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Since orthonormal bases are so important, we need a straightforward way to obtain
them.

We’ve actually seen how to do this, but we didn’t dwell too much on it, except to use
it in the proof that every subspace of an inner product space has an orthonormal basis.

Theorem (Gram-Schmidt)

If {x1,x2, . . . ,xr} is an independent set in an inner product space V then there exists
and orthonormal set {u1,u2, . . . ,ur} such that
Span(x1,x2, . . . ,xr) = Span(u1,u2, . . . ,ur).

The process takes r steps, and at the end of step j the vectors u1, . . . ,uj have the
same span as x1,x2, . . . ,xj . So, by the last step the set is found. If {x1,x2, . . . ,xr}
is a basis for a subspace S of V , then {u1,u2, . . . ,ur} is an orthonormal basis for S.

When computing by hand, it is quite a bit easier to first create an orthogonal set
v1, . . . ,vr and then normalize them at the end by uj = (1/ ∥vj∥)vj .
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The steps

• Step 1: set v1 = x1.

• Step 2: set v2 = x2 − p1, where p1 is the projection of x2 onto the span of v1.

That is v2 = x2 −
⟨x2,v1⟩
⟨v1,v1⟩

v1.

• Step 3: set v3 = x3 − p2 where p2 is the projection of x3 onto Span(v1,v2).
That is

v3 = x3 −
⟨x3,v1⟩
⟨v1,v1⟩

v1 −
⟨x3,v2⟩
⟨v2,v2⟩

v2

• Steps k = 4 thru r: set vk = xk − pk−1 where pk−1 is the projection of xk onto
Span(v1, . . . ,vk−1). That is

vk = xk −
k−1∑
i=1

⟨xk,vi⟩
⟨vi,vi⟩

vi

Then step r + 1: set uj = (1/ ∥vj∥)vj for each j.
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Example: find an orthonormal basis for the span of

x1 =


1
1
0
1

 , x2 =


1
0
1
1

 , x3 =


0
1
1
1

 .

v1 = x1 =


1
1
0
1

. v2 = x2 − p1 =


1
0
1
1

− 2

3


1
1
0
1

 =


1/3
−2/3
1
1/3

.

v3 = x3 − p2 =


0
1
1
1

− 2

3


1
1
0
1

− 2/3

5/3


1/3

−2/3
1

1/3

 =


−4/5
3/5
3/5
1/5

.
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0
1
1
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1
0
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
1/3
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1
1/3
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1
1
0
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5/3


1/3

−2/3
1

1/3

 =


−4/5
3/5
3/5
1/5

.
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Since ∥v1∥ =
√
3, ∥v2∥ =

√
15/3 and ∥v3∥ = (

√
35)/5 we get the orthonormal basis

u1 =


1/

√
3

1/
√
3

0

1/
√
3

 , u2 =


1/
√
15

−2/
√
15

3/
√
15

1/
√
15

 , u3 =


−4/

√
35

3/
√
35

3/
√
35

1/
√
35

 .

A further simplification: since the vs don’t have to have norm equal to 1, we can

replace v2 by any multiple of it. So taking v2 =


1

−2
3
1

 instead of what we used,

the next step simplifies to:
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v3 = x3 − p2 =
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0
1

− 2

15


1

−2
3
1

 =


−4/5
3/5
3/5
1/5



and then we could also use v3 =


−4
3
3
1

.

Because the norms are, respectively,
√
3,

√
15, and

√
35, we will end up with the same

orthonormal basis.

The Gram-Schmidt process can be applied to a dependent set, but it will sometimes
produce vj = 0. In that case we discard xj and continue with the rest.

6 / 13



v3 = x3 − p2 =


0
1
1
1

− 2

3


1
1
0
1

− 2

15


1

−2
3
1

 =


−4/5
3/5
3/5
1/5


and then we could also use v3 =


−4
3
3
1

.

Because the norms are, respectively,
√
3,

√
15, and

√
35, we will end up with the same

orthonormal basis.

The Gram-Schmidt process can be applied to a dependent set, but it will sometimes
produce vj = 0. In that case we discard xj and continue with the rest.

6 / 13



v3 = x3 − p2 =


0
1
1
1

− 2

3


1
1
0
1

− 2

15


1

−2
3
1

 =


−4/5
3/5
3/5
1/5


and then we could also use v3 =


−4
3
3
1

.

