Orthogonal Bases

D. H. Luecking MASC

3 April 2024

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is called *orthogonal* if $\mathbf{v}_i \perp \mathbf{v}_j$ for every $i \neq j$.

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is called *orthogonal* if $\mathbf{v}_i \perp \mathbf{v}_j$ for every $i \neq j$.

It is called *orthonormal* if it is orthogonal and also $\|\mathbf{v}_j\| = 1$ for every j.

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is called *orthogonal* if $\mathbf{v}_i \perp \mathbf{v}_j$ for every $i \neq j$. It is called *orthonormal* if it is orthogonal and also $\|\mathbf{v}_i\| = 1$ for every j.

If a set of nonzero vectors is orthogonal, we can make it orthonormal simply by multiplying each \mathbf{v}_j by $(1/\|\mathbf{v}_j\|)$.

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is called *orthogonal* if $\mathbf{v}_i \perp \mathbf{v}_j$ for every $i \neq j$. It is called *orthonormal* if it is orthogonal and also $\|\mathbf{v}_i\| = 1$ for every j.

If a set of nonzero vectors is orthogonal, we can make it orthonormal simply by multiplying each \mathbf{v}_j by $(1/\|\mathbf{v}_j\|)$.

Theorem

If a set of nonzero vectors is orthogonal, then it is independent.

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is called *orthogonal* if $\mathbf{v}_i \perp \mathbf{v}_j$ for every $i \neq j$. It is called *orthonormal* if it is orthogonal and also $\|\mathbf{v}_i\| = 1$ for every j.

If a set of nonzero vectors is orthogonal, we can make it orthonormal simply by multiplying each \mathbf{v}_j by $(1/\|\mathbf{v}_j\|)$.

Theorem

If a set of nonzero vectors is orthogonal, then it is independent.

Note: Any set that contains ${\bf 0}$ is dependent because we can always find a nontrivial solution to

$$c_1\mathbf{0}+c_2\mathbf{v}_2+\cdots+c_r\mathbf{v}_r=\mathbf{0}.$$

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is called *orthogonal* if $\mathbf{v}_i \perp \mathbf{v}_j$ for every $i \neq j$. It is called *orthonormal* if it is orthogonal and also $\|\mathbf{v}_i\| = 1$ for every j.

If a set of nonzero vectors is orthogonal, we can make it orthonormal simply by multiplying each \mathbf{v}_j by $(1/\|\mathbf{v}_j\|)$.

Theorem

If a set of nonzero vectors is orthogonal, then it is independent.

Note: Any set that contains ${\bf 0}$ is dependent because we can always find a nontrivial solution to

$$c_1\mathbf{0} + c_2\mathbf{v}_2 + \dots + c_r\mathbf{v}_r = \mathbf{0}.$$

Simply set $c_1 = 1$ and the rest of the $c_j = 0$.

$$\sum_{i=1}^r c_i \mathbf{v}_i = \mathbf{0}$$

$$\sum_{i=1}^r c_i \mathbf{v}_i = \mathbf{0}$$

We can multiply this by \mathbf{v}_i^T to get

$$0 = \mathbf{v}_j^T \sum_{i=1}^r c_i \mathbf{v}_i = \sum_{i=1}^r c_i \mathbf{v}_j^T \mathbf{v}_i = c_j \|\mathbf{v}_j\|^2$$

$$\sum_{i=1}^r c_i \mathbf{v}_i = \mathbf{0}$$

We can multiply this by \mathbf{v}_j^T to get

$$0 = \mathbf{v}_j^T \sum_{i=1}^r c_i \mathbf{v}_i = \sum_{i=1}^r c_i \mathbf{v}_j^T \mathbf{v}_i = c_j \|\mathbf{v}_j\|^2$$

and then solve to get $c_j = 0$.

$$\sum_{i=1}^r c_i \mathbf{v}_i = \mathbf{0}$$

We can multiply this by \mathbf{v}_j^T to get

$$0 = \mathbf{v}_j^T \sum_{i=1}^r c_i \mathbf{v}_i = \sum_{i=1}^r c_i \mathbf{v}_j^T \mathbf{v}_i = c_j \|\mathbf{v}_j\|^2$$

and then solve to get $c_j = 0$. That is, the only linear combination equal to **0** is the trivial one with all $c_j = 0$.

$$\sum_{i=1}^r c_i \mathbf{v}_i = \mathbf{0}$$

We can multiply this by \mathbf{v}_j^T to get

$$0 = \mathbf{v}_j^T \sum_{i=1}^r c_i \mathbf{v}_i = \sum_{i=1}^r c_i \mathbf{v}_j^T \mathbf{v}_i = c_j \|\mathbf{v}_j\|^2$$

and then solve to get $c_j = 0$. That is, the only linear combination equal to **0** is the trivial one with all $c_j = 0$. Thus, the set is independent.

$$\sum_{i=1}^r c_i \mathbf{v}_i = \mathbf{0}$$

We can multiply this by \mathbf{v}_j^T to get

$$0 = \mathbf{v}_j^T \sum_{i=1}^r c_i \mathbf{v}_i = \sum_{i=1}^r c_i \mathbf{v}_j^T \mathbf{v}_i = c_j \|\mathbf{v}_j\|^2$$

and then solve to get $c_j = 0$. That is, the only linear combination equal to **0** is the trivial one with all $c_j = 0$. Thus, the set is independent.

Theorem

Every nonzero subspace of \mathbb{R}^n has a basis that is orthonormal.

$$\sum_{i=1}^r c_i \mathbf{v}_i = \mathbf{0}$$

We can multiply this by \mathbf{v}_j^T to get

$$0 = \mathbf{v}_j^T \sum_{i=1}^r c_i \mathbf{v}_i = \sum_{i=1}^r c_i \mathbf{v}_j^T \mathbf{v}_i = c_j \|\mathbf{v}_j\|^2$$

and then solve to get $c_j = 0$. That is, the only linear combination equal to **0** is the trivial one with all $c_j = 0$. Thus, the set is independent.

Theorem

Every nonzero subspace of \mathbb{R}^n has a basis that is orthonormal.

To see this, let S be a subspace. It is enough to find an orthogonal spanning set in S: it will automatically be independent.

$$\sum_{i=1}^r c_i \mathbf{v}_i = \mathbf{0}$$

We can multiply this by \mathbf{v}_j^T to get

$$0 = \mathbf{v}_j^T \sum_{i=1}^r c_i \mathbf{v}_i = \sum_{i=1}^r c_i \mathbf{v}_j^T \mathbf{v}_i = c_j \|\mathbf{v}_j\|^2$$

and then solve to get $c_j = 0$. That is, the only linear combination equal to **0** is the trivial one with all $c_j = 0$. Thus, the set is independent.

