More Orthogonal Stuff

D. H. Luecking
MASC

06 April 2024

Some examples of orthonormal sets and orthogonal matrices

Some examples of orthonormal sets and orthogonal matrices
The set $\mathcal{B}=\left[\mathbf{u}_{1}=\binom{\sqrt{2} / 2}{\sqrt{2} / 2}, \mathbf{u}_{2}=\binom{-\sqrt{2} / 2}{\sqrt{2} / 2}\right]$ is an orthonormal basis in \mathbb{R}^{2}.

Some examples of orthonormal sets and orthogonal matrices
The set $\mathcal{B}=\left[\mathbf{u}_{1}=\binom{\sqrt{2} / 2}{\sqrt{2} / 2}, \mathbf{u}_{2}=\binom{-\sqrt{2} / 2}{\sqrt{2} / 2}\right]$ is an orthonormal basis in \mathbb{R}^{2}.
If we take any other vector, for example $\mathbf{x}=\binom{3}{-1}$,

Some examples of orthonormal sets and orthogonal matrices
The set $\mathcal{B}=\left[\mathbf{u}_{1}=\binom{\sqrt{2} / 2}{\sqrt{2} / 2}, \mathbf{u}_{2}=\binom{-\sqrt{2} / 2}{\sqrt{2} / 2}\right]$ is an orthonormal basis in \mathbb{R}^{2}.
If we take any other vector, for example $\mathbf{x}=\binom{3}{-1}$, we can write $\mathbf{x}=\left(\mathbf{x}^{T} \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{x}^{T} \mathbf{u}_{2}\right) \mathbf{u}_{2}=\sqrt{2} \mathbf{u}_{1}-2 \sqrt{2} \mathbf{u}_{2}$.

Some examples of orthonormal sets and orthogonal matrices
The set $\mathcal{B}=\left[\mathbf{u}_{1}=\binom{\sqrt{2} / 2}{\sqrt{2} / 2}, \mathbf{u}_{2}=\binom{-\sqrt{2} / 2}{\sqrt{2} / 2}\right]$ is an orthonormal basis in \mathbb{R}^{2}.
If we take any other vector, for example $\mathbf{x}=\binom{3}{-1}$, we can write $\mathbf{x}=\left(\mathbf{x}^{T} \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{x}^{T} \mathbf{u}_{2}\right) \mathbf{u}_{2}=\sqrt{2} \mathbf{u}_{1}-2 \sqrt{2} \mathbf{u}_{2}$. That is, $[\mathbf{x}]_{\mathcal{B}}=\binom{\sqrt{2}}{-2 \sqrt{2}}$

Some examples of orthonormal sets and orthogonal matrices
The set $\mathcal{B}=\left[\mathbf{u}_{1}=\binom{\sqrt{2} / 2}{\sqrt{2} / 2}, \mathbf{u}_{2}=\binom{-\sqrt{2} / 2}{\sqrt{2} / 2}\right]$ is an orthonormal basis in \mathbb{R}^{2}.
If we take any other vector, for example $\mathbf{x}=\binom{3}{-1}$, we can write $\mathbf{x}=\left(\mathbf{x}^{T} \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{x}^{T} \mathbf{u}_{2}\right) \mathbf{u}_{2}=\sqrt{2} \mathbf{u}_{1}-2 \sqrt{2} \mathbf{u}_{2}$. That is,
$[\mathbf{x}]_{\mathcal{B}}=\binom{\sqrt{2}}{-2 \sqrt{2}}$
Moreover, $Q=\left(\begin{array}{rr}\sqrt{2} / 2 & -\sqrt{2} / 2 \\ \sqrt{2} / 2 & \sqrt{2} / 2\end{array}\right)$ is an orthogonal matrix

