that $A\mathbf{v}_1 = (1/2)\mathbf{v}_1$ and $A\mathbf{v}_2 = \mathbf{v}_2$.

$$A = \left(\begin{array}{cc} 0.7 & 0.2 \\ 0.3 & 0.8 \end{array} \right)$$

We stated without explanation that the vectors $\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ were special in that $A\mathbf{v}_1 = (1/2)\mathbf{v}_1$ and $A\mathbf{v}_2 = \mathbf{v}_2$.

These two vectors were important because the linear transformation of multiplication by A has a particularly nice representing matrix with respect to the basis $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2]$.

$$A = \left(\begin{array}{cc} 0.7 & 0.2 \\ 0.3 & 0.8 \end{array} \right)$$

We stated without explanation that the vectors $\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ were special in that $A\mathbf{v}_1 = (1/2)\mathbf{v}_1$ and $A\mathbf{v}_2 = \mathbf{v}_2$.

These two vectors were important because the linear transformation of multiplication by A has a particularly nice representing matrix with respect to the basis $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2]$. That representing matrix is $\begin{pmatrix} 1/2 & 0 \\ 0 & 1 \end{pmatrix}$.

$$A = \left(\begin{array}{cc} 0.7 & 0.2 \\ 0.3 & 0.8 \end{array} \right)$$

We stated without explanation that the vectors $\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ were special in that $A\mathbf{v}_1 = (1/2)\mathbf{v}_1$ and $A\mathbf{v}_2 = \mathbf{v}_2$.

These two vectors were important because the linear transformation of multiplication by A has a particularly nice representing matrix with respect to the basis $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2]$. That representing matrix is $\begin{pmatrix} 1/2 & 0 \\ 0 & 1 \end{pmatrix}$. Because, if $\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2$ then $A\mathbf{x} = (1/2)c_1\mathbf{v}_1 + c_2\mathbf{v}_2$.

$$A = \left(\begin{array}{cc} 0.7 & 0.2 \\ 0.3 & 0.8 \end{array} \right)$$

We stated without explanation that the vectors $\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\mathbf{v}_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ were special in that $A\mathbf{v}_1 = (1/2)\mathbf{v}_1$ and $A\mathbf{v}_2 = \mathbf{v}_2$.

These two vectors were important because the linear transformation of multiplication by A has a particularly nice representing matrix with respect to the basis $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2]$. That representing matrix is $\begin{pmatrix} 1/2 & 0 \\ 0 & 1 \end{pmatrix}$. Because, if $\mathbf{x} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2$ then $A\mathbf{x} = (1/2)c_1\mathbf{v}_1 + c_2\mathbf{v}_2$. That is,

$$\left(\begin{array}{cc} 1/2 & 0\\ 0 & 1 \end{array}\right) [\mathbf{x}]_{\mathcal{B}} = [A\mathbf{x}]_{\mathcal{B}}.$$

Another way to put this is that if $S=\left(egin{array}{cc} 1&2\\ -1&3 \end{array}
ight)$ then

$$S^{-1}AS = \left(\begin{array}{cc} 1/2 & 0\\ 0 & 1 \end{array}\right)$$

$$S^{-1}AS = \left(\begin{array}{cc} 1/2 & 0\\ 0 & 1 \end{array}\right)$$

Things would be pretty nice if every matrix had a basis, with respect to which the representing matrix is a diagonal matrix.

$$S^{-1}AS = \left(\begin{array}{cc} 1/2 & 0\\ 0 & 1 \end{array}\right)$$

Things would be pretty nice if every matrix had a basis, with respect to which the representing matrix is a diagonal matrix.

This is not quite true, but many do have such a basis.

$$S^{-1}AS = \left(\begin{array}{cc} 1/2 & 0\\ 0 & 1 \end{array}\right)$$

Things would be pretty nice if every matrix had a basis, with respect to which the representing matrix is a diagonal matrix.

This is not quite true, but many do have such a basis.

Precisely what one needs are vectors \mathbf{x} that are not $\mathbf{0}$ and satisfy $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ .

Definition

If A is an $n \times n$ matrix and $\mathbf{x} \in \mathbb{R}^n$ is a nonzero vector such that $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ then \mathbf{x} is called an *eigenvector* for A and λ is an *eigenvalue*. For a given eigenvalue λ , the set of solutions of $A\mathbf{x} = \lambda \mathbf{x}$ is called the *eigenspace associated to* λ .

$$S^{-1}AS = \left(\begin{array}{cc} 1/2 & 0\\ 0 & 1 \end{array}\right)$$

Things would be pretty nice if every matrix had a basis, with respect to which the representing matrix is a diagonal matrix.