Theorem

Every nonzero subspace of \mathbb{R}^n has a basis that is orthonormal.

To see this, let S be a subspace. It is enough to find an orthogonal spanning set in S: it will automatically be independent. Then we can replace each vector \mathbf{v}_j with $(1/||\mathbf{v}_j||)\mathbf{v}_j$ to get an orthonormal basis.

Let $r = \dim S$. Pick any nonzero vector \mathbf{v}_1 in S.

Let $r = \dim S$. Pick any nonzero vector \mathbf{v}_1 in S. If r = 1 then $\{\mathbf{v}_1\}$ will do.

Let $r = \dim S$. Pick any nonzero vector \mathbf{v}_1 in S. If r = 1 then $\{\mathbf{v}_1\}$ will do. If r > 1, pick any vector \mathbf{w}_2 that's in S but not in $\text{Span}(\mathbf{v}_1)$.

If r = 2 then $\text{Span}(\mathbf{v}_1, \mathbf{v}_2) = S$ and we are done.

If r = 2 then $\text{Span}(\mathbf{v}_1, \mathbf{v}_2) = S$ and we are done. Otherwise repeat this:

If r = 2 then $\text{Span}(\mathbf{v}_1, \mathbf{v}_2) = S$ and we are done. Otherwise repeat this: pick any \mathbf{w}_3 in S but not in $\text{Span}(\mathbf{v}_1, \mathbf{v}_2)$.

If r = 2 then $\text{Span}(\mathbf{v}_1, \mathbf{v}_2) = S$ and we are done. Otherwise repeat this: pick any \mathbf{w}_3 in S but not in $\text{Span}(\mathbf{v}_1, \mathbf{v}_2)$. Let \mathbf{p}_3 be the closest vector to \mathbf{w}_3 in that span and let $\mathbf{v}_3 = \mathbf{w}_3 - \mathbf{p}_3$.

If r = 2 then $\text{Span}(\mathbf{v}_1, \mathbf{v}_2) = S$ and we are done. Otherwise repeat this: pick any \mathbf{w}_3 in S but not in $\text{Span}(\mathbf{v}_1, \mathbf{v}_2)$. Let \mathbf{p}_3 be the closest vector to \mathbf{w}_3 in that span and let $\mathbf{v}_3 = \mathbf{w}_3 - \mathbf{p}_3$. Then \mathbf{v}_3 is nonzero and orthogonal to both \mathbf{v}_1 and \mathbf{v}_2 .

If r = 2 then $\text{Span}(\mathbf{v}_1, \mathbf{v}_2) = S$ and we are done. Otherwise repeat this: pick any \mathbf{w}_3 in S but not in $\text{Span}(\mathbf{v}_1, \mathbf{v}_2)$. Let \mathbf{p}_3 be the closest vector to \mathbf{w}_3 in that span and let $\mathbf{v}_3 = \mathbf{w}_3 - \mathbf{p}_3$. Then \mathbf{v}_3 is nonzero and orthogonal to both \mathbf{v}_1 and \mathbf{v}_2 .

We can repeat this until we have an orthogonal set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ in S with $r = \dim S$.

If r = 2 then $\text{Span}(\mathbf{v}_1, \mathbf{v}_2) = S$ and we are done. Otherwise repeat this: pick any \mathbf{w}_3 in S but not in $\text{Span}(\mathbf{v}_1, \mathbf{v}_2)$. Let \mathbf{p}_3 be the closest vector to \mathbf{w}_3 in that span and let $\mathbf{v}_3 = \mathbf{w}_3 - \mathbf{p}_3$. Then \mathbf{v}_3 is nonzero and orthogonal to both \mathbf{v}_1 and \mathbf{v}_2 .

We can repeat this until we have an orthogonal set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ in S with $r = \dim S$. Since the set is independent and its size is $\dim S$, it must also be spanning and so is a basis.

Let S is a subspace of \mathbb{R}^n and let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ be an orthogonal basis for S. If \mathbf{v} is any vector in \mathbb{R}^n and \mathbf{p} the element of S that is closest to \mathbf{v} , then

$$\mathbf{p} = \sum_{j=1}^r rac{\mathbf{v}^T \mathbf{v}_j}{\mathbf{v}_j^T \mathbf{v}_j} \, \mathbf{v}_j$$

Let S is a subspace of \mathbb{R}^n and let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ be an orthogonal basis for S. If \mathbf{v} is any vector in \mathbb{R}^n and \mathbf{p} the element of S that is closest to \mathbf{v} , then

$$\mathbf{p} = \sum_{j=1}^r rac{\mathbf{v}^T \mathbf{v}_j}{\mathbf{v}_j^T \mathbf{v}_j} \, \mathbf{v}_j$$

Notice that each term in the sum $\sum_{j=1}^{r} \frac{\mathbf{v}^T \mathbf{v}_j}{\mathbf{v}_j^T \mathbf{v}_j} \mathbf{v}_j$ has the same formula as the vector projection of \mathbf{v} onto \mathbf{v}_j .

Let S is a subspace of \mathbb{R}^n and let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ be an orthogonal basis for S. If \mathbf{v} is any vector in \mathbb{R}^n and \mathbf{p} the element of S that is closest to \mathbf{v} , then

$$\mathbf{p} = \sum_{j=1}^r rac{\mathbf{v}^T \mathbf{v}_j}{\mathbf{v}_j^T \mathbf{v}_j} \, \mathbf{v}_j$$

Notice that each term in the sum $\sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{j}$ has the same formula as the vector projection of \mathbf{v} onto \mathbf{v}_{j} . We will call \mathbf{p} the projection of \mathbf{v} onto $\operatorname{Span}(\mathbf{v}_{1}, \ldots, \mathbf{v}_{r})$.

Let S is a subspace of \mathbb{R}^n and let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ be an orthogonal basis for S. If \mathbf{v} is any vector in \mathbb{R}^n and \mathbf{p} the element of S that is closest to \mathbf{v} , then

$$\mathbf{p} = \sum_{j=1}^r rac{\mathbf{v}^T \mathbf{v}_j}{\mathbf{v}_j^T \mathbf{v}_j} \, \mathbf{v}_j$$

Notice that each term in the sum $\sum_{j=1}^{r} \frac{\mathbf{v}^T \mathbf{v}_j}{\mathbf{v}_j^T \mathbf{v}_j} \mathbf{v}_j$ has the same formula as the vector projection of \mathbf{v} onto \mathbf{v}_j . We will call \mathbf{p} the projection of \mathbf{v} onto $\operatorname{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_r)$.

