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Definition

A set of vectors {v1,v2, . . . ,vr} is called orthogonal if vi ⊥ vj for every
i ̸= j.

It is called orthonormal if it is orthogonal and also ∥vj∥ = 1 for every j.

If a set of nonzero vectors is orthogonal, we can make it orthonormal
simply by multiplying each vj by (1/ ∥vj∥).

Theorem

If a set of nonzero vectors is orthogonal, then it is independent.

Note: Any set that contains 0 is dependent because we can always find a
nontrivial solution to

c10+ c2v2 + · · ·+ crvr = 0.

Simply set c1 = 1 and the rest of the cj = 0.
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Now suppose {v1,v2, . . . ,vr} is orthogonal and that

r∑
i=1

civi = 0

We can multiply this by vT
j to get

0 = vT
j

r∑
i=1

civi =
r∑

i=1

civ
T
j vi = cj ∥vj∥2

and then solve to get cj = 0. That is, the only linear combination equal to
0 is the trivial one with all cj = 0. Thus, the set is independent.

Theorem

Every nonzero subspace of Rn has a basis that is orthonormal.

To see this, let S be a subspace. It is enough to find an orthogonal
spanning set in S: it will automatically be independent. Then we can
replace each vector vj with (1/ ∥vj∥)vj to get an orthonormal basis.
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Let r = dimS. Pick any nonzero vector v1 in S.

If r = 1 then {v1} will
do. If r > 1, pick any vector w2 that’s in S but not in Span(v1). Let p2

be the closest vector to w2 in Span(v1) and let v2 = w2 − p2. Then
v2 ̸= 0 and v2 ⊥ v1.

If r = 2 then Span(v1,v2) = S and we are done. Otherwise repeat this:
pick any w3 in S but not in Span(v1,v2). Let p3 be the closest vector to
w3 in that span and let v3 = w3 −p3. Then v3 is nonzero and orthogonal
to both v1 and v2.

We can repeat this until we have an orthogonal set {v1,v2, . . . ,vr} in S
with r = dimS. Since the set is independent and its size is dimS, it must
also be spanning and so is a basis.
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Theorem

Let S is a subspace of Rn and let {v1,v2, . . . ,vr} be an orthogonal basis
for S. If v is any vector in Rn and p the element of S that is closest to v,
then

p =

r∑
j=1

vTvj

vT
j vj

vj

Notice that each term in the sum
∑r

j=1

vTvj

vT
j vj

vj has the same formula as

the vector projection of v onto vj . We will call p the projection of v onto
Span(v1, . . . ,vr).

To see why this is true, recall that the closest vector p is the one that
makes v − p ⊥ S. So we only need to check that this formula makes
v − p ⊥ vi for each of the basis vectors vi.
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vT
i (v − p) = vT

i v − vT
i

r∑
j=1

vTvj

vT
j vj

vj

= vT
i v −

r∑
j=1

vTvj

vT
j vj

vT
i vj

= vT
i v − vTvi

vT
i vi

vT
i vi = vT

i v − vTvi = 0

Some key properties of the scalar product:

1. 0T0 = 0, and if v ̸= 0 then vTv > 0.

2. vTw = wTv.

3. (αu+ βw)Tv = αuTv + βwTv.

We have seen that, because of the first of these, we can use
∥v∥ = (vTv)1/2 as a measure of the size of v. Moreover, in the special
cases R2 and R3, ∥x− y∥ is the distance between the points with
coordinates x and y.
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There are many vector spaces with a similar type of product.

One of the
most productive examples comes from the theory of Fourier series. For two
functions f and g, define

⟨f, g⟩ =
∫ 1

0
f(x)g(x) dx

Then

1. ⟨0,0⟩ = 0, and if f ̸= 0 then ⟨f, f⟩ > 0.

2. ⟨f, g⟩ = ⟨g, f⟩.
3. ⟨αf + βg, h⟩ = α ⟨f, h⟩+ β ⟨g, h⟩.

This suggests the following definition.

7 / 1



There are many vector spaces with a similar type of product. One of the
most productive examples comes from the theory of Fourier series.

For two
functions f and g, define

⟨f, g⟩ =
∫ 1

0
f(x)g(x) dx

Then

1. ⟨0,0⟩ = 0, and if f ̸= 0 then ⟨f, f⟩ > 0.

