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An example of the Cauchy-Schwarz Inequality:

Let’s consider the following setup:
The vector space will be R3

The inner product will be ⟨x,y⟩ = x1y1 + 2x2y2 + 3x3y3.

(Exercise: verify that this is an inner product.)

Consider the two vectors x =


3
2
1

 and y =


−1
2
2

. Then

⟨x,y⟩ = 3 · (−1) + 2(2 · 2) + 3(1 · 2) = 11

⟨x,x⟩ = 32 + 2(2)2 + 3(1)2 = 20

⟨y,y⟩ = (−1)2 + 2(2)2 + 3(2)2 = 21

Then the Cauchy-Schwarz Inequality predicts 11 ≤
√
20

√
21 ≈ 20.5.
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If we let A =


1 0 0

0
√
2 0

0 0
√
3

, then this inner product is the same as

⟨x,y⟩ = (Ax)TAy.

The triangle inequality for the same inner product and the same vectors:

∥x+ y∥ =
√
22 + 2(4)2 + 3(3)2 =

√
63 ≈ 7.94

∥x∥ =
√
32 + 2(2)2 + 3(1)2 =

√
20 ≈ 4.47

∥y∥ =
√
(−1)2 + 2(2)2 + 3(22) =

√
21 ≈ 4.58

and 7.94 ≤ 4.47 + 4.58.
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If we use the scalar product for our inner product, we get

xTy = 3 · (−1) + 2 · 2 + 1 · 2 = 3

xTx = 32 + (2)2 + (1)2 = 14

yTy = (−1)2 + (2)2 + (2)2 = 9

and then the Cauchy-Schwarz Inequality predicts 3 ≤
√
14

√
9 ≈ 11.2. The

triangle inequality predicts ∥x+ y∥ =
√
29 ≤

√
14 +

√
9 or, approximately,

5.39 ≤ 6.74.

Here is a third example of an inner product for P3. Define

⟨p, q⟩ = p(0)q(0) + p(1)q(1) + p(−1)q(−1).

This is an inner product. I will leave the verification of the 2nd and 3rd
condition as exercises. For the first condition consider

⟨p, p⟩ = p(0)2 + p(1)2 + p(−1)2 ≥ 0

It can only be zero if p(x) is zero at 3 points. But if p is not the zero
function, p(x) = 0 can’t have 3 roots since its degree is less than 3.
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Some examples:

If p(x) = 1 + x+ x2 and q(x) = 1− x− x2, then
⟨p, p⟩ = 12 + 32 + 12 = 11,
⟨q, q⟩ = 12 + (−1)2 + 12 = 3 and
⟨p, q⟩ = 1(1) + 3(−1) + 1(1) = −1.

Exercise: calculate ∥p+ q∥ for this inner product.

Let V be an inner product space. Recall that x ⊥ y means ⟨x,y⟩ = 0.

Definition

Two subspaces S and T of V are orthogonal if x ⊥ y for every x in S and
y in T .
The orthogonal complement of S is the set of vectors x in V such that
x ⊥ y for every vector y in S.
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Just as in Rn with the scalar product, we have

1. If S and T are orthogonal and x belongs to both, then ⟨x,x⟩ = 0 and
so x = 0

2. S⊥ is a subspace of V : if u and v belong to S⊥ and x ∈ S, then
⟨αu+ βv,x⟩ = α ⟨u,x⟩+ β ⟨v,x⟩ = 0 + 0. Thus αu+ βv ∈ S⊥.

3. dimS + dimS⊥ = dimV .

4. If {v1, . . . ,vr} is a basis for S and {vr+1, . . . ,vn} is a basis for S⊥

where n = dimV then {v1, . . . ,vn} is a basis for V .