To see why this is true, recall that the closest vector \mathbf{p} is the one that makes $\mathbf{v} - \mathbf{p} \perp S$.

Let S is a subspace of \mathbb{R}^n and let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ be an orthogonal basis for S. If \mathbf{v} is any vector in \mathbb{R}^n and \mathbf{p} the element of S that is closest to \mathbf{v} , then

$$\mathbf{p} = \sum_{j=1}^r rac{\mathbf{v}^T \mathbf{v}_j}{\mathbf{v}_j^T \mathbf{v}_j} \, \mathbf{v}_j$$

Notice that each term in the sum $\sum_{j=1}^{r} \frac{\mathbf{v}^T \mathbf{v}_j}{\mathbf{v}_j^T \mathbf{v}_j} \mathbf{v}_j$ has the same formula as the vector projection of \mathbf{v} onto \mathbf{v}_j . We will call \mathbf{p} the projection of \mathbf{v} onto $\operatorname{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_r)$.

To see why this is true, recall that the closest vector \mathbf{p} is the one that makes $\mathbf{v} - \mathbf{p} \perp S$. So we only need to check that this formula makes $\mathbf{v} - \mathbf{p} \perp \mathbf{v}_i$ for each of the basis vectors \mathbf{v}_i .

$$\mathbf{v}_i^T(\mathbf{v} - \mathbf{p}) = \mathbf{v}_i^T \mathbf{v} - \mathbf{v}_i^T \sum_{j=1}^r \frac{\mathbf{v}^T \mathbf{v}_j}{\mathbf{v}_j^T \mathbf{v}_j} \mathbf{v}_j$$
$$= \mathbf{v}_i^T \mathbf{v} - \sum_{j=1}^r \frac{\mathbf{v}^T \mathbf{v}_j}{\mathbf{v}_j^T \mathbf{v}_j} \mathbf{v}_i^T \mathbf{v}_j$$
$$= \mathbf{v}_i^T \mathbf{v} - \frac{\mathbf{v}^T \mathbf{v}_i}{\mathbf{v}_i^T \mathbf{v}_i} \mathbf{v}_i^T \mathbf{v}_i = \mathbf{v}_i^T \mathbf{v} - \mathbf{v}^T \mathbf{v}_i = 0$$

1. $\mathbf{0}^T \mathbf{0} = 0$, and if $\mathbf{v} \neq \mathbf{0}$ then $\mathbf{v}^T \mathbf{v} > 0$.

$$\mathbf{v}_i^T(\mathbf{v} - \mathbf{p}) = \mathbf{v}_i^T \mathbf{v} - \mathbf{v}_i^T \sum_{j=1}^r \frac{\mathbf{v}^T \mathbf{v}_j}{\mathbf{v}_j^T \mathbf{v}_j} \mathbf{v}_j$$
$$= \mathbf{v}_i^T \mathbf{v} - \sum_{j=1}^r \frac{\mathbf{v}^T \mathbf{v}_j}{\mathbf{v}_j^T \mathbf{v}_j} \mathbf{v}_i^T \mathbf{v}_j$$
$$= \mathbf{v}_i^T \mathbf{v} - \frac{\mathbf{v}^T \mathbf{v}_i}{\mathbf{v}_i^T \mathbf{v}_i} \mathbf{v}_i^T \mathbf{v}_i = \mathbf{v}_i^T \mathbf{v} - \mathbf{v}^T \mathbf{v}_i = 0$$

1.
$$\mathbf{0}^T \mathbf{0} = 0$$
, and if $\mathbf{v} \neq \mathbf{0}$ then $\mathbf{v}^T \mathbf{v} > 0$.
2. $\mathbf{v}^T \mathbf{w} = \mathbf{w}^T \mathbf{v}$.

$$\mathbf{v}_i^T(\mathbf{v} - \mathbf{p}) = \mathbf{v}_i^T \mathbf{v} - \mathbf{v}_i^T \sum_{j=1}^r \frac{\mathbf{v}^T \mathbf{v}_j}{\mathbf{v}_j^T \mathbf{v}_j} \mathbf{v}_j$$
$$= \mathbf{v}_i^T \mathbf{v} - \sum_{j=1}^r \frac{\mathbf{v}^T \mathbf{v}_j}{\mathbf{v}_j^T \mathbf{v}_j} \mathbf{v}_i^T \mathbf{v}_j$$
$$= \mathbf{v}_i^T \mathbf{v} - \frac{\mathbf{v}^T \mathbf{v}_i}{\mathbf{v}_i^T \mathbf{v}_i} \mathbf{v}_i^T \mathbf{v}_i = \mathbf{v}_i^T \mathbf{v} - \mathbf{v}^T \mathbf{v}_i = 0$$

1.
$$\mathbf{0}^T \mathbf{0} = 0$$
, and if $\mathbf{v} \neq \mathbf{0}$ then $\mathbf{v}^T \mathbf{v} > 0$
2. $\mathbf{v}^T \mathbf{w} = \mathbf{w}^T \mathbf{v}$.
2. $(\mathbf{o}\mathbf{v} + \theta \mathbf{w})^T \mathbf{v}$, $\mathbf{o}\mathbf{v}^T \mathbf{v} + \theta \mathbf{w}^T \mathbf{v}$.

3.
$$(\alpha \mathbf{u} + \beta \mathbf{w})^T \mathbf{v} = \alpha \mathbf{u}^T \mathbf{v} + \beta \mathbf{w}^T \mathbf{v}$$
.

$$\mathbf{v}_i^T(\mathbf{v} - \mathbf{p}) = \mathbf{v}_i^T \mathbf{v} - \mathbf{v}_i^T \sum_{j=1}^r \frac{\mathbf{v}^T \mathbf{v}_j}{\mathbf{v}_j^T \mathbf{v}_j} \mathbf{v}_j$$
$$= \mathbf{v}_i^T \mathbf{v} - \sum_{j=1}^r \frac{\mathbf{v}^T \mathbf{v}_j}{\mathbf{v}_j^T \mathbf{v}_j} \mathbf{v}_i^T \mathbf{v}_j$$
$$= \mathbf{v}_i^T \mathbf{v} - \frac{\mathbf{v}^T \mathbf{v}_i}{\mathbf{v}_i^T \mathbf{v}_i} \mathbf{v}_i^T \mathbf{v}_i = \mathbf{v}_i^T \mathbf{v} - \mathbf{v}^T \mathbf{v}_i = 0$$

1.
$$\mathbf{0}^T \mathbf{0} = 0$$
, and if $\mathbf{v} \neq \mathbf{0}$ then $\mathbf{v}^T \mathbf{v} > 0$.
2. $\mathbf{v}^T \mathbf{w} = \mathbf{w}^T \mathbf{v}$.
3. $(\alpha \mathbf{u} + \beta \mathbf{w})^T \mathbf{v} = \alpha \mathbf{u}^T \mathbf{v} + \beta \mathbf{w}^T \mathbf{v}$.

