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Some examples of orthonormal sets and orthogonal matrices

The set B =

[
u1 =

 √
2/2√
2/2

 ,u2 =

 −
√
2/2√
2/2

]
is an orthonormal

basis in R2.

If we take any other vector, for example x =

 3
−1

, we can write

x = (xTu1)u1 + (xTu2)u2 =
√
2 u1 − 2

√
2 u2. That is,

[x]B =

 √
2

−2
√
2


Moreover, Q =

 √
2/2 −

√
2/2√

2/2
√
2/2

 is an orthogonal matrix and

QT =

 √
2/2

√
2/2

−
√
2/2

√
2/2

 is its inverse.
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If θ is any angle, then the rotation matrices Rθ =

 cos θ − sin θ
sin θ cos θ

 are

all orthogonal matrices.

A three-dimensional example:

Here is an orthogonal set: v1 =


1
1
2

 ,v2 =


1
1

−1

 ,v3 =


1

−1
0

.

Therefore, B =
[
u1 = (1/

√
6)v1,u2 = (1/

√
3)v2,u3 = (1/

√
2)v3

]
is an

orthonormal basis and

Q =


1/
√
6 1/

√
3 1/

√
2

1/
√
6 1/

√
3 −1/

√
2

2/
√
6 −1/

√
3 0


is an orthogonal matrix.
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Taking any vector, for example v =


2
1
1

 we get

[v]B = QTv =


uT
1 v

uT
2 v

uT
3 v

 =


5/
√
6

2/
√
3

1/
√
2



The projection matrix

Let S be a subspace of Rn and {u1, . . . ,ur} an orthonormal basis for S.
For any vector b ∈ Rn we can get the closest vector to S by solving a
least squares problem.

Recall: If U is the matrix whose columns are u1, . . . ,ur, then we solve
UTUx = UTb to get x̂, and then U x̂ is then the closest vector to b in
the column space of U (which is S).

4 / 7



Taking any vector, for example v =


2
1
1

 we get

[v]B = QTv =


uT
1 v

uT
2 v

uT
3 v

 =


5/
√
6

2/
√
3

1/
√
2


The projection matrix

Let S be a subspace of Rn and {u1, . . . ,ur} an orthonormal basis for S.
For any vector b ∈ Rn we can get the closest vector to S by solving a
least squares problem.

Recall: If U is the matrix whose columns are u1, . . . ,ur, then we solve
UTUx = UTb to get x̂, and then U x̂ is then the closest vector to b in
the column space of U (which is S).

4 / 7



Taking any vector, for example v =


2
1
1

 we get

[v]B = QTv =


uT
1 v

uT
2 v

uT
3 v

 =


5/
√
6

2/
√
3

1/
√
2


The projection matrix

Let S be a subspace of Rn and {u1, . . . ,ur} an orthonormal basis for S.

For any vector b ∈ Rn we can get the closest vector to S by solving a
least squares problem.

Recall: If U is the matrix whose columns are u1, . . . ,ur, then we solve
UTUx = UTb to get x̂, and then U x̂ is then the closest vector to b in
the column space of U (which is S).

4 / 7



Taking any vector, for example v =


2
1
1

 we get

[v]B = QTv =


uT
1 v

uT
2 v

uT
3 v

 =


5/
√
6

2/
√
3

1/
√
2


The projection matrix

Let S be a subspace of Rn and {u1, . . . ,ur} an orthonormal basis for S.
For any vector b ∈ Rn we can get the closest vector to S by solving a
least squares problem.

Recall: If U is the matrix whose columns are u1, . . . ,ur, then we solve
UTUx = UTb to get x̂, and then U x̂ is then the closest vector to b in
the column space of U (which is S).

4 / 7



Taking any vector, for example v =


2
1
1

 we get

[v]B = QTv =


uT
1 v

uT
2 v

uT
3 v

 =


5/
√
6

2/
√
3

1/
√
2


The projection matrix

Let S be a subspace of Rn and {u1, . . . ,ur} an orthonormal basis for S.
For any vector b ∈ Rn we can get the closest vector to S by solving a
least squares problem.

Recall: If U is the matrix whose columns are u1, . . . ,ur, then we solve
UTUx = UTb to get x̂,

and then U x̂ is then the closest vector to b in
the column space of U (which is S).

4 / 7



Taking any vector, for example v =


2
1
1

 we get

[v]B = QTv =


uT
1 v

uT
2 v

uT
3 v

 =


5/
√
6

2/
√
3

1/
√
2


The projection matrix

Let S be a subspace of Rn and {u1, . . . ,ur} an orthonormal basis for S.
For any vector b ∈ Rn we can get the closest vector to S by solving a
least squares problem.

Recall: If U is the matrix whose columns are u1, . . . ,ur, then we solve
UTUx = UTb to get x̂, and then U x̂ is then the closest vector to b in
the column space of U (which is S).

4 / 7



But, since U has orthogonal columns, the UTU = I (r × r) and so the
solution of UTUx = UTb is x̂ = UTb and the closest vector in S to b is
U x̂ = UUTb.

We call the matrix P = UUT the projection matrix .

Note that UTb alone gives us the column


uT
1 b
...

uT
r b

 and then U times

that gives (uT
1 b)u1 + · · ·+ (uT

r b)ur, which is the formula we have seen
earlier for the closest element in the span of u1, . . . ,ur.
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Here is an example. Find the projection of v =


1
1
0

 onto the span of

v1 =


1
2
2

 ,v2 =


0

−1
1

.

These are orthogonal, but not orthonormal, so we “normalize” them:

u1 =


1/3
2/3
2/3

 ,u2 =


0

−1/
√
2

1/
√
2

 , and we get the projection matrix

P = UUT =


1/3 0

2/3 −1/
√
2

2/3 1/
√
2


 1/3 2/3 2/3

0 −1/
√
2 1/

√
2


=


1/9 2/9 2/9
2/9 17/18 −1/18
2/9 −1/18 17/18



6 / 7



Here is an example. Find the projection of v =


1
1
0

 onto the span of

v1 =


1
2
2

 ,v2 =


0

−1
1

.

These are orthogonal, but not orthonormal, so we “normalize” them:

u1 =


1/3
2/3
2/3

 ,u2 =


0

−1/
√
2

1/
√
2

 , and we get the projection matrix

P = UUT =


1/3 0

2/3 −1/
√
2

2/3 1/
√
2


 1/3 2/3 2/3

0 −1/
√
2 1/

√
2


=


1/9 2/9 2/9
2/9 17/18 −1/18
2/9 −1/18 17/18


6 / 7



Then Pv =


1/3
7/6
1/6

.

We can check our work (in part) by determining whether the difference

v − Pv =


2/3

−1/6
−1/6

 is orthogonal to both v1 and v2.
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