This is not quite true, but many do have such a basis.

Precisely what one needs are vectors \mathbf{x} that are not $\mathbf{0}$ and satisfy $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ .

Definition

If A is an $n \times n$ matrix and $\mathbf{x} \in \mathbb{R}^n$ is a nonzero vector such that $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ then \mathbf{x} is called an *eigenvector* for A and λ is an *eigenvalue*. For a given eigenvalue λ , the set of solutions of $A\mathbf{x} = \lambda \mathbf{x}$ is called the *eigenspace associated to* λ .

Every eigenvector has an associated eigenvalue.

$$S^{-1}AS = \left(\begin{array}{cc} 1/2 & 0\\ 0 & 1 \end{array}\right)$$

Things would be pretty nice if every matrix had a basis, with respect to which the representing matrix is a diagonal matrix.

This is not quite true, but many do have such a basis.

Precisely what one needs are vectors \mathbf{x} that are not $\mathbf{0}$ and satisfy $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ .

Definition

If A is an $n \times n$ matrix and $\mathbf{x} \in \mathbb{R}^n$ is a nonzero vector such that $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ then \mathbf{x} is called an *eigenvector* for A and λ is an *eigenvalue*. For a given eigenvalue λ , the set of solutions of $A\mathbf{x} = \lambda \mathbf{x}$ is called the *eigenspace associated to* λ .

Every eigenvector has an associated eigenvalue. It turns out to be easier to find the eigenvalues first.

If λ is an eigenvalue associated to an eigenvector \mathbf{x} , then $A - \lambda I$ must be singular and therefore $\det(A - \lambda I) = 0$.

If λ is an eigenvalue associated to an eigenvector \mathbf{x} , then $A - \lambda I$ must be singular and therefore det $(A - \lambda I) = 0$.

This is true because the eigenvector \mathbf{x} must satisfy

 $\begin{aligned} A\mathbf{x} &= \lambda \mathbf{x} \\ A\mathbf{x} &- \lambda \mathbf{x} = \mathbf{0} \\ (A - \lambda I)\mathbf{x} &= \mathbf{0} \quad (I \text{ the identity matrix}) \end{aligned}$

If λ is an eigenvalue associated to an eigenvector **x**, then $A - \lambda I$ must be singular and therefore det $(A - \lambda I) = 0$.

This is true because the eigenvector \mathbf{x} must satisfy

$$\begin{split} A\mathbf{x} &= \lambda \mathbf{x} \\ A\mathbf{x} - \lambda \mathbf{x} &= \mathbf{0} \\ (A - \lambda I)\mathbf{x} &= \mathbf{0} \quad (I \text{ the identity matrix}) \end{split}$$

The last formulation says that x must be a nonvero vector in the nullspace of $A - \lambda I$.

If λ is an eigenvalue associated to an eigenvector **x**, then $A - \lambda I$ must be singular and therefore det $(A - \lambda I) = 0$.

This is true because the eigenvector \mathbf{x} must satisfy

 $\begin{aligned} A\mathbf{x} &= \lambda \mathbf{x} \\ A\mathbf{x} &- \lambda \mathbf{x} = \mathbf{0} \\ (A - \lambda I)\mathbf{x} &= \mathbf{0} \quad (I \text{ the identity matrix}) \end{aligned}$

The last formulation says that x must be a nonvero vector in the nullspace of $A - \lambda I$. That is, the nullity of $A - \lambda I$ is greater than zero.

If λ is an eigenvalue associated to an eigenvector **x**, then $A - \lambda I$ must be singular and therefore det $(A - \lambda I) = 0$.

This is true because the eigenvector \mathbf{x} must satisfy

$$\begin{split} A\mathbf{x} &= \lambda \mathbf{x} \\ A\mathbf{x} - \lambda \mathbf{x} &= \mathbf{0} \\ (A - \lambda I)\mathbf{x} &= \mathbf{0} \quad (I \text{ the identity matrix}) \end{split}$$

The last formulation says that x must be a nonvero vector in the nullspace of $A - \lambda I$. That is, the nullity of $A - \lambda I$ is greater than zero. This means the rank of $A - \lambda I$ must be less than n and so $A - \lambda I$ is not invertible.

If λ is an eigenvalue associated to an eigenvector **x**, then $A - \lambda I$ must be singular and therefore det $(A - \lambda I) = 0$.