We have seen that, because of the first of these, we can use $\|\mathbf{v}\| = (\mathbf{v}^T \mathbf{v})^{1/2}$ as a measure of the size of \mathbf{v} .

$$\mathbf{v}_i^T(\mathbf{v} - \mathbf{p}) = \mathbf{v}_i^T \mathbf{v} - \mathbf{v}_i^T \sum_{j=1}^r \frac{\mathbf{v}^T \mathbf{v}_j}{\mathbf{v}_j^T \mathbf{v}_j} \mathbf{v}_j$$
$$= \mathbf{v}_i^T \mathbf{v} - \sum_{j=1}^r \frac{\mathbf{v}^T \mathbf{v}_j}{\mathbf{v}_j^T \mathbf{v}_j} \mathbf{v}_i^T \mathbf{v}_j$$
$$= \mathbf{v}_i^T \mathbf{v} - \frac{\mathbf{v}^T \mathbf{v}_i}{\mathbf{v}_i^T \mathbf{v}_i} \mathbf{v}_i^T \mathbf{v}_i = \mathbf{v}_i^T \mathbf{v} - \mathbf{v}^T \mathbf{v}_i = 0$$

1.
$$\mathbf{0}^T \mathbf{0} = 0$$
, and if $\mathbf{v} \neq \mathbf{0}$ then $\mathbf{v}^T \mathbf{v} > 0$.
2. $\mathbf{v}^T \mathbf{w} = \mathbf{w}^T \mathbf{v}$.
3. $(\alpha \mathbf{u} + \beta \mathbf{w})^T \mathbf{v} = \alpha \mathbf{u}^T \mathbf{v} + \beta \mathbf{w}^T \mathbf{v}$.

We have seen that, because of the first of these, we can use $\|\mathbf{v}\| = (\mathbf{v}^T \mathbf{v})^{1/2}$ as a measure of the size of \mathbf{v} . Moreover, in the special cases \mathbb{R}^2 and \mathbb{R}^3 , $\|\mathbf{x} - \mathbf{y}\|$ is the distance between the points with coordinates \mathbf{x} and \mathbf{y} .

There are many vector spaces with a similar type of product.

There are many vector spaces with a similar type of product. One of the most productive examples comes from the theory of Fourier series.

$$\langle f,g \rangle = \int_0^1 f(x)g(x) \, dx$$

$$\langle f,g \rangle = \int_0^1 f(x)g(x) \, dx$$

Then

1.
$$\langle \mathbf{0}, \mathbf{0} \rangle = 0$$
, and if $f \neq \mathbf{0}$ then $\langle f, f \rangle > 0$.

$$\langle f,g \rangle = \int_0^1 f(x)g(x) \, dx$$

Then

1.
$$\langle \mathbf{0}, \mathbf{0} \rangle = 0$$
, and if $f \neq \mathbf{0}$ then $\langle f, f \rangle > 0$.
2. $\langle f, g \rangle = \langle g, f \rangle$.

$$\langle f,g \rangle = \int_0^1 f(x)g(x) \, dx$$

Then

1.
$$\langle \mathbf{0}, \mathbf{0} \rangle = 0$$
, and if $f \neq \mathbf{0}$ then $\langle f, f \rangle > 0$.
2. $\langle f, g \rangle = \langle g, f \rangle$.
3. $\langle \alpha f + \beta g, h \rangle = \alpha \langle f, h \rangle + \beta \langle g, h \rangle$.

This suggests the following definition.

If V is a vector space, then an *inner product* is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V, a real number $\langle \mathbf{x}, \mathbf{y} \rangle$ satisfying

If V is a vector space, then an *inner product* is an operation that assigns, to any pair of vectors x and y in V, a real number $\langle x, y \rangle$ satisfying

1. $\langle \mathbf{0}, \mathbf{0} \rangle = 0$, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle \mathbf{x}, \mathbf{x} \rangle > 0$.

If V is a vector space, then an *inner product* is an operation that assigns, to any pair of vectors x and y in V, a real number $\langle x, y \rangle$ satisfying

1.
$$\langle \mathbf{0}, \mathbf{0} \rangle = 0$$
, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle \mathbf{x}, \mathbf{x} \rangle > 0$.

2.
$$\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$$
, for every \mathbf{x}, \mathbf{y} in V

If V is a vector space, then an *inner product* is an operation that assigns, to any pair of vectors x and y in V, a real number $\langle x, y \rangle$ satisfying

1.
$$\langle \mathbf{0}, \mathbf{0} \rangle = 0$$
, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle \mathbf{x}, \mathbf{x} \rangle > 0$.

2.
$$\langle {\bf x}, {\bf y}
angle = \langle {\bf y}, {\bf x}
angle$$
, for every ${\bf x}, {\bf y}$ in V

3. $\langle \alpha \mathbf{y} + \beta \mathbf{z}, \mathbf{x} \rangle = \alpha \langle \mathbf{y}, \mathbf{x} \rangle + \beta \langle \mathbf{z}, \mathbf{x} \rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R} .

If V is a vector space, then an *inner product* is an operation that assigns, to any pair of vectors x and y in V, a real number $\langle x, y \rangle$ satisfying

1.
$$\langle \mathbf{0}, \mathbf{0} \rangle = 0$$
, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle \mathbf{x}, \mathbf{x} \rangle > 0$.

2.
$$\langle {f x}, {f y}
angle = \langle {f y}, {f x}
angle$$
, for every ${f x}, {f y}$ in V

3. $\langle \alpha \mathbf{y} + \beta \mathbf{z}, \mathbf{x} \rangle = \alpha \langle \mathbf{y}, \mathbf{x} \rangle + \beta \langle \mathbf{z}, \mathbf{x} \rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R} .

A vector space with an inner product defined on it is called an *inner product space*.

If V is a vector space, then an *inner product* is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V, a real number $\langle \mathbf{x}, \mathbf{y} \rangle$ satisfying

1.
$$\langle \mathbf{0}, \mathbf{0} \rangle = 0$$
, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle \mathbf{x}, \mathbf{x} \rangle > 0$.