2. ⟨f, g⟩ = ⟨g, f⟩.
3. ⟨αf + βg, h⟩ = α ⟨f, h⟩+ β ⟨g, h⟩.

This suggests the following definition.

7 / 1



There are many vector spaces with a similar type of product. One of the
most productive examples comes from the theory of Fourier series. For two
functions f and g, define

⟨f, g⟩ =
∫ 1

0
f(x)g(x) dx

Then

1. ⟨0,0⟩ = 0, and if f ̸= 0 then ⟨f, f⟩ > 0.

2. ⟨f, g⟩ = ⟨g, f⟩.
3. ⟨αf + βg, h⟩ = α ⟨f, h⟩+ β ⟨g, h⟩.

This suggests the following definition.

7 / 1



There are many vector spaces with a similar type of product. One of the
most productive examples comes from the theory of Fourier series. For two
functions f and g, define

⟨f, g⟩ =
∫ 1

0
f(x)g(x) dx

Then

1. ⟨0,0⟩ = 0, and if f ̸= 0 then ⟨f, f⟩ > 0.

2. ⟨f, g⟩ = ⟨g, f⟩.
3. ⟨αf + βg, h⟩ = α ⟨f, h⟩+ β ⟨g, h⟩.

This suggests the following definition.

7 / 1



There are many vector spaces with a similar type of product. One of the
most productive examples comes from the theory of Fourier series. For two
functions f and g, define

⟨f, g⟩ =
∫ 1

0
f(x)g(x) dx

Then

1. ⟨0,0⟩ = 0, and if f ̸= 0 then ⟨f, f⟩ > 0.

2. ⟨f, g⟩ = ⟨g, f⟩.

3. ⟨αf + βg, h⟩ = α ⟨f, h⟩+ β ⟨g, h⟩.

This suggests the following definition.

7 / 1



There are many vector spaces with a similar type of product. One of the
most productive examples comes from the theory of Fourier series. For two
functions f and g, define

⟨f, g⟩ =
∫ 1

0
f(x)g(x) dx

Then

1. ⟨0,0⟩ = 0, and if f ̸= 0 then ⟨f, f⟩ > 0.

2. ⟨f, g⟩ = ⟨g, f⟩.
3. ⟨αf + βg, h⟩ = α ⟨f, h⟩+ β ⟨g, h⟩.

This suggests the following definition.

7 / 1



Definition

If V is a vector space, then an inner product is an operation that assigns,
to any pair of vectors x and y in V , a real number ⟨x,y⟩ satisfying

1. ⟨0,0⟩ = 0, and if x ̸= 0 then ⟨x,x⟩ > 0.

2. ⟨x,y⟩ = ⟨y,x⟩, for every x,y in V

3. ⟨αy + βz,x⟩ = α ⟨y,x⟩+ β ⟨z,x⟩, for every x,y, z in V and every
α, β in R.

A vector space with an inner product defined on it is called an inner
product space.

Some useful additional properties. Here x,y, z are any vectors in an inner
product space and α, β are any real numbers:

(a) ⟨x, αy + βz⟩ = α ⟨x,y⟩+ β ⟨x, z⟩: use condition (2) in the definition
to reverse the inner products in (3).

(b) ⟨0,x⟩ = 0: ⟨0,x⟩ = ⟨x− x,x⟩ = ⟨x,x⟩ − ⟨x,x⟩ = 0.

(c) ⟨αy,x⟩ = α ⟨y,x⟩ = ⟨y, αx⟩: apply (3) and then (a) with z = 0.
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For Rn the scalar product is an inner product. We could have introduced
the notation ⟨x,y⟩ = xTy from the beginning.

On any vector space of functions on [0, 1] for which multiplication and
integration is possible, the integral of the product is an inner product.

For example, this inner product applied to two polynomials
f(x) = a0 + a1x+ a2x

2 and g(x) = b0 + b1x+ b2x
2 gives

⟨f, g⟩ = a0b0 + (1/2)(a0b1 + a1b0) + (1/3)(a0b2 + a1b1 + a2b0)

+ (1/4)(a1b2 + a2b1) + (1/5)a2b2

It is not so obvious from this formula that ⟨f, f⟩ > 0. Note that

⟨f, g⟩ =
 a0 a1 a2


1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5




b0
b1
b2

 .
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The vector space Rn×k of n× k matrices can be given a number of inner
products.

The usual one is

⟨A,B⟩ =
n∑

i=1

k∑
j=1

aijbij .