This is true because the eigenvector \mathbf{x} must satisfy

$$\begin{split} A\mathbf{x} &= \lambda \mathbf{x} \\ A\mathbf{x} - \lambda \mathbf{x} &= \mathbf{0} \\ (A - \lambda I)\mathbf{x} &= \mathbf{0} \quad (I \text{ the identity matrix}) \end{split}$$

The last formulation says that x must be a nonvero vector in the nullspace of $A - \lambda I$. That is, the nullity of $A - \lambda I$ is greater than zero. This means the rank of $A - \lambda I$ must be less than n and so $A - \lambda I$ is not invertible.

This theorem gives us the means to find eigenvalues:

If λ is an eigenvalue associated to an eigenvector **x**, then $A - \lambda I$ must be singular and therefore det $(A - \lambda I) = 0$.

This is true because the eigenvector \mathbf{x} must satisfy

$$\begin{split} A\mathbf{x} &= \lambda \mathbf{x} \\ A\mathbf{x} - \lambda \mathbf{x} &= \mathbf{0} \\ (A - \lambda I)\mathbf{x} &= \mathbf{0} \quad (I \text{ the identity matrix}) \end{split}$$

The last formulation says that x must be a nonvero vector in the nullspace of $A - \lambda I$. That is, the nullity of $A - \lambda I$ is greater than zero. This means the rank of $A - \lambda I$ must be less than n and so $A - \lambda I$ is not invertible.

This theorem gives us the means to find eigenvalues: Equate $det(A - \lambda I)$ to zero and solve for λ .

If λ is an eigenvalue associated to an eigenvector **x**, then $A - \lambda I$ must be singular and therefore det $(A - \lambda I) = 0$.

This is true because the eigenvector \mathbf{x} must satisfy

$$\begin{split} A\mathbf{x} &= \lambda \mathbf{x} \\ A\mathbf{x} - \lambda \mathbf{x} &= \mathbf{0} \\ (A - \lambda I)\mathbf{x} &= \mathbf{0} \quad (I \text{ the identity matrix}) \end{split}$$

The last formulation says that x must be a nonvero vector in the nullspace of $A - \lambda I$. That is, the nullity of $A - \lambda I$ is greater than zero. This means the rank of $A - \lambda I$ must be less than n and so $A - \lambda I$ is not invertible.

This theorem gives us the means to find eigenvalues: Equate $det(A - \lambda I)$ to zero and solve for λ .

Let's apply this to the matrix
$$A=\left(egin{array}{cc} 0.7 & 0.2 \ 0.3 & 0.8 \end{array}
ight)$$

$$\det(A - \lambda I) = \begin{vmatrix} 0.7 - \lambda & 0.2\\ 0.3 & 0.8 - \lambda \end{vmatrix} = \lambda^2 - 1.5\lambda + 0.5 = (\lambda - 1)(\lambda - 0.5)$$

Thus the eigenvalues are $\lambda = 1$ and $\lambda = 1/2$.

$$\det(A - \lambda I) = \begin{vmatrix} 0.7 - \lambda & 0.2 \\ 0.3 & 0.8 - \lambda \end{vmatrix} = \lambda^2 - 1.5\lambda + 0.5 = (\lambda - 1)(\lambda - 0.5)$$

Thus the eigenvalues are $\lambda = 1$ and $\lambda = 1/2$. To get an eigenvector for $\lambda = 1$, we need to solve $(A - I)\mathbf{x} = 0$:

$$(A - I)\mathbf{x} = \begin{pmatrix} -0.3 & 0.2\\ 0.3 & -0.2 \end{pmatrix} \mathbf{x} = \mathbf{0}$$

$$\det(A - \lambda I) = \begin{vmatrix} 0.7 - \lambda & 0.2 \\ 0.3 & 0.8 - \lambda \end{vmatrix} = \lambda^2 - 1.5\lambda + 0.5 = (\lambda - 1)(\lambda - 0.5)$$

Thus the eigenvalues are $\lambda = 1$ and $\lambda = 1/2$. To get an eigenvector for $\lambda = 1$, we need to solve $(A - I)\mathbf{x} = 0$:

$$(A - I)\mathbf{x} = \begin{pmatrix} -0.3 & 0.2\\ 0.3 & -0.2 \end{pmatrix} \mathbf{x} = \mathbf{0}$$

Row-reducing leads to $x_1=(2/3)x_2$ and so the null space of A-I is

$$\left\{ \left(\begin{array}{c} (2/3)\alpha \\ \alpha \end{array} \right) \middle| \alpha \in \mathbb{R} \right\}$$

$$\det(A - \lambda I) = \begin{vmatrix} 0.7 - \lambda & 0.2 \\ 0.3 & 0.8 - \lambda \end{vmatrix} = \lambda^2 - 1.5\lambda + 0.5 = (\lambda - 1)(\lambda - 0.5)$$