2.
$$\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$$
, for every \mathbf{x}, \mathbf{y} in V

3. $\langle \alpha \mathbf{y} + \beta \mathbf{z}, \mathbf{x} \rangle = \alpha \langle \mathbf{y}, \mathbf{x} \rangle + \beta \langle \mathbf{z}, \mathbf{x} \rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R} .

A vector space with an inner product defined on it is called an *inner product space*.

Some useful additional properties. Here $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are any vectors in an inner product space and α, β are any real numbers:

If V is a vector space, then an *inner product* is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V, a real number $\langle \mathbf{x}, \mathbf{y} \rangle$ satisfying

1.
$$\langle \mathbf{0}, \mathbf{0} \rangle = 0$$
, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle \mathbf{x}, \mathbf{x} \rangle > 0$.

2.
$$\langle {f x}, {f y}
angle = \langle {f y}, {f x}
angle$$
, for every ${f x}, {f y}$ in V

3. $\langle \alpha \mathbf{y} + \beta \mathbf{z}, \mathbf{x} \rangle = \alpha \langle \mathbf{y}, \mathbf{x} \rangle + \beta \langle \mathbf{z}, \mathbf{x} \rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R} .

A vector space with an inner product defined on it is called an *inner product space*.

Some useful additional properties. Here $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are any vectors in an inner product space and α, β are any real numbers:

(a)
$$\langle \mathbf{x}, \alpha \mathbf{y} + \beta \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle + \beta \langle \mathbf{x}, \mathbf{z} \rangle$$
:

If V is a vector space, then an *inner product* is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V, a real number $\langle \mathbf{x}, \mathbf{y} \rangle$ satisfying

1.
$$\langle \mathbf{0}, \mathbf{0} \rangle = 0$$
, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle \mathbf{x}, \mathbf{x} \rangle > 0$.

2.
$$\langle {f x}, {f y}
angle = \langle {f y}, {f x}
angle$$
, for every ${f x}, {f y}$ in V

3. $\langle \alpha \mathbf{y} + \beta \mathbf{z}, \mathbf{x} \rangle = \alpha \langle \mathbf{y}, \mathbf{x} \rangle + \beta \langle \mathbf{z}, \mathbf{x} \rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R} .

A vector space with an inner product defined on it is called an *inner product space*.

Some useful additional properties. Here $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are any vectors in an inner product space and α, β are any real numbers:

(a) $\langle \mathbf{x}, \alpha \mathbf{y} + \beta \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle + \beta \langle \mathbf{x}, \mathbf{z} \rangle$: use condition (2) in the definition to reverse the inner products in (3).

If V is a vector space, then an *inner product* is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V, a real number $\langle \mathbf{x}, \mathbf{y} \rangle$ satisfying

1.
$$\langle \mathbf{0}, \mathbf{0} \rangle = 0$$
, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle \mathbf{x}, \mathbf{x} \rangle > 0$.

2.
$$\langle {f x}, {f y}
angle = \langle {f y}, {f x}
angle$$
, for every ${f x}, {f y}$ in V

3. $\langle \alpha \mathbf{y} + \beta \mathbf{z}, \mathbf{x} \rangle = \alpha \langle \mathbf{y}, \mathbf{x} \rangle + \beta \langle \mathbf{z}, \mathbf{x} \rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R} .

A vector space with an inner product defined on it is called an *inner product space*.

Some useful additional properties. Here $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are any vectors in an inner product space and α, β are any real numbers:

- (a) $\langle \mathbf{x}, \alpha \mathbf{y} + \beta \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle + \beta \langle \mathbf{x}, \mathbf{z} \rangle$: use condition (2) in the definition to reverse the inner products in (3).
- (b) $\langle \mathbf{0}, \mathbf{x} \rangle = 0$:

If V is a vector space, then an *inner product* is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V, a real number $\langle \mathbf{x}, \mathbf{y} \rangle$ satisfying

1.
$$\langle \mathbf{0}, \mathbf{0} \rangle = 0$$
, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle \mathbf{x}, \mathbf{x} \rangle > 0$.

2.
$$\langle {f x}, {f y}
angle = \langle {f y}, {f x}
angle$$
, for every ${f x}, {f y}$ in V

3. $\langle \alpha \mathbf{y} + \beta \mathbf{z}, \mathbf{x} \rangle = \alpha \langle \mathbf{y}, \mathbf{x} \rangle + \beta \langle \mathbf{z}, \mathbf{x} \rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R} .

A vector space with an inner product defined on it is called an *inner product space*.

Some useful additional properties. Here $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are any vectors in an inner product space and α, β are any real numbers:

(a) $\langle \mathbf{x}, \alpha \mathbf{y} + \beta \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle + \beta \langle \mathbf{x}, \mathbf{z} \rangle$: use condition (2) in the definition to reverse the inner products in (3).

(b)
$$\langle \mathbf{0}, \mathbf{x} \rangle = 0$$
: $\langle \mathbf{0}, \mathbf{x} \rangle = \langle \mathbf{x} - \mathbf{x}, \mathbf{x} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{x}, \mathbf{x} \rangle = 0$.

If V is a vector space, then an *inner product* is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V, a real number $\langle \mathbf{x}, \mathbf{y} \rangle$ satisfying

1.
$$\langle \mathbf{0}, \mathbf{0} \rangle = 0$$
, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle \mathbf{x}, \mathbf{x} \rangle > 0$.

2.
$$\langle {f x}, {f y}
angle = \langle {f y}, {f x}
angle$$
, for every ${f x}, {f y}$ in V

3. $\langle \alpha \mathbf{y} + \beta \mathbf{z}, \mathbf{x} \rangle = \alpha \langle \mathbf{y}, \mathbf{x} \rangle + \beta \langle \mathbf{z}, \mathbf{x} \rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R} .

A vector space with an inner product defined on it is called an *inner product space*.

Some useful additional properties. Here $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are any vectors in an inner product space and α, β are any real numbers:

(a) $\langle \mathbf{x}, \alpha \mathbf{y} + \beta \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle + \beta \langle \mathbf{x}, \mathbf{z} \rangle$: use condition (2) in the definition to reverse the inner products in (3).

(b)
$$\langle \mathbf{0}, \mathbf{x} \rangle = 0$$
: $\langle \mathbf{0}, \mathbf{x} \rangle = \langle \mathbf{x} - \mathbf{x}, \mathbf{x} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{x}, \mathbf{x} \rangle = 0$.