Because the norms are, respectively,
√
3,

√
15, and

√
35, we will end up with the same

orthonormal basis.

The Gram-Schmidt process can be applied to a dependent set, but it will sometimes
produce vj = 0. In that case we discard xj and continue with the rest.

6 / 13



Sometimes one of the xj is orthogonal to all the previous xi. In that case we get
pj−1 = 0 and vj = xj .

Example: Find an orthonormal basis for R3 Using the Gram-Schmidt on the set

x1 =


1
0
0

, x2 =


0
1
1

, x3 =


1
0
1



v1 = x1 =


1
0
0

.

v2 = x2 − p1 =


0
1
1

− 0

1


1
0
0

 =


0
1
1

.

v3 = x3 − p2 =


1
0
1

− 1

1


1
0
0

− 1

2


0
1
1

 =


0

−1/2
1/2


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So, u1 =


1
0
0

, u2 =


0

1/
√
2

1/
√
2

, u3 =


0

−1/
√
2

1/
√
2

.

The transition matrix from the basis B = [x1,x2,x3] to the basis C = [u1,u2,u3] has
a particularly nice form.

The transition matrix from B to the standard basis E is A =
 x1 x2 x3

. The

transition matrix from C to the standard basis E is Q =
 u1 u2 u3

.

So the transition matrix from B to the standard basis C is QTA = (uT
i xj). But if

i > j we know that ui is orthogonal to Span(u1, . . . ,ui−1) = Span(x1, . . . ,xi−1).
That is, uT

i xj = 0 when i > j. This means that QTA is upper triangular.

Something like this happens in every Gram-Scmidt process. Start with an n× k matrix
A, whose columns are independent vectors x1, . . . ,xk in Rn. Apply Gram-Schmidt to
them to get orthonormal vectors q1, . . . ,qk.
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If we let Q =
 q1 · · · qk

 then R = QTA is an upper triangular k × k matrix

and A = QR where Q is an n× k with orthonormal columns. This is called the
QR-factorization of A.

Note that R is a square matrix. Also its diagonals are qT
j xj . These are not zero

because qj = (1/ ∥vj∥)vj where vj has the form

vj = xj − (a linear combination of vi, i < j)

which means
xj = vj + (a linear combination of vi, i < j)

and that says that qT
j xj = (1/ ∥vj∥)vT

j vj = ∥vj∥ ≠ 0.
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Examples: our first Gram-Schmidt example gives us

A =


1 1 0
1 0 1
0 1 1
1 1 1

 , Q =


1/
√
3 1/

√
15 −4/

√
35

1/
√
3 −2/

√
15 3/

√
35

0 3/
√
15 3/

√
35

1/
√
3 1/

√
15 1/

√
35


and

QTA = R =


3/
√
3 2/

√
3 2/

√
3

0 5/
√
15 2/

√
15

0 0 7/
√
35


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Our second Gram-Schmidt example gives us:

A =


1 0 1
0 1 0
0 1 1

 , Q =


1 0 0

0 1/
√
2 −1/

√
2

0 1/
√
2 1/

√
2



and

QTA = R =


1 0 1

0 2/
√
2 1/

√
2

0 0 1/
√
2
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The QR factorization of A allows a simplified calculation of least squares problems.

Solving Ax = b with least squares would normally require solving ATAx = ATb. The
multiplication by AT is designed to kill off the part of b orthogonal to the column
space of A.

But the columns of Q have the same span as the columns of A, and therefore
N (AT ) = R(A)⊥ = R(Q)⊥ = N (QT ). So, multiplying by QT has the same effect.
That is, QTAx = QTb will be consistant.

It is also particularly easy to solve because QTA = R is upper triangular and
Rx = QTb allows a relatively quick solution via back substitution.
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Example (using the A, Q and R from earlier): solve
1 0 1
0 1 0
0 1 1

x =


1
2
3



Multiplying by QT gives
1 0 1

0 2/
√
2 1/

√
2

0 0 1/
√
2

x =


1

5/
√
2

1/
√
2


This is a little easier to handle if we multiply the second and third rows (equations) by√
2: 

1 0 1
0 2 1
0 0 1

x =


1
5
1


This has solution x =

 0 2 1
T

.
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