Thus the eigenvalues are $\lambda = 1$ and $\lambda = 1/2$. To get an eigenvector for $\lambda = 1$, we need to solve $(A - I)\mathbf{x} = 0$:

$$(A - I)\mathbf{x} = \begin{pmatrix} -0.3 & 0.2\\ 0.3 & -0.2 \end{pmatrix} \mathbf{x} = \mathbf{0}$$

Row-reducing leads to $x_1 = (2/3)x_2$ and so the null space of A - I is

$$\left\{ \left(\begin{array}{c} (2/3)\alpha \\ \alpha \end{array} \right) \middle| \alpha \in \mathbb{R} \right\}$$

Any nonzero vector in this set is an eigenvector with eigenvalue $\lambda = 1$.

$$\det(A - \lambda I) = \begin{vmatrix} 0.7 - \lambda & 0.2 \\ 0.3 & 0.8 - \lambda \end{vmatrix} = \lambda^2 - 1.5\lambda + 0.5 = (\lambda - 1)(\lambda - 0.5)$$

Thus the eigenvalues are $\lambda = 1$ and $\lambda = 1/2$. To get an eigenvector for $\lambda = 1$, we need to solve $(A - I)\mathbf{x} = 0$:

$$(A - I)\mathbf{x} = \begin{pmatrix} -0.3 & 0.2\\ 0.3 & -0.2 \end{pmatrix} \mathbf{x} = \mathbf{0}$$

Row-reducing leads to $x_1 = (2/3)x_2$ and so the null space of A - I is

$$\left\{ \left(\begin{array}{c} (2/3)\alpha \\ \alpha \end{array} \right) \middle| \alpha \in \mathbb{R} \right\}$$

Any nonzero vector in this set is an eigenvector with eigenvalue $\lambda = 1$. Selecting $\alpha = 3$ gives us $\begin{pmatrix} 2\\ 3 \end{pmatrix}$ but any other convenient multiple is also an eigenvector.

$$(A - (1/2)I)\mathbf{x} = \begin{pmatrix} 0.2 & 0.2 \\ 0.3 & 0.3 \end{pmatrix} \mathbf{x} = 0$$

$$(A - (1/2)I)\mathbf{x} = \begin{pmatrix} 0.2 & 0.2 \\ 0.3 & 0.3 \end{pmatrix} \mathbf{x} = 0$$

The solution of this leads to $x_1 = -x_2$ and the eigenspace is

$$\left\{ \left(\begin{array}{c} -\alpha \\ \alpha \end{array} \right) \middle| \alpha \in \mathbb{R} \right\}$$

$$(A - (1/2)I)\mathbf{x} = \begin{pmatrix} 0.2 & 0.2 \\ 0.3 & 0.3 \end{pmatrix} \mathbf{x} = 0$$

The solution of this leads to $x_1 = -x_2$ and the eigenspace is

$$\left\{ \left(\begin{array}{c} -\alpha \\ \alpha \end{array} \right) \middle| \alpha \in \mathbb{R} \right\}$$

Normally we want a basis for each eigenspace. If we put these together, we hope to get a basis for all of \mathbb{R}^n .

$$(A - (1/2)I)\mathbf{x} = \begin{pmatrix} 0.2 & 0.2 \\ 0.3 & 0.3 \end{pmatrix} \mathbf{x} = 0$$

The solution of this leads to $x_1 = -x_2$ and the eigenspace is

$$\left\{ \left(\begin{array}{c} -\alpha \\ \alpha \end{array} \right) \middle| \alpha \in \mathbb{R} \right\}$$

Normally we want a basis for each eigenspace. If we put these together, we hope to get a basis for all of \mathbb{R}^n .

Theorem

If x is an eigenvector for A with eigenvalue λ , then x is also an eigenvector for αA with eigenvalue $\alpha \lambda$.

$$(A - (1/2)I)\mathbf{x} = \begin{pmatrix} 0.2 & 0.2 \\ 0.3 & 0.3 \end{pmatrix} \mathbf{x} = 0$$

The solution of this leads to $x_1 = -x_2$ and the eigenspace is

$$\left\{ \left(\begin{array}{c} -\alpha \\ \alpha \end{array} \right) \middle| \alpha \in \mathbb{R} \right\}$$

Normally we want a basis for each eigenspace. If we put these together, we hope to get a basis for all of \mathbb{R}^n .

Theorem

If x is an eigenvector for A with eigenvalue λ , then x is also an eigenvector for αA with eigenvalue $\alpha \lambda$.