(c)
$$\langle \alpha \mathbf{y}, \mathbf{x} \rangle = \alpha \langle \mathbf{y}, \mathbf{x} \rangle = \langle \mathbf{y}, \alpha \mathbf{x} \rangle$$
:

If V is a vector space, then an *inner product* is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V, a real number $\langle \mathbf{x}, \mathbf{y} \rangle$ satisfying

1.
$$\langle \mathbf{0}, \mathbf{0} \rangle = 0$$
, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle \mathbf{x}, \mathbf{x} \rangle > 0$.

2.
$$\langle {f x}, {f y}
angle = \langle {f y}, {f x}
angle$$
, for every ${f x}, {f y}$ in V

3. $\langle \alpha \mathbf{y} + \beta \mathbf{z}, \mathbf{x} \rangle = \alpha \langle \mathbf{y}, \mathbf{x} \rangle + \beta \langle \mathbf{z}, \mathbf{x} \rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R} .

A vector space with an inner product defined on it is called an *inner product space*.

Some useful additional properties. Here $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are any vectors in an inner product space and α, β are any real numbers:

- (a) $\langle \mathbf{x}, \alpha \mathbf{y} + \beta \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle + \beta \langle \mathbf{x}, \mathbf{z} \rangle$: use condition (2) in the definition to reverse the inner products in (3).
- (b) $\langle \mathbf{0}, \mathbf{x} \rangle = 0$: $\langle \mathbf{0}, \mathbf{x} \rangle = \langle \mathbf{x} \mathbf{x}, \mathbf{x} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle \langle \mathbf{x}, \mathbf{x} \rangle = 0$.
- (c) $\langle \alpha \mathbf{y}, \mathbf{x} \rangle = \alpha \langle \mathbf{y}, \mathbf{x} \rangle = \langle \mathbf{y}, \alpha \mathbf{x} \rangle$: apply (3) and then (a) with $\mathbf{z} = \mathbf{0}$.

On any vector space of functions on [0, 1] for which multiplication and integration is possible, the integral of the product is an inner product.

On any vector space of functions on [0,1] for which multiplication and integration is possible, the integral of the product is an inner product.

For example, this inner product applied to two polynomials $f(x) = a_0 + a_1x + a_2x^2$ and $g(x) = b_0 + b_1x + b_2x^2$ gives

$$\langle f,g \rangle = a_0 b_0 + (1/2)(a_0 b_1 + a_1 b_0) + (1/3)(a_0 b_2 + a_1 b_1 + a_2 b_0) + (1/4)(a_1 b_2 + a_2 b_1) + (1/5)a_2 b_2$$

On any vector space of functions on [0,1] for which multiplication and integration is possible, the integral of the product is an inner product.

For example, this inner product applied to two polynomials $f(x) = a_0 + a_1x + a_2x^2$ and $g(x) = b_0 + b_1x + b_2x^2$ gives

$$\langle f,g \rangle = a_0 b_0 + (1/2)(a_0 b_1 + a_1 b_0) + (1/3)(a_0 b_2 + a_1 b_1 + a_2 b_0) + (1/4)(a_1 b_2 + a_2 b_1) + (1/5)a_2 b_2$$

It is not so obvious from this formula that $\langle f, f \rangle > 0$.

On any vector space of functions on [0,1] for which multiplication and integration is possible, the integral of the product is an inner product.

For example, this inner product applied to two polynomials $f(x) = a_0 + a_1x + a_2x^2$ and $g(x) = b_0 + b_1x + b_2x^2$ gives

$$\langle f,g \rangle = a_0b_0 + (1/2)(a_0b_1 + a_1b_0) + (1/3)(a_0b_2 + a_1b_1 + a_2b_0) + (1/4)(a_1b_2 + a_2b_1) + (1/5)a_2b_2$$

It is not so obvious from this formula that $\langle f, f \rangle > 0$. Note that

$$\langle f,g \rangle = \left(\begin{array}{ccc} a_0 & a_1 & a_2 \end{array} \right) \left(\begin{array}{ccc} 1 & 1/2 & 1/3 \\ 1/2 & 1/3 & 1/4 \\ 1/3 & 1/4 & 1/5 \end{array} \right) \left(\begin{array}{c} b_0 \\ b_1 \\ b_2 \end{array} \right).$$

The vector space $\mathbb{R}^{n\times k}$ of $n\times k$ matrices can be given a number of inner products.

The vector space $\mathbb{R}^{n\times k}$ of $n\times k$ matrices can be given a number of inner products. The usual one is

$$\langle A, B \rangle = \sum_{i=1}^{n} \sum_{j=1}^{k} a_{ij} b_{ij}.$$

The vector space $\mathbb{R}^{n \times k}$ of $n \times k$ matrices can be given a number of inner products. The usual one is

$$\langle A, B \rangle = \sum_{i=1}^{n} \sum_{j=1}^{k} a_{ij} b_{ij}.$$

There is a shorter way to write this. First define the *trace* of a $k \times k$ square matrix by $tr(A) = \sum_{i=1}^{k} a_{ii}$.

The vector space $\mathbb{R}^{n\times k}$ of $n\times k$ matrices can be given a number of inner products. The usual one is

$$\langle A, B \rangle = \sum_{i=1}^{n} \sum_{j=1}^{k} a_{ij} b_{ij}.$$

There is a shorter way to write this. First define the *trace* of a $k \times k$ square matrix by $tr(A) = \sum_{i=1}^{k} a_{ii}$. Then the above inner product has the formula

 $\langle A, B \rangle = \operatorname{tr}(A^T B).$

One way to create an inner product is to produce a linear one-to-one correspondence from V to a vector space that already has an inner product.

One way to create an inner product is to produce a linear one-to-one correspondence from V to a vector space that already has an inner product. For example, if V has an ordered basis \mathcal{B} , we can define $\langle \mathbf{x}, \mathbf{y} \rangle = [\mathbf{x}]_{\mathcal{B}}^T [\mathbf{y}]_{\mathcal{B}}$.

$$\langle a_0 + a_1 x + a_2 x^2, b_0 + b_1 x + b_2 x^2 \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2$$

$$\langle a_0 + a_1 x + a_2 x^2, b_0 + b_1 x + b_2 x^2 \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2$$

Even \mathbb{R}^n can have different inner products from the scalar product.

$$\langle a_0 + a_1 x + a_2 x^2, b_0 + b_1 x + b_2 x^2 \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2$$

Even \mathbb{R}^n can have different inner products from the scalar product. If A is any invertible $n\times n$ matrix, then

$$\langle \mathbf{x}, \mathbf{y} \rangle = (A\mathbf{x})^T A \mathbf{y} = \mathbf{x}^T A^T A \mathbf{y}$$

is an example of an inner product.

$$\langle a_0 + a_1 x + a_2 x^2, b_0 + b_1 x + b_2 x^2 \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2$$

