Eigenvalues and Eigenvectors

D. H. Luecking
MASC

12 April 2024

1/12



Recall the matrix example from Chapter 1:

0.7 0.2
A= [ 0.3 0.8 ]

2/12



Recall the matrix example from Chapter 1:

0.7 0.2
A= [ 0.3 0.8 ]

. . 1
We stated without explanation that the vectors v = [ 1 ] and vo = [ z ] were

special in that Avy = (1/2)vy and Avy = va.

2/12



Recall the matrix example from Chapter 1:

0.7 0.2
A= [ 0.3 0.8 ]

. . 1
We stated without explanation that the vectors v = [ 1 ] and vo = [ z ] were

special in that Avy = (1/2)vy and Avy = va.
These two vectors were important because the linear transformation of multiplication
by A has a particularly nice representing matrix with respect to the basis B = [v1, va].

2/12



Recall the matrix example from Chapter 1:
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We stated without explanation that the vectors v = [ 1 ] and vo = [ 3 ] were
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scalar \.
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1 3 ] then

e [1/2 0
SAS—[O 1]

Things would be pretty nice if every matrix had a basis, with respect to which the
representing matrix is a diagonal matrix.

This is not quite true, but many do have such a basis.

Precisely what one needs are vectors x that are not 0 and satisfy Ax = Ax for some
scalar .

Definition

If Ais an n X n matrix and x € R™ is a nonzero vector such that Ax = Ax for some

scalar A then x is called an eigenvector for A and A is an eigenvalue. For a given
eigenvalue )\, the set of solutions of Ax = Ax is called the eigenspace associated to .

Every eigenvector has an associated eigenvalue. It turns out to be easier to find the
eigenvalues first.
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If \ is an eigenvalue associated to an eigenvector x, then A — A\I must be singular and
therefore det(A — A\I) = 0.
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Theorem

If X is an eigenvalue associated to an eigenvector x, then A — A\I must be singular and
therefore det(A — A\I) = 0.

This is true because the eigenvector x must satisfy

Ax = Ax
Ax - Ax =0
(A—X)x =0 (I the identity matrix)
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Theorem

If X is an eigenvalue associated to an eigenvector x, then A — A\I must be singular and
therefore det(A — A\I) = 0.

This is true because the eigenvector x must satisfy

Ax = Ax
Ax - Ax =0
(A—X)x =0 (I the identity matrix)

The last formulation says that x must be a nonvero vector in the nullspace of A — AI.
That is, the nullity of A — AI is greater than zero. This means the rank of A — A\I
must be less than n and so A — A\ is not invertible.

This theorem gives us the means to find eigenvalues: Equate det(A — A\I) to zero and
solve for A.

Let's apply this to the matrix A = [ 0.7.0.2 ]

0.3 0.8
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We get

0.7—A 0.2

det(A—=AD)=| "3" gg_a

=X —1524+05=(\—1)(A—0.5)

Thus the eigenvalues are A =1 and A = 1/2.
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Any nonzero vector in this set is an eigenvector with eigenvalue A = 1.
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We get

0.7—A 0.2

det(A = Al) = ' 0.3 08—\

‘ =X —1524+05=(\—1)(A—0.5)

Thus the eigenvalues are A =1 and A = 1/2. To get an eigenvector for A = 1, we
need to solve (A — I)x = 0:

~0.3 0.2
(A—I)x = [ 0.3 —0.2 ] x=0

Row-reducing leads to x; = (2/3)z2 and so the null space of A — 1 is

(I

Any nonzero vector in this set is an eigenvector with eigenvalue A = 1. Selecting o = 3

. 2 : S .
gives us [ 3 ] but any other convenient multiple is also an eigenvector.
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For eigenvalue A = 1/2 we do the same to A — (1/2)I:

(A—(1/2)D)x = [ 8§ 83 ] x=0
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Normally we want a basis for each eigenspace. If we put these together, we hope to
get a basis for all of R"™.
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with eigenvalue a\.
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Theorem

If x is an eigenvector for A with eigenvalue X\, then x is also an eigenvector for aA
with eigenvalue a\.

If x is an eigenvector for A with eigenvalue \, then x is also an eigenvector for A?
with eigenvalue \2.

If Ax = A\x then aAx = a)\x,
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For eigenvalue A = 1/2 we do the same to A — (1/2)I:
0.2 0.2
(A—(1/2))x = [ 03 0.3 ] x=0

The solution of this leads to ©1 = —z2 and the eigenspace is

L feem)

«

Normally we want a basis for each eigenspace. If we put these together, we hope to
get a basis for all of R"™.

Theorem

If x is an eigenvector for A with eigenvalue X\, then x is also an eigenvector for aA
with eigenvalue a\.
If x is an eigenvector for A with eigenvalue \, then x is also an eigenvector for A?
with eigenvalue \2.

If Ax = Ax then adx = a)x, and A?x = A(Ax) = A(Ax) = A\(4x) = A\(\x).
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Theorem

If vi,va, ..., v, is a basis for the eigenspace of A associated to \y and v,11,...,Vp
is a basis for the eigenspace of A associated to Ao with \s # A1, then
{v1,va,...,Vin} is independent.
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Theorem

If vi,va,..., v, is a basis for the eigenspace of A associated to \1 and v,11, ...

is a basis for the eigenspace of A associated to Ao with \s # A1, then
{v1,va,...,Vin} is independent.