There is a shorter way to write this. First define the trace of a k × k
square matrix by tr(A) =

∑k
i=1 aii. Then the above inner product has the

formula
⟨A,B⟩ = tr(ATB).
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One way to create an inner product is to produce a linear one-to-one
correspondence from V to a vector space that already has an inner
product.

For example, if V has an ordered basis B, we can define
⟨x,y⟩ = [x]TB [y]B. If we apply this to P3 with the basis [1, x, x2], then〈

a0 + a1x+ a2x
2, b0 + b1x+ b2x

2
〉
= a0b0 + a1b1 + a2b2

Even Rn can have different inner products from the scalar product. If A is
any invertible n× n matrix, then

⟨x,y⟩ = (Ax)TAy = xTATAy

is an example of an inner product.

Let’s verify this:

1. A0 = 0 so (A0)TA0 = 0. If x ̸= 0 then Ax ̸= 0 and so
(Ax)TAx > 0.

2. (Ay)TAx = (Ax)TAy because the scalar product has that property.

3. (A(αx+ βy))TAz = (αAx+ βAy)TAz = (α(Ax)T + β(Ay)T )Az =
α(Ax)TAz+ β(Ay)TAz
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Definition

If V is a vector space with an inner product ⟨x,y⟩, then ∥x∥ =
√
⟨x,x⟩.

This is called the norm induced by this inner product.

Definition

If V is a vector space with an inner product ⟨x,y⟩, then we say x is
orthogonal to y if ⟨x,y⟩ = 0. and we express this by x ⊥ y.

Theorem (Pythagorean Formula)

If x ⊥ y then ∥x+ y∥2 = ∥x∥2 + ∥y∥2.

We prove this by

∥x+ y∥2 = ⟨x+ y,x+ y⟩
= ⟨x,x+ y⟩+ ⟨y,x+ y⟩
= ⟨x,x⟩+ ⟨x,y⟩+ ⟨y,x⟩+ ⟨y,y⟩
= ∥x∥2 + ∥y∥2
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Theorem (Cauchy-Schwarz Inequality)

For any x and y in an inner product space,

| ⟨x,y⟩ | ≤ ∥x∥ ∥y∥

If either norm is zero that is, x or y is zero, then both sides are zero,
which is OK.

Otherwise consider the following for any real numbers α and β

0 ≤ ⟨αx− βy, αx− βy⟩
0 ≤ ⟨αx, αx⟩+ ⟨αx,−βy⟩+ ⟨−βy, αx⟩+ ⟨−βy,−βy⟩
0 ≤ α2 ⟨x,x⟩ − αβ ⟨x,y⟩ − αβ ⟨y,x⟩+ β2 ⟨y,y⟩
0 ≤ α2 ∥x∥2 − 2αβ ⟨x,y⟩+ β2 ∥y∥2
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Altogether we get

αβ ⟨x,y⟩ ≤ (1/2)(α2 ∥x∥2 + β2 ∥y∥2)

Since this holds for any α, β, let α = 1/ ∥x∥ and β = 1/ ∥y∥ to get

⟨x,y⟩
∥x∥ ∥y∥

≤ 1.

This just what we need if ⟨x,y⟩ ≥ 0. If ⟨x,y⟩ < 0, use β = −1/ ∥y∥ to
get

− ⟨x,y⟩
∥x∥ ∥y∥

≤ 1.

In either case we have
| ⟨x,y⟩ |
∥x∥ ∥y∥

≤ 1.

Theorem (Triangle Inequality)

For any pair of vectors x and y, ∥x+ y∥ ≤ ∥x∥+ ∥y∥.
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The proof relies on the Cauchy-Schwarz Inequality:

∥x+ y∥2 = ⟨x+ y,x+ y⟩
= ∥x∥2 + 2 ⟨x,y⟩+ ∥y∥2

≤ ∥x∥2 + 2 ∥x∥ ∥y∥+ ∥y∥2 = (∥x∥+ ∥y∥)2

Then take square roots to get ∥x+ y∥ ≤ ∥x∥+ ∥y∥.
This allows us to express the distance between vectors by
d(x,y) = ∥x− y∥ and deduce that

d(x, z) = ∥x− z∥ = ∥x− y + y − z∥
≤ ∥x− y∥+ ∥y − z∥ = d(x,y) + d(y, z)
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