Even \mathbb{R}^n can have different inner products from the scalar product. If A is any invertible $n \times n$ matrix, then

$$\langle \mathbf{x}, \mathbf{y} \rangle = (A\mathbf{x})^T A \mathbf{y} = \mathbf{x}^T A^T A \mathbf{y}$$

is an example of an inner product. Let's verify this:

1. $A\mathbf{0} = \mathbf{0}$ so $(A\mathbf{0})^T A\mathbf{0} = 0$. If $\mathbf{x} \neq \mathbf{0}$ then $A\mathbf{x} \neq \mathbf{0}$ and so $(A\mathbf{x})^T A\mathbf{x} > 0$.

$$\langle a_0 + a_1 x + a_2 x^2, b_0 + b_1 x + b_2 x^2 \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2$$

Even \mathbb{R}^n can have different inner products from the scalar product. If A is any invertible $n \times n$ matrix, then

$$\langle \mathbf{x}, \mathbf{y} \rangle = (A\mathbf{x})^T A \mathbf{y} = \mathbf{x}^T A^T A \mathbf{y}$$

is an example of an inner product. Let's verify this:

- 1. $A\mathbf{0} = \mathbf{0}$ so $(A\mathbf{0})^T A\mathbf{0} = 0$. If $\mathbf{x} \neq \mathbf{0}$ then $A\mathbf{x} \neq \mathbf{0}$ and so $(A\mathbf{x})^T A\mathbf{x} > 0$.
- 2. $(A\mathbf{y})^T A\mathbf{x} = (A\mathbf{x})^T A\mathbf{y}$ because the scalar product has that property.

$$\langle a_0 + a_1 x + a_2 x^2, b_0 + b_1 x + b_2 x^2 \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2$$

Even \mathbb{R}^n can have different inner products from the scalar product. If A is any invertible $n \times n$ matrix, then

$$\langle \mathbf{x}, \mathbf{y} \rangle = (A\mathbf{x})^T A\mathbf{y} = \mathbf{x}^T A^T A\mathbf{y}$$

is an example of an inner product. Let's verify this:

- 1. $A\mathbf{0} = \mathbf{0}$ so $(A\mathbf{0})^T A\mathbf{0} = 0$. If $\mathbf{x} \neq \mathbf{0}$ then $A\mathbf{x} \neq \mathbf{0}$ and so $(A\mathbf{x})^T A\mathbf{x} > 0$.
- 2. $(A\mathbf{y})^T A\mathbf{x} = (A\mathbf{x})^T A\mathbf{y}$ because the scalar product has that property.
- 3. $(A(\alpha \mathbf{x} + \beta \mathbf{y}))^T A \mathbf{z} = (\alpha A \mathbf{x} + \beta A \mathbf{y})^T A \mathbf{z} = (\alpha (A \mathbf{x})^T + \beta (A \mathbf{y})^T) A \mathbf{z} = \alpha (A \mathbf{x})^T A \mathbf{z} + \beta (A \mathbf{y})^T A \mathbf{z}$

If V is a vector space with an inner product $\langle \mathbf{x}, \mathbf{y} \rangle$, then $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$. This is called the *norm induced by* this inner product.

Definition

If V is a vector space with an inner product $\langle \mathbf{x}, \mathbf{y} \rangle$, then $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$. This is called the *norm induced by* this inner product.

Definition

If V is a vector space with an inner product $\langle \mathbf{x}, \mathbf{y} \rangle$, then we say \mathbf{x} is orthogonal to \mathbf{y} if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$. and we express this by $\mathbf{x} \perp \mathbf{y}$.

Definition

If V is a vector space with an inner product $\langle \mathbf{x}, \mathbf{y} \rangle$, then $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$. This is called the *norm induced by* this inner product.

Definition

If V is a vector space with an inner product $\langle \mathbf{x}, \mathbf{y} \rangle$, then we say \mathbf{x} is orthogonal to \mathbf{y} if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$. and we express this by $\mathbf{x} \perp \mathbf{y}$.

Theorem (Pythagorean Formula)

If $\mathbf{x} \perp \mathbf{y}$ then $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$.

Definition

If V is a vector space with an inner product $\langle \mathbf{x}, \mathbf{y} \rangle$, then $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$. This is called the *norm induced by* this inner product.

Definition

If V is a vector space with an inner product $\langle \mathbf{x}, \mathbf{y} \rangle$, then we say \mathbf{x} is orthogonal to \mathbf{y} if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$. and we express this by $\mathbf{x} \perp \mathbf{y}$.

Theorem (Pythagorean Formula)

If
$$\mathbf{x} \perp \mathbf{y}$$
 then $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$.

We prove this by

$$\begin{split} \|\mathbf{x} + \mathbf{y}\|^2 &= \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle \\ &= \langle \mathbf{x}, \mathbf{x} + \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle \\ &= \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle \\ &= \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 \end{split}$$

Theorem (Cauchy-Schwarz Inequality)

For any \mathbf{x} and \mathbf{y} in an inner product space,

 $|\left< \mathbf{x}, \mathbf{y} \right>| \le \|\mathbf{x}\| \, \|\mathbf{y}\|$

Theorem (Cauchy-Schwarz Inequality)

For any \mathbf{x} and \mathbf{y} in an inner product space,

 $|\left< \mathbf{x}, \mathbf{y} \right>| \leq \|\mathbf{x}\| \, \|\mathbf{y}\|$

If either norm is zero that is, ${\bf x}$ or ${\bf y}$ is zero, then both sides are zero, which is OK.

Theorem (Cauchy-Schwarz Inequality)

For any \mathbf{x} and \mathbf{y} in an inner product space,

 $|\left< \mathbf{x}, \mathbf{y} \right>| \le \|\mathbf{x}\| \, \|\mathbf{y}\|$

If either norm is zero that is, ${\bf x}$ or ${\bf y}$ is zero, then both sides are zero, which is OK.