Suppose
(ervi+- 4 eve)+ (Gravigr + -+ Vi) =0

Multiply this by \; to get

A(ervy + -+ eve) + Merp1vesr + o emvin) = 0
Multiply the same sum by A to get

A(eivy+ -+ eve) + Xa(cri1veir + -+ Vi) =0
Subtract the last two equations to get

(Al - )\2>(C7‘+1Vr+1 + -+ cmvm) =0

By independence, ¢, 41 = ¢42 = -+ - = ¢, = 0. That means the first equation becomes
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(c1tvi+ -+ evy) =0
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and by independence again, ¢c; =cp =--- =¢, = 0.
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basis and Av; = \;v; for every j, then we have the following:
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Suppose [x|p = ; . This means that x = cjvy + -+ + ¢, vy,
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(civi+--+c¢vy) =0

and by independence again, ¢ =co =---=¢, = 0.
Ideally, we want a basis of eigenvectors. If we have that, say B = [vi,v1,...,Vy,] is a
basis and Av; = \;v; for every j, then we have the following:

C1
Suppose [x|p = . This means that x = ¢;vy + - -+ + ¢, v, and therefore
Cn
Ax = Aeyvy + -+ Ancp V. So,
e M 0O - 0
e 0 XA -+ 0
[Ax]p = : = ) . . [x]. Moreover, if
Ancn 0 0 - N\
S = ( Vi ... Vp ] (the transition matrix from B to £), then S™1AS is a

diagonal matrix, with eigenvalues of A on the diagonal.
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All this is only possible when there is a basis of eigenvectors.
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All this is only possible when there is a basis of eigenvectors. To get this, we take a
basis of each eigenspace and put them together. This will be independent, but will be
a basis of R™ only if the sum of the dimensions of the eigenspaces is n.

Finding eigenvalues and eigenvectors.

Example.

Find the eigenvalues of A = . Find the determinant

O O N
—_ = O
N OO

2—A 0 0
det(A—AD=| 0 1-X 0 |=@E=-N1-N2-)
0 1 2—A

So A =2 and A =1 are eigenvalues of A.

Find the eigenspaces for these eigenvalues.
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The nullspace of A — 21I:

2 EROs
=

o O O
\

_ = O

S O O

o O O

o O =

o O O
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The nullspace of A — 21I:

0 0 0 010
0 =1 0| 2ER% 10 0 0
0 1 0 000

Then x5 is the only leading variable, x; and z3 are free and the equation is x5 = 0.
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The nullspace of A — 21I:

0 00 010
0 -1 0| 2% 1000
0 10 000
Then x5 is the only leading variable, x; and z3 are free and the equation is x5 = 0.
This gives the eigenspace
o
0 a,f €R
g
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The nullspace of A — 21I:

0 00 010

0 -1 0| 2% 1000

0 10 000

Then x5 is the only leading variable, x; and z3 are free and the equation is x5 = 0.
This gives the eigenspace

o
0 a,f €R
g
1 0
So we get a basis for this eigenspace: vi= ] 0 | andve=] 0
0 1
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The nullspace of A — I:

R2<R3

S O =
— o O
_ o O
S O =
S = O
O = O
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The nullspace of A — I:

100
00 o | f2fs
01 1

S O =

0 0
11
0 0

Then x1 and xo are the leading variables and x3 is free. The equations are 1 = 0 and
x9 = —x3. This gives the eigenspace
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S O =

1 00 0 0
0 00 11
0 11 0 0

Then x1 and xo are the leading variables and x3 is free. The equations are 1 = 0 and
x9 = —x3. This gives the eigenspace

0
—« a€eR
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0
So we get a basis for this eigenspace: v3 = | —1
1

\
Because we have altogether 3 independent vectors, we have a basis for R? consisting of
eigenvectors.
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The nullspace of A — I:

0 0
R2 <—>R3 11
0 0

S O =

1 00
0 00
0 11

Then x1 and xo are the leading variables and x3 is free. The equations are 1 = 0 and
x9 = —x3. This gives the eigenspace

0
—« a€eR
«
0
So we get a basis for this eigenspace: v3 = | —1
1

\
Because we have altogether 3 independent vectors, we have a basis for R? consisting of
eigenvectors. If we put the basis vectors in a matrix S and find its inverse S~!, then
the product S~'AS will be a diagonal matrix D with 2,2, 1 on the diagonal:
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o —H O

That is, S
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and

o —H O

O

— O O

=

011001

O N O
001200
— O O

I 9))
£ N
§a) n,o
o

e I
o _Q
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10 0 1 00
Thatis, S= | 0 0 -1 |, S t'=]10 1 1| and
01 1 0 -1 0
2 00
D=S145=10 2 0
0 01
Note that A = SDS~!. This allows us to compute successive powers of A easily:

A2 =9DS"1SDS ! = SDIDS™! = SD?5~!
A3 =8D?S71SDS ! = SD?*IDS™! = SD3§—!

and so on for A" = SD”S—1.
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Thatis, S= | 0 0 -1 |, S t'=]10 1 1| and
01 1 0 -1 0
2 00
D=S145=10 2 0
0 01
Note that A = SDS~!. This allows us to compute successive powers of A easily:

A2 =9DS"1SDS ! = SDIDS™! = SD?5~!
A3 =8D?S71SDS ! = SD?*IDS™! = SD3§—!

20 0
and so on for A" = SD™S~!. This is an advantage because D" = 0 2 0
0o 0 1"

is essentially trivial to calculate. This works for negative powers as well.
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