If x is an eigenvector for A with eigenvalue λ , then x is also an eigenvector for A^2 with eigenvalue λ^2 .

$$(A - (1/2)I)\mathbf{x} = \begin{pmatrix} 0.2 & 0.2 \\ 0.3 & 0.3 \end{pmatrix} \mathbf{x} = 0$$

The solution of this leads to $x_1 = -x_2$ and the eigenspace is

$$\left\{ \left(\begin{array}{c} -\alpha \\ \alpha \end{array} \right) \middle| \alpha \in \mathbb{R} \right\}$$

Normally we want a basis for each eigenspace. If we put these together, we hope to get a basis for all of \mathbb{R}^n .

Theorem

If x is an eigenvector for A with eigenvalue λ , then x is also an eigenvector for αA with eigenvalue $\alpha \lambda$.

If x is an eigenvector for A with eigenvalue λ , then x is also an eigenvector for A^2 with eigenvalue λ^2 .

If $A\mathbf{x} = \lambda \mathbf{x}$ then $\alpha A\mathbf{x} = \alpha \lambda \mathbf{x}$,

$$(A - (1/2)I)\mathbf{x} = \begin{pmatrix} 0.2 & 0.2 \\ 0.3 & 0.3 \end{pmatrix} \mathbf{x} = 0$$

The solution of this leads to $x_1 = -x_2$ and the eigenspace is

$$\left\{ \left(\begin{array}{c} -\alpha \\ \alpha \end{array} \right) \middle| \alpha \in \mathbb{R} \right\}$$

Normally we want a basis for each eigenspace. If we put these together, we hope to get a basis for all of \mathbb{R}^n .

Theorem

If x is an eigenvector for A with eigenvalue λ , then x is also an eigenvector for αA with eigenvalue $\alpha \lambda$.

If x is an eigenvector for A with eigenvalue λ , then x is also an eigenvector for A^2 with eigenvalue λ^2 .

If
$$A\mathbf{x} = \lambda \mathbf{x}$$
 then $\alpha A\mathbf{x} = \alpha \lambda \mathbf{x}$, and $A^2\mathbf{x} = A(A\mathbf{x}) = A(\lambda \mathbf{x}) = \lambda(A\mathbf{x}) = \lambda(\lambda \mathbf{x})$.

If $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_r$ is a basis for the eigenspace of A associated to λ_1 and $\mathbf{v}_{r+1}, \ldots, \mathbf{v}_m$ is a basis for the eigenspace of A associated to λ_2 with $\lambda_2 \neq \lambda_1$, then $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m\}$ is independent.

If $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_r$ is a basis for the eigenspace of A associated to λ_1 and $\mathbf{v}_{r+1}, \ldots, \mathbf{v}_m$ is a basis for the eigenspace of A associated to λ_2 with $\lambda_2 \neq \lambda_1$, then $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m\}$ is independent.

Suppose

$$(c_1\mathbf{v}_1 + \dots + c_r\mathbf{v}_r) + (c_{r+1}\mathbf{v}_{r+1} + \dots + c_m\mathbf{v}_m) = \mathbf{0}$$

If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ is a basis for the eigenspace of A associated to λ_1 and $\mathbf{v}_{r+1}, \dots, \mathbf{v}_m$ is a basis for the eigenspace of A associated to λ_2 with $\lambda_2 \neq \lambda_1$, then $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ is independent.

Suppose

$$(c_1\mathbf{v}_1 + \dots + c_r\mathbf{v}_r) + (c_{r+1}\mathbf{v}_{r+1} + \dots + c_m\mathbf{v}_m) = \mathbf{0}$$

Multiply this by λ_1 to get

$$\lambda_1(c_1\mathbf{v}_1 + \dots + c_r\mathbf{v}_r) + \lambda_1(c_{r+1}\mathbf{v}_{r+1} + \dots + c_m\mathbf{v}_m) = \mathbf{0}$$

If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ is a basis for the eigenspace of A associated to λ_1 and $\mathbf{v}_{r+1}, \dots, \mathbf{v}_m$ is a basis for the eigenspace of A associated to λ_2 with $\lambda_2 \neq \lambda_1$, then $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ is independent.