5. If x is any vector in V then there exist unique vectors u ∈ S and
v ∈ S⊥ such that x = u+ v. The vector u is the closest vector in S
to x. That is, ∥x− u∥ ≤ ∥x− y∥ for all y ∈ S.
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Definition

For vectors x,y in V , y ̸= 0, the scalar projection of x onto y is

α =
⟨x,y⟩
∥y∥

and the vector projection of x onto y is

p = α
1

∥y∥
y =

⟨x,y⟩
⟨y,y⟩

y

Just as in R3, x− p is orthogonal to y:
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Definition

A set {v1,v2, . . . ,vr} is said to be orthogonal if vi ⊥ vj for each i ̸= j. If
it is orthogonal and ∥vj∥ = 1 for each j, we call it orthonormal .

Just as in Rn we have

1. Every finite dimensional subset of V has an orthonomal basis.

2. If S is a subspace of V with an orthogonal basis {v1, . . . ,vr} and x
is any vector in V . Then the closest vector in S to x is

p =
r∑

j=1

⟨x,vj⟩
⟨vj ,vj⟩

vj

and x− p is orthogonal to S.

3. If {u1, . . . ,ur} an orthonormal basis for S then p =
∑r

j=1 ⟨x,uj⟩uj

4. Every orthogonal set of nonzero vectors is independent.
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Matrices with orthogonal columns

In this discussion, all vectors will be in Rn for some n. Orthogonality will
mean xTy = 0.

If A is an n× k matrix with orthonormal columns, then k ≤ n because the
columns are independent so there can’t be more than n of them. Also, the
rank of A is k and the nullity is 0.

If the columns of A are aj then the rows of AT are aTj and we get the

product ATA = (aTi aj)k×k. Because the set {a1, . . . ,ak} is orthonormal
we have

aTi aj =

{
0 if i ̸= j

1 if i = j

This means that ATA = I, the k × k identity matrix.

If it happens that n = k so that A is a square matrix, then this tells us
that A is invertible and A−1 = AT . In this case only, we also have
AAT = I and this tells us that AT also has orthonormal columns.
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Definition

An orthogonal matrix is a square matrix with orthonormal columns.
Equivalently, an orthogonal matrix A is a square matrix satisfying
A−1 = AT .

Note that an orthogonal matrix has orthonormal columns. It is not
enough to have only orthgonal columns. The reason for the terminology is
the following.

Theorem

A square matrix Q is orthogonal if and only if it satisfies both the
following:

1. for every vectors x and y, x ⊥ y implies Qx ⊥ Qy.

2. for every vector x, ∥Qx∥ = ∥x∥.

If Q is an orthogonal matrix then (Qx)TQy = xTQTQy = xTy. Applying
this with x ⊥ y we see that Qx ⊥ Qy. Applying this with y = x we see
that ∥Qx∥2 = ∥x∥2.
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Now suppose we have a matrix Q that transforms orthogonal vectors to
orthogonal vectors and preserves norms.

Then {Qe1, . . . , Qen} must be
orthonormal, and these are the columns of Q.

It should be pointed out that the product of two (or more) orthogonal
matrices is an orthogonal matrices. This can be deduced from the property
Q−1 = QT or from the above preservation properties.

Note that because Q also preserves the scalar product, it preserves all
angles between vectors (in contexts where angles make sense): If θ is the
angle between Qx and Qy then

cos θ =
⟨Qx, Qy⟩
∥Qx∥ ∥Qy∥

=
⟨x,y⟩
∥x∥ ∥y∥

and that is the cosine of the angle between x and y.
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If B is an orthonormal basis, and Q is the matrix whose columns are the
elements of B, then Q is the transition matrix from B to E and QT is the
transition matrix from E to B.

The following can be used instead of a transition matrix, and it works for
any inner product space:

Theorem

If B = [u1, . . . ,un] is an orthonormal basis in an inner product space V
and v is any vector in V , then

v = ⟨v,u1⟩u1 + ⟨v,u2⟩u2 + · · · ⟨v,un⟩un

As we have seen before, if v = c1u1 + · · ·+ cnun then

⟨v,uj⟩ = c1 ⟨u1,uj⟩+ · · ·+ cn ⟨un,uj⟩ = cj
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