Some examples of orthonormal sets and orthogonal matrices
The set $\mathcal{B}=\left[\mathbf{u}_{1}=\binom{\sqrt{2} / 2}{\sqrt{2} / 2}, \mathbf{u}_{2}=\binom{-\sqrt{2} / 2}{\sqrt{2} / 2}\right]$ is an orthonormal basis in \mathbb{R}^{2}.
If we take any other vector, for example $\mathbf{x}=\binom{3}{-1}$, we can write $\mathbf{x}=\left(\mathbf{x}^{T} \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{x}^{T} \mathbf{u}_{2}\right) \mathbf{u}_{2}=\sqrt{2} \mathbf{u}_{1}-2 \sqrt{2} \mathbf{u}_{2}$. That is,
$[\mathbf{x}]_{\mathcal{B}}=\binom{\sqrt{2}}{-2 \sqrt{2}}$
Moreover, $Q=\left(\begin{array}{rr}\sqrt{2} / 2 & -\sqrt{2} / 2 \\ \sqrt{2} / 2 & \sqrt{2} / 2\end{array}\right)$ is an orthogonal matrix and
$Q^{T}=\left(\begin{array}{rr}\sqrt{2} / 2 & \sqrt{2} / 2 \\ -\sqrt{2} / 2 & \sqrt{2} / 2\end{array}\right)$ is its inverse.

If θ is any angle, then the rotation matrices $R_{\theta}=\left(\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ are all orthogonal matrices.

If θ is any angle, then the rotation matrices $R_{\theta}=\left(\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ are all orthogonal matrices.
A three-dimensional example:

If θ is any angle, then the rotation matrices $R_{\theta}=\left(\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ are all orthogonal matrices.
A three-dimensional example:
Here is an orthogonal set: $\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{r}1 \\ 1 \\ -1\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{r}1 \\ -1 \\ 0\end{array}\right)$.

If θ is any angle, then the rotation matrices $R_{\theta}=\left(\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ are all orthogonal matrices.
A three-dimensional example:
Here is an orthogonal set: $\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{r}1 \\ 1 \\ -1\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{r}1 \\ -1 \\ 0\end{array}\right)$.
Therefore, $\mathcal{B}=\left[\mathbf{u}_{1}=(1 / \sqrt{6}) \mathbf{v}_{1}, \mathbf{u}_{2}=(1 / \sqrt{3}) \mathbf{v}_{2}, \mathbf{u}_{3}=(1 / \sqrt{2}) \mathbf{v}_{3}\right]$ is an orthonormal basis and

If θ is any angle, then the rotation matrices $R_{\theta}=\left(\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ are all orthogonal matrices.
A three-dimensional example:
Here is an orthogonal set: $\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{r}1 \\ 1 \\ -1\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{r}1 \\ -1 \\ 0\end{array}\right)$.
Therefore, $\mathcal{B}=\left[\mathbf{u}_{1}=(1 / \sqrt{6}) \mathbf{v}_{1}, \mathbf{u}_{2}=(1 / \sqrt{3}) \mathbf{v}_{2}, \mathbf{u}_{3}=(1 / \sqrt{2}) \mathbf{v}_{3}\right]$ is an orthonormal basis and

$$
Q=\left(\begin{array}{rrr}
1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2} \\
1 / \sqrt{6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
2 / \sqrt{6} & -1 / \sqrt{3} & 0
\end{array}\right)
$$

is an orthogonal matrix.

Taking any vector, for example $\mathbf{v}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$ we get

$$
[\mathbf{v}]_{\mathcal{B}}=Q^{T} \mathbf{v}=\left(\begin{array}{c}
\mathbf{u}_{1}^{T} \mathbf{v} \\
\mathbf{u}_{2}^{T} \mathbf{v} \\
\mathbf{u}_{3}^{T} \mathbf{v}
\end{array}\right)=\left(\begin{array}{c}
5 / \sqrt{6} \\
2 / \sqrt{3} \\
1 / \sqrt{2}
\end{array}\right)
$$

Taking any vector, for example $\mathbf{v}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$ we get

$$
[\mathbf{v}]_{\mathcal{B}}=Q^{T} \mathbf{v}=\left(\begin{array}{c}
\mathbf{u}_{1}^{T} \mathbf{v} \\
\mathbf{u}_{2}^{T} \mathbf{v} \\
\mathbf{u}_{3}^{T} \mathbf{v}
\end{array}\right)=\left(\begin{array}{c}
5 / \sqrt{6} \\
2 / \sqrt{3} \\
1 / \sqrt{2}
\end{array}\right)
$$

The projection matrix

Taking any vector, for example $\mathbf{v}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$ we get

$$
[\mathbf{v}]_{\mathcal{B}}=Q^{T} \mathbf{v}=\left(\begin{array}{c}
\mathbf{u}_{1}^{T} \mathbf{v} \\
\mathbf{u}_{2}^{T} \mathbf{v} \\
\mathbf{u}_{3}^{T} \mathbf{v}
\end{array}\right)=\left(\begin{array}{c}
5 / \sqrt{6} \\
2 / \sqrt{3} \\
1 / \sqrt{2}
\end{array}\right)
$$

The projection matrix
Let S be a subspace of \mathbb{R}^{n} and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ an orthonormal basis for S.

