Orthogonal Bases

D. H. Luecking
MASC

3 April 2024

Definition

A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is called orthogonal if $\mathbf{v}_{i} \perp \mathbf{v}_{j}$ for every $i \neq j$.

Definition

A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is called orthogonal if $\mathbf{v}_{i} \perp \mathbf{v}_{j}$ for every $i \neq j$.
It is called orthonormal if it is orthogonal and also $\left\|\mathbf{v}_{j}\right\|=1$ for every j.

Definition

A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is called orthogonal if $\mathbf{v}_{i} \perp \mathbf{v}_{j}$ for every $i \neq j$.
It is called orthonormal if it is orthogonal and also $\left\|\mathbf{v}_{j}\right\|=1$ for every j.
If a set of nonzero vectors is orthogonal, we can make it orthonormal simply by multiplying each \mathbf{v}_{j} by $\left(1 /\left\|\mathbf{v}_{j}\right\|\right)$.

Definition

A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is called orthogonal if $\mathbf{v}_{i} \perp \mathbf{v}_{j}$ for every $i \neq j$.
It is called orthonormal if it is orthogonal and also $\left\|\mathbf{v}_{j}\right\|=1$ for every j.
If a set of nonzero vectors is orthogonal, we can make it orthonormal simply by multiplying each \mathbf{v}_{j} by $\left(1 /\left\|\mathbf{v}_{j}\right\|\right)$.

Theorem

If a set of nonzero vectors is orthogonal, then it is independent.

Definition

A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is called orthogonal if $\mathbf{v}_{i} \perp \mathbf{v}_{j}$ for every $i \neq j$.
It is called orthonormal if it is orthogonal and also $\left\|\mathbf{v}_{j}\right\|=1$ for every j.
If a set of nonzero vectors is orthogonal, we can make it orthonormal simply by multiplying each \mathbf{v}_{j} by $\left(1 /\left\|\mathbf{v}_{j}\right\|\right)$.

Theorem

If a set of nonzero vectors is orthogonal, then it is independent.
Note: Any set that contains $\mathbf{0}$ is dependent because we can always find a nontrivial solution to

$$
c_{1} \mathbf{0}+c_{2} \mathbf{v}_{2}+\cdots+c_{r} \mathbf{v}_{r}=\mathbf{0}
$$

Definition

A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is called orthogonal if $\mathbf{v}_{i} \perp \mathbf{v}_{j}$ for every $i \neq j$.
It is called orthonormal if it is orthogonal and also $\left\|\mathbf{v}_{j}\right\|=1$ for every j.
If a set of nonzero vectors is orthogonal, we can make it orthonormal simply by multiplying each \mathbf{v}_{j} by $\left(1 /\left\|\mathbf{v}_{j}\right\|\right)$.

Theorem

If a set of nonzero vectors is orthogonal, then it is independent.
Note: Any set that contains $\mathbf{0}$ is dependent because we can always find a nontrivial solution to

$$
c_{1} \mathbf{0}+c_{2} \mathbf{v}_{2}+\cdots+c_{r} \mathbf{v}_{r}=\mathbf{0}
$$

Simply set $c_{1}=1$ and the rest of the $c_{j}=0$.

Now suppose $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is orthogonal and that

$$
\sum_{i=1}^{r} c_{i} \mathbf{v}_{i}=\mathbf{0}
$$

Now suppose $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is orthogonal and that

$$
\sum_{i=1}^{r} c_{i} \mathbf{v}_{i}=\mathbf{0}
$$

We can multiply this by \mathbf{v}_{j}^{T} to get

$$
0=\mathbf{v}_{j}^{T} \sum_{i=1}^{r} c_{i} \mathbf{v}_{i}=\sum_{i=1}^{r} c_{i} \mathbf{v}_{j}^{T} \mathbf{v}_{i}=c_{j}\left\|\mathbf{v}_{j}\right\|^{2}
$$

Now suppose $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is orthogonal and that

$$
\sum_{i=1}^{r} c_{i} \mathbf{v}_{i}=\mathbf{0}
$$

We can multiply this by \mathbf{v}_{j}^{T} to get

$$
0=\mathbf{v}_{j}^{T} \sum_{i=1}^{r} c_{i} \mathbf{v}_{i}=\sum_{i=1}^{r} c_{i} \mathbf{v}_{j}^{T} \mathbf{v}_{i}=c_{j}\left\|\mathbf{v}_{j}\right\|^{2}
$$

and then solve to get $c_{j}=0$.

Now suppose $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is orthogonal and that

$$
\sum_{i=1}^{r} c_{i} \mathbf{v}_{i}=\mathbf{0}
$$

We can multiply this by \mathbf{v}_{j}^{T} to get

$$
0=\mathbf{v}_{j}^{T} \sum_{i=1}^{r} c_{i} \mathbf{v}_{i}=\sum_{i=1}^{r} c_{i} \mathbf{v}_{j}^{T} \mathbf{v}_{i}=c_{j}\left\|\mathbf{v}_{j}\right\|^{2}
$$

and then solve to get $c_{j}=0$. That is, the only linear combination equal to $\mathbf{0}$ is the trivial one with all $c_{j}=0$.