Otherwise consider the following for any real numbers α and β

$$\begin{aligned} 0 &\leq \langle \alpha \mathbf{x} - \beta \mathbf{y}, \alpha \mathbf{x} - \beta \mathbf{y} \rangle \\ 0 &\leq \langle \alpha \mathbf{x}, \alpha \mathbf{x} \rangle + \langle \alpha \mathbf{x}, -\beta \mathbf{y} \rangle + \langle -\beta \mathbf{y}, \alpha \mathbf{x} \rangle + \langle -\beta \mathbf{y}, -\beta \mathbf{y} \rangle \\ 0 &\leq \alpha^2 \langle \mathbf{x}, \mathbf{x} \rangle - \alpha \beta \langle \mathbf{x}, \mathbf{y} \rangle - \alpha \beta \langle \mathbf{y}, \mathbf{x} \rangle + \beta^2 \langle \mathbf{y}, \mathbf{y} \rangle \\ 0 &\leq \alpha^2 \|\mathbf{x}\|^2 - 2\alpha\beta \langle \mathbf{x}, \mathbf{y} \rangle + \beta^2 \|\mathbf{y}\|^2 \end{aligned}$$

$$\alpha \beta \langle \mathbf{x}, \mathbf{y} \rangle \le (1/2)(\alpha^2 \|\mathbf{x}\|^2 + \beta^2 \|\mathbf{y}\|^2)$$

$$\alpha \beta \langle \mathbf{x}, \mathbf{y} \rangle \le (1/2) (\alpha^2 \|\mathbf{x}\|^2 + \beta^2 \|\mathbf{y}\|^2)$$

Since this holds for any α, β , let $\alpha = 1/\|\mathbf{x}\|$ and $\beta = 1/\|\mathbf{y}\|$ to get

$$\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|} \le 1.$$

$$\alpha \beta \langle \mathbf{x}, \mathbf{y} \rangle \le (1/2) (\alpha^2 \|\mathbf{x}\|^2 + \beta^2 \|\mathbf{y}\|^2)$$

Since this holds for any α, β , let $\alpha = 1/\|\mathbf{x}\|$ and $\beta = 1/\|\mathbf{y}\|$ to get

$$\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \, \|\mathbf{y}\|} \le 1.$$

This just what we need if $\langle \mathbf{x}, \mathbf{y} \rangle \geq 0$.

$$\alpha \beta \langle \mathbf{x}, \mathbf{y} \rangle \leq (1/2) (\alpha^2 \|\mathbf{x}\|^2 + \beta^2 \|\mathbf{y}\|^2)$$

Since this holds for any $\alpha,\beta,$ let $\alpha=1/\left\|\mathbf{x}\right\|$ and $\beta=1/\left\|\mathbf{y}\right\|$ to get

$$\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|} \le 1.$$

This just what we need if $\langle \mathbf{x}, \mathbf{y} \rangle \geq 0$. If $\langle \mathbf{x}, \mathbf{y} \rangle < 0$, use $\beta = -1/||\mathbf{y}||$ to get

$$-\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|} \le 1.$$

$$\alpha \beta \langle \mathbf{x}, \mathbf{y} \rangle \leq (1/2) (\alpha^2 \|\mathbf{x}\|^2 + \beta^2 \|\mathbf{y}\|^2)$$

Since this holds for any $\alpha,\beta,$ let $\alpha=1/\left\|\mathbf{x}\right\|$ and $\beta=1/\left\|\mathbf{y}\right\|$ to get

$$\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|} \le 1.$$

This just what we need if $\langle \mathbf{x}, \mathbf{y} \rangle \ge 0$. If $\langle \mathbf{x}, \mathbf{y} \rangle < 0$, use $\beta = -1/||\mathbf{y}||$ to get

$$-\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|} \leq 1.$$
 In either case we have
$$\frac{|\langle \mathbf{x}, \mathbf{y} \rangle|}{\|\mathbf{x}\| \|\mathbf{y}\|} \leq 1.$$

$$\alpha \beta \langle \mathbf{x}, \mathbf{y} \rangle \leq (1/2) (\alpha^2 \|\mathbf{x}\|^2 + \beta^2 \|\mathbf{y}\|^2)$$

Since this holds for any α, β , let $\alpha = 1/ \|\mathbf{x}\|$ and $\beta = 1/ \|\mathbf{y}\|$ to get

$$\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \, \|\mathbf{y}\|} \le 1.$$

This just what we need if $\langle \mathbf{x}, \mathbf{y} \rangle \geq 0$. If $\langle \mathbf{x}, \mathbf{y} \rangle < 0$, use $\beta = -1/||\mathbf{y}||$ to get

$$-\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|} \le 1.$$

In either case we have $\frac{|\langle \mathbf{x}, \mathbf{y} \rangle|}{\|\mathbf{x}\| \|\mathbf{y}\|} \leq 1.$

Theorem (Triangle Inequality)

For any pair of vectors \mathbf{x} and \mathbf{y} , $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.

$$\begin{aligned} \|\mathbf{x} + \mathbf{y}\|^2 &= \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle \\ &= \|\mathbf{x}\|^2 + 2 \langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^2 \\ &\leq \|\mathbf{x}\|^2 + 2 \|\mathbf{x}\| \|\mathbf{y}\| + \|\mathbf{y}\|^2 = (\|\mathbf{x}\| + \|\mathbf{y}\|)^2 \end{aligned}$$

$$\begin{aligned} \|\mathbf{x} + \mathbf{y}\|^2 &= \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle \\ &= \|\mathbf{x}\|^2 + 2 \langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^2 \\ &\leq \|\mathbf{x}\|^2 + 2 \|\mathbf{x}\| \|\mathbf{y}\| + \|\mathbf{y}\|^2 = (\|\mathbf{x}\| + \|\mathbf{y}\|)^2 \end{aligned}$$

Then take square roots to get $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.

$$\begin{aligned} \|\mathbf{x} + \mathbf{y}\|^2 &= \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle \\ &= \|\mathbf{x}\|^2 + 2 \langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^2 \\ &\leq \|\mathbf{x}\|^2 + 2 \|\mathbf{x}\| \|\mathbf{y}\| + \|\mathbf{y}\|^2 = (\|\mathbf{x}\| + \|\mathbf{y}\|)^2 \end{aligned}$$

Then take square roots to get $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$. This allows us to express the distance between vectors by $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$

$$\begin{aligned} \|\mathbf{x} + \mathbf{y}\|^2 &= \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle \\ &= \|\mathbf{x}\|^2 + 2 \langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^2 \\ &\leq \|\mathbf{x}\|^2 + 2 \|\mathbf{x}\| \|\mathbf{y}\| + \|\mathbf{y}\|^2 = (\|\mathbf{x}\| + \|\mathbf{y}\|)^2 \end{aligned}$$

Then take square roots to get $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$. This allows us to express the distance between vectors by $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$ and deduce that

$$d(\mathbf{x}, \mathbf{z}) = \|\mathbf{x} - \mathbf{z}\| = \|\mathbf{x} - \mathbf{y} + \mathbf{y} - \mathbf{z}\|$$

$$\leq \|\mathbf{x} - \mathbf{y}\| + \|\mathbf{y} - \mathbf{z}\| = d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$$