Taking any vector, for example $\mathbf{v}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$ we get

$$
[\mathbf{v}]_{\mathcal{B}}=Q^{T} \mathbf{v}=\left(\begin{array}{c}
\mathbf{u}_{1}^{T} \mathbf{v} \\
\mathbf{u}_{2}^{T} \mathbf{v} \\
\mathbf{u}_{3}^{T} \mathbf{v}
\end{array}\right)=\left(\begin{array}{c}
5 / \sqrt{6} \\
2 / \sqrt{3} \\
1 / \sqrt{2}
\end{array}\right)
$$

The projection matrix
Let S be a subspace of \mathbb{R}^{n} and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ an orthonormal basis for S. For any vector $\mathbf{b} \in \mathbb{R}^{n}$ we can get the closest vector to S by solving a least squares problem.

Taking any vector, for example $\mathbf{v}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$ we get

$$
[\mathbf{v}]_{\mathcal{B}}=Q^{T} \mathbf{v}=\left(\begin{array}{c}
\mathbf{u}_{1}^{T} \mathbf{v} \\
\mathbf{u}_{2}^{T} \mathbf{v} \\
\mathbf{u}_{3}^{T} \mathbf{v}
\end{array}\right)=\left(\begin{array}{c}
5 / \sqrt{6} \\
2 / \sqrt{3} \\
1 / \sqrt{2}
\end{array}\right)
$$

The projection matrix
Let S be a subspace of \mathbb{R}^{n} and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ an orthonormal basis for S. For any vector $\mathbf{b} \in \mathbb{R}^{n}$ we can get the closest vector to S by solving a least squares problem.
Recall: If U is the matrix whose columns are $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$, then we solve $U^{T} U \mathbf{x}=U^{T} \mathbf{b}$ to get $\hat{\mathbf{x}}$,

Taking any vector, for example $\mathbf{v}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$ we get

$$
[\mathbf{v}]_{\mathcal{B}}=Q^{T} \mathbf{v}=\left(\begin{array}{c}
\mathbf{u}_{1}^{T} \mathbf{v} \\
\mathbf{u}_{2}^{T} \mathbf{v} \\
\mathbf{u}_{3}^{T} \mathbf{v}
\end{array}\right)=\left(\begin{array}{c}
5 / \sqrt{6} \\
2 / \sqrt{3} \\
1 / \sqrt{2}
\end{array}\right)
$$

The projection matrix

Let S be a subspace of \mathbb{R}^{n} and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ an orthonormal basis for S. For any vector $\mathbf{b} \in \mathbb{R}^{n}$ we can get the closest vector to S by solving a least squares problem.
Recall: If U is the matrix whose columns are $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$, then we solve $U^{T} U \mathbf{x}=U^{T} \mathbf{b}$ to get $\hat{\mathbf{x}}$, and then $U \hat{\mathbf{x}}$ is then the closest vector to \mathbf{b} in the column space of U (which is S).

But, since U has orthogonal columns, the $U^{T} U=I(r \times r)$ and so the solution of $U^{T} U \mathbf{x}=U^{T} \mathbf{b}$ is $\hat{\mathbf{x}}=U^{T} \mathbf{b}$ and the closest vector in S to \mathbf{b} is $U \hat{\mathbf{x}}=U U^{T} \mathbf{b}$.

But, since U has orthogonal columns, the $U^{T} U=I(r \times r)$ and so the solution of $U^{T} U \mathbf{x}=U^{T} \mathbf{b}$ is $\hat{\mathbf{x}}=U^{T} \mathbf{b}$ and the closest vector in S to \mathbf{b} is $U \hat{\mathbf{x}}=U U^{T} \mathbf{b}$.
We call the matrix $P=U U^{T}$ the projection matrix.