Suppose

$$(c_1\mathbf{v}_1 + \dots + c_r\mathbf{v}_r) + (c_{r+1}\mathbf{v}_{r+1} + \dots + c_m\mathbf{v}_m) = \mathbf{0}$$

Multiply this by λ_1 to get

$$\lambda_1(c_1\mathbf{v}_1+\cdots+c_r\mathbf{v}_r)+\lambda_1(c_{r+1}\mathbf{v}_{r+1}+\cdots+c_m\mathbf{v}_m)=\mathbf{0}$$

Multiply the same sum by \boldsymbol{A} to get

$$\lambda_1(c_1\mathbf{v}_1 + \dots + c_r\mathbf{v}_r) + \lambda_2(c_{r+1}\mathbf{v}_{r+1} + \dots + c_m\mathbf{v}_m) = \mathbf{0}$$

If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ is a basis for the eigenspace of A associated to λ_1 and $\mathbf{v}_{r+1}, \dots, \mathbf{v}_m$ is a basis for the eigenspace of A associated to λ_2 with $\lambda_2 \neq \lambda_1$, then $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ is independent.

Suppose

$$(c_1\mathbf{v}_1 + \dots + c_r\mathbf{v}_r) + (c_{r+1}\mathbf{v}_{r+1} + \dots + c_m\mathbf{v}_m) = \mathbf{0}$$

Multiply this by λ_1 to get

$$\lambda_1(c_1\mathbf{v}_1 + \dots + c_r\mathbf{v}_r) + \lambda_1(c_{r+1}\mathbf{v}_{r+1} + \dots + c_m\mathbf{v}_m) = \mathbf{0}$$

Multiply the same sum by \boldsymbol{A} to get

$$\lambda_1(c_1\mathbf{v}_1 + \dots + c_r\mathbf{v}_r) + \lambda_2(c_{r+1}\mathbf{v}_{r+1} + \dots + c_m\mathbf{v}_m) = \mathbf{0}$$

Subtract the last two equations to get

$$(\lambda_1 - \lambda_2)(c_{r+1}\mathbf{v}_{r+1} + \dots + c_m\mathbf{v}_m) = \mathbf{0}$$

If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ is a basis for the eigenspace of A associated to λ_1 and $\mathbf{v}_{r+1}, \dots, \mathbf{v}_m$ is a basis for the eigenspace of A associated to λ_2 with $\lambda_2 \neq \lambda_1$, then $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ is independent.

Suppose

$$(c_1\mathbf{v}_1 + \dots + c_r\mathbf{v}_r) + (c_{r+1}\mathbf{v}_{r+1} + \dots + c_m\mathbf{v}_m) = \mathbf{0}$$

Multiply this by λ_1 to get

$$\lambda_1(c_1\mathbf{v}_1 + \dots + c_r\mathbf{v}_r) + \lambda_1(c_{r+1}\mathbf{v}_{r+1} + \dots + c_m\mathbf{v}_m) = \mathbf{0}$$

Multiply the same sum by A to get

$$\lambda_1(c_1\mathbf{v}_1 + \dots + c_r\mathbf{v}_r) + \lambda_2(c_{r+1}\mathbf{v}_{r+1} + \dots + c_m\mathbf{v}_m) = \mathbf{0}$$

Subtract the last two equations to get

$$(\lambda_1 - \lambda_2)(c_{r+1}\mathbf{v}_{r+1} + \dots + c_m\mathbf{v}_m) = \mathbf{0}$$

By independence, $c_{r+1} = c_{r+2} = \cdots = c_m = 0$. That means the first equation becomes

$$(c_1\mathbf{v}_1+\cdots+c_r\mathbf{v}_r)=\mathbf{0}$$

$$(c_1\mathbf{v}_1+\cdots+c_r\mathbf{v}_r)=\mathbf{0}$$

$$(c_1\mathbf{v}_1+\cdots+c_r\mathbf{v}_r)=\mathbf{0}$$

Ideally, we want a basis of eigenvectors. If we have that, say $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_1, \dots, \mathbf{v}_n]$ is a basis and $A\mathbf{v}_j = \lambda_j \mathbf{v}_j$ for every j, then we have the following:

Suppose
$$[\mathbf{x}]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$
. This means that $\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$

$$(c_1\mathbf{v}_1+\cdots+c_r\mathbf{v}_r)=\mathbf{0}$$

Ideally, we want a basis of eigenvectors. If we have that, say $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_1, \dots, \mathbf{v}_n]$ is a basis and $A\mathbf{v}_j = \lambda_j \mathbf{v}_j$ for every j, then we have the following:

Suppose $[\mathbf{x}]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$. This means that $\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$ and therefore $A\mathbf{x} = \lambda_1 c_1 \mathbf{v}_1 + \dots + \lambda_n c_n \mathbf{v}_n$.

$$(c_1\mathbf{v}_1+\cdots+c_r\mathbf{v}_r)=\mathbf{0}$$

Ideally, we want a basis of eigenvectors. If we have that, say $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_1, \dots, \mathbf{v}_n]$ is a basis and $A\mathbf{v}_j = \lambda_j \mathbf{v}_j$ for every j, then we have the following:

Suppose
$$[\mathbf{x}]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$
. This means that $\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$ and therefore
 $A\mathbf{x} = \lambda_1 c_1 \mathbf{v}_1 + \dots + \lambda_n c_n \mathbf{v}_n$. So,
 $[A\mathbf{x}]_{\mathcal{B}} = \begin{pmatrix} \lambda_1 c_1 \\ \vdots \\ \lambda_n c_n \end{pmatrix} = \begin{pmatrix} \lambda_1 c_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} [\mathbf{x}]_{\mathcal{B}}.$

$$(c_1\mathbf{v}_1+\cdots+c_r\mathbf{v}_r)=\mathbf{0}$$

Ideally, we want a basis of eigenvectors. If we have that, say $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_1, \dots, \mathbf{v}_n]$ is a basis and $A\mathbf{v}_j = \lambda_j \mathbf{v}_j$ for every j, then we have the following:

Suppose
$$[\mathbf{x}]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$
. This means that $\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$ and therefore
 $A\mathbf{x} = \lambda_1 c_1 \mathbf{v}_1 + \dots + \lambda_n c_n \mathbf{v}_n$. So,
 $[A\mathbf{x}]_{\mathcal{B}} = \begin{pmatrix} \lambda_1 c_1 \\ \vdots \\ \lambda_n c_n \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$ [$\mathbf{x}]_{\mathcal{B}}$. Moreover, if
 $S = \begin{pmatrix} \mathbf{v}_1 & \dots & \mathbf{v}_n \end{pmatrix}$ (the transition matrix from \mathcal{B} to \mathcal{E}), then $S^{-1}AS$ is a diagonal matrix, with eigenvalues of A on the diagonal.

All this is only possible when there is a basis of eigenvectors.

All this is only possible when there is a basis of eigenvectors. To get this, we take a basis of each eigenspace and put them together.

Finding eigenvalues and eigenvectors.

Finding eigenvalues and eigenvectors.

Example.

Finding eigenvalues and eigenvectors.

Example.

Find the eigenvalues of
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$
.

Finding eigenvalues and eigenvectors.

Example.

Find the eigenvalues of
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$
. Find the determinant
$$\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & 1 - \lambda & 0 \\ 0 & 1 & 2 - \lambda \end{vmatrix} = (2 - \lambda)(1 - \lambda)(2 - \lambda)$$

Finding eigenvalues and eigenvectors.

Example.

Find the eigenvalues of
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$
. Find the determinant
$$\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & 1 - \lambda & 0 \\ 0 & 1 & 2 - \lambda \end{vmatrix} = (2 - \lambda)(1 - \lambda)(2 - \lambda)$$

So $\lambda = 2$ and $\lambda = 1$ are eigenvalues of A.

Finding eigenvalues and eigenvectors.

Example.

Find the eigenvalues of
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$
. Find the determinant
$$\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 0 & 1 - \lambda & 0 \\ 0 & 1 & 2 - \lambda \end{vmatrix} = (2 - \lambda)(1 - \lambda)(2 - \lambda)$$

So $\lambda = 2$ and $\lambda = 1$ are eigenvalues of A. Find the eigenspaces for these eigenvalues.

$$\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 0 \end{array}\right) \xrightarrow{2 \text{ EROs}} \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

$$\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 0 \end{array}\right) \xrightarrow{2 \text{ EROs}} \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

Then x_2 is the only leading variable, x_1 and x_3 are free and the equation is $x_2 = 0$.

$$\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 0 \end{array}\right) \xrightarrow{2 \text{ EROs}} \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

Then x_2 is the only leading variable, x_1 and x_3 are free and the equation is $x_2 = 0$. This gives the eigenspace

$$\left\{ \left(\begin{array}{c} \alpha \\ 0 \\ \beta \end{array} \right) \middle| \alpha, \beta \in \mathbb{R} \right\}$$

$$\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 0 \end{array}\right) \xrightarrow{2 \text{ EROs}} \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

Then x_2 is the only leading variable, x_1 and x_3 are free and the equation is $x_2 = 0$. This gives the eigenspace

$$\left\{ \left(\begin{array}{c} \alpha \\ 0 \\ \beta \end{array}\right) \middle| \alpha, \beta \in \mathbb{R} \right\}$$