But, since U has orthogonal columns, the $U^{T} U=I(r \times r)$ and so the solution of $U^{T} U \mathbf{x}=U^{T} \mathbf{b}$ is $\hat{\mathbf{x}}=U^{T} \mathbf{b}$ and the closest vector in S to \mathbf{b} is $U \hat{\mathbf{x}}=U U^{T} \mathbf{b}$.
We call the matrix $P=U U^{T}$ the projection matrix.
Note that $U^{T} \mathbf{b}$ alone gives us the column $\left(\begin{array}{c}\mathbf{u}_{1}^{T} \mathbf{b} \\ \vdots \\ \mathbf{u}_{r}^{T} \mathbf{b}\end{array}\right)$

But, since U has orthogonal columns, the $U^{T} U=I(r \times r)$ and so the solution of $U^{T} U \mathbf{x}=U^{T} \mathbf{b}$ is $\hat{\mathbf{x}}=U^{T} \mathbf{b}$ and the closest vector in S to \mathbf{b} is $U \hat{\mathbf{x}}=U U^{T} \mathbf{b}$.
We call the matrix $P=U U^{T}$ the projection matrix.
Note that $U^{T} \mathbf{b}$ alone gives us the column $\left(\begin{array}{c}\mathbf{u}_{1}^{T} \mathbf{b} \\ \vdots \\ \mathbf{u}_{r}^{T} \mathbf{b}\end{array}\right)$ and then U times
that gives $\left(\mathbf{u}_{1}^{T} \mathbf{b}\right) \mathbf{u}_{1}+\cdots+\left(\mathbf{u}_{r}^{T} \mathbf{b}\right) \mathbf{u}_{r}$,

But, since U has orthogonal columns, the $U^{T} U=I(r \times r)$ and so the solution of $U^{T} U \mathbf{x}=U^{T} \mathbf{b}$ is $\hat{\mathbf{x}}=U^{T} \mathbf{b}$ and the closest vector in S to \mathbf{b} is $U \hat{\mathbf{x}}=U U^{T} \mathbf{b}$.
We call the matrix $P=U U^{T}$ the projection matrix.
Note that $U^{T} \mathbf{b}$ alone gives us the column $\left(\begin{array}{c}\mathbf{u}_{1}^{T} \mathbf{b} \\ \vdots \\ \mathbf{u}_{r}^{T} \mathbf{b}\end{array}\right)$ and then U times that gives $\left(\mathbf{u}_{1}^{T} \mathbf{b}\right) \mathbf{u}_{1}+\cdots+\left(\mathbf{u}_{r}^{T} \mathbf{b}\right) \mathbf{u}_{r}$, which is the formula we have seen earlier for the closest element in the span of $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$.

Here is an example. Find the projection of $\mathbf{v}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ onto the span of
$\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right)$.

Here is an example. Find the projection of $\mathbf{v}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ onto the span of
$\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right)$.
These are orthogonal, but not orthonormal, so we "normalize" them:
$\mathbf{u}_{1}=\left(\begin{array}{c}1 / 3 \\ 2 / 3 \\ 2 / 3\end{array}\right), \mathbf{u}_{2}=\left(\begin{array}{c}0 \\ -1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right)$, and we get the projection matrix

$$
\begin{aligned}
P=U U^{T} & =\left(\begin{array}{cc}
1 / 3 & 0 \\
2 / 3 & -1 / \sqrt{2} \\
2 / 3 & 1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 2 / 3 \\
0 & -1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 / 9 & 2 / 9 & 2 / 9 \\
2 / 9 & 17 / 18 & -1 / 18 \\
2 / 9 & -1 / 18 & 17 / 18
\end{array}\right)
\end{aligned}
$$

Then $P \mathbf{v}=\left(\begin{array}{c}1 / 3 \\ 7 / 6 \\ 1 / 6\end{array}\right)$.

Then $P \mathbf{v}=\left(\begin{array}{c}1 / 3 \\ 7 / 6 \\ 1 / 6\end{array}\right)$.
We can check our work (in part) by determining whether the difference
$\mathbf{v}-P \mathbf{v}=\left(\begin{array}{r}2 / 3 \\ -1 / 6 \\ -1 / 6\end{array}\right)$ is orthogonal to both \mathbf{v}_{1} and \mathbf{v}_{2}.