So we get a basis for this eigenspace: $\mathbf{v}_1 = \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right)$ and $\mathbf{v}_2 = \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right)$

$$\left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{array}\right) \xrightarrow{R_2 \leftrightarrow R_3} \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right)$$

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{array}\right) \xrightarrow{R_2 \leftrightarrow R_3} \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right)$$

Then x_1 and x_2 are the leading variables and x_3 is free. The equations are $x_1 = 0$ and $x_2 = -x_3$. This gives the eigenspace

$$\left\{ \left(\begin{array}{c} 0\\ -\alpha\\ \alpha \end{array} \right) \middle| \alpha \in \mathbb{R} \right\}$$

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{array}\right) \xrightarrow{R_2 \leftrightarrow R_3} \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right)$$

Then x_1 and x_2 are the leading variables and x_3 is free. The equations are $x_1 = 0$ and $x_2 = -x_3$. This gives the eigenspace

$$\left\{ \left(\begin{array}{c} 0\\ -\alpha\\ \alpha \end{array} \right) \middle| \alpha \in \mathbb{R} \right\}$$

So we get a basis for this eigenspace: $\mathbf{v}_3 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$.

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{array}\right) \xrightarrow{R_2 \leftrightarrow R_3} \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right)$$

Then x_1 and x_2 are the leading variables and x_3 is free. The equations are $x_1 = 0$ and $x_2 = -x_3$. This gives the eigenspace

$$\left\{ \left(\begin{array}{c} 0\\ -\alpha\\ \alpha \end{array} \right) \middle| \alpha \in \mathbb{R} \right\}$$

So we get a basis for this eigenspace: $\mathbf{v}_3 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$.

Because we have altogether 3 independent vectors, we have a basis for \mathbb{R}^3 consisting of eigenvectors.

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{array}\right) \xrightarrow{R_2 \leftrightarrow R_3} \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right)$$

Then x_1 and x_2 are the leading variables and x_3 is free. The equations are $x_1 = 0$ and $x_2 = -x_3$. This gives the eigenspace

$$\left\{ \left(\begin{array}{c} 0\\ -\alpha\\ \alpha \end{array} \right) \middle| \alpha \in \mathbb{R} \right\}$$

So we get a basis for this eigenspace: $\mathbf{v}_3 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$.

Because we have altogether 3 independent vectors, we have a basis for \mathbb{R}^3 consisting of eigenvectors. If we put the basis vectors in a matrix S and find its inverse S^{-1} , then the product $S^{-1}AS$ will be a diagonal matrix D with 2, 2, 1 on the diagonal:

That is,
$$S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$
, $S^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 0 \end{pmatrix}$

That is,
$$S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$
, $S^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 0 \end{pmatrix}$ and $D = S^{-1}AS = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

That is,
$$S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$
, $S^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 0 \end{pmatrix}$ and $D = S^{-1}AS = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Note that $A = SDS^{-1}$. This allows us to compute successive powers of A easily:

$$A^{2} = SDS^{-1}SDS^{-1} = SDIDS^{-1} = SD^{2}S^{-1}$$
$$A^{3} = SD^{2}S^{-1}SDS^{-1} = SD^{2}IDS^{-1} = SD^{3}S^{-1}$$

and so on for $A^n = SD^nS^{-1}$.

That is,
$$S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$
, $S^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 0 \end{pmatrix}$ and $D = S^{-1}AS = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Note that $A = SDS^{-1}$. This allows us to compute successive powers of A easily:

$$A^{2} = SDS^{-1}SDS^{-1} = SDIDS^{-1} = SD^{2}S^{-1}$$
$$A^{3} = SD^{2}S^{-1}SDS^{-1} = SD^{2}IDS^{-1} = SD^{3}S^{-1}$$

and so on for $A^n = SD^nS^{-1}$. This is an advantage because $D^n = \begin{pmatrix} 2^n & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 1^n \end{pmatrix}$ is essentially trivial to calculate.

That is,
$$S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$
, $S^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 0 \end{pmatrix}$ and $D = S^{-1}AS = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Note that $A = SDS^{-1}$. This allows us to compute successive powers of A easily:

$$\begin{aligned} A^2 &= SDS^{-1}SDS^{-1} = SDIDS^{-1} = SD^2S^{-1} \\ A^3 &= SD^2S^{-1}SDS^{-1} = SD^2IDS^{-1} = SD^3S^{-1} \end{aligned}$$

and so on for $A^n = SD^nS^{-1}$. This is an advantage because $D^n = \begin{pmatrix} 2^n & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 1^n \end{pmatrix}$ is essentially trivial to calculate. This works for negative powers as well.