Now suppose $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is orthogonal and that

$$
\sum_{i=1}^{r} c_{i} \mathbf{v}_{i}=\mathbf{0}
$$

We can multiply this by \mathbf{v}_{j}^{T} to get

$$
0=\mathbf{v}_{j}^{T} \sum_{i=1}^{r} c_{i} \mathbf{v}_{i}=\sum_{i=1}^{r} c_{i} \mathbf{v}_{j}^{T} \mathbf{v}_{i}=c_{j}\left\|\mathbf{v}_{j}\right\|^{2}
$$

and then solve to get $c_{j}=0$. That is, the only linear combination equal to $\mathbf{0}$ is the trivial one with all $c_{j}=0$. Thus, the set is independent.

Now suppose $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is orthogonal and that

$$
\sum_{i=1}^{r} c_{i} \mathbf{v}_{i}=\mathbf{0}
$$

We can multiply this by \mathbf{v}_{j}^{T} to get

$$
0=\mathbf{v}_{j}^{T} \sum_{i=1}^{r} c_{i} \mathbf{v}_{i}=\sum_{i=1}^{r} c_{i} \mathbf{v}_{j}^{T} \mathbf{v}_{i}=c_{j}\left\|\mathbf{v}_{j}\right\|^{2}
$$

and then solve to get $c_{j}=0$. That is, the only linear combination equal to $\mathbf{0}$ is the trivial one with all $c_{j}=0$. Thus, the set is independent.

Theorem

Every nonzero subspace of \mathbb{R}^{n} has a basis that is orthonormal.

Now suppose $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is orthogonal and that

$$
\sum_{i=1}^{r} c_{i} \mathbf{v}_{i}=\mathbf{0}
$$

We can multiply this by \mathbf{v}_{j}^{T} to get

$$
0=\mathbf{v}_{j}^{T} \sum_{i=1}^{r} c_{i} \mathbf{v}_{i}=\sum_{i=1}^{r} c_{i} \mathbf{v}_{j}^{T} \mathbf{v}_{i}=c_{j}\left\|\mathbf{v}_{j}\right\|^{2}
$$

and then solve to get $c_{j}=0$. That is, the only linear combination equal to $\mathbf{0}$ is the trivial one with all $c_{j}=0$. Thus, the set is independent.

Theorem

Every nonzero subspace of \mathbb{R}^{n} has a basis that is orthonormal.
To see this, let S be a subspace. It is enough to find an orthogonal spanning set in S : it will automatically be independent.

Now suppose $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is orthogonal and that

$$
\sum_{i=1}^{r} c_{i} \mathbf{v}_{i}=\mathbf{0}
$$

We can multiply this by \mathbf{v}_{j}^{T} to get

$$
0=\mathbf{v}_{j}^{T} \sum_{i=1}^{r} c_{i} \mathbf{v}_{i}=\sum_{i=1}^{r} c_{i} \mathbf{v}_{j}^{T} \mathbf{v}_{i}=c_{j}\left\|\mathbf{v}_{j}\right\|^{2}
$$

and then solve to get $c_{j}=0$. That is, the only linear combination equal to $\mathbf{0}$ is the trivial one with all $c_{j}=0$. Thus, the set is independent.

Theorem

Every nonzero subspace of \mathbb{R}^{n} has a basis that is orthonormal.
To see this, let S be a subspace. It is enough to find an orthogonal spanning set in S : it will automatically be independent. Then we can replace each vector \mathbf{v}_{j} with $\left(1 /\left\|\mathbf{v}_{j}\right\|\right) \mathbf{v}_{j}$ to get an orthonormal basis.

Let $r=\operatorname{dim} S$. Pick any nonzero vector \mathbf{v}_{1} in S.

Let $r=\operatorname{dim} S$. Pick any nonzero vector \mathbf{v}_{1} in S. If $r=1$ then $\left\{\mathbf{v}_{1}\right\}$ will do.

Let $r=\operatorname{dim} S$. Pick any nonzero vector \mathbf{v}_{1} in S. If $r=1$ then $\left\{\mathbf{v}_{1}\right\}$ will do. If $r>1$, pick any vector \mathbf{w}_{2} that's in S but not in $\operatorname{Span}\left(\mathbf{v}_{1}\right)$.

Let $r=\operatorname{dim} S$. Pick any nonzero vector \mathbf{v}_{1} in S. If $r=1$ then $\left\{\mathbf{v}_{1}\right\}$ will do. If $r>1$, pick any vector \mathbf{w}_{2} that's in S but not in $\operatorname{Span}\left(\mathbf{v}_{1}\right)$. Let \mathbf{p}_{2} be the closest vector to \mathbf{w}_{2} in $\operatorname{Span}\left(\mathbf{v}_{1}\right)$ and let $\mathbf{v}_{2}=\mathbf{w}_{2}-\mathbf{p}_{2}$. Then $\mathbf{v}_{2} \neq 0$ and $\mathbf{v}_{2} \perp \mathbf{v}_{1}$.

Let $r=\operatorname{dim} S$. Pick any nonzero vector \mathbf{v}_{1} in S. If $r=1$ then $\left\{\mathbf{v}_{1}\right\}$ will do. If $r>1$, pick any vector \mathbf{w}_{2} that's in S but not in $\operatorname{Span}\left(\mathbf{v}_{1}\right)$. Let \mathbf{p}_{2} be the closest vector to \mathbf{w}_{2} in $\operatorname{Span}\left(\mathbf{v}_{1}\right)$ and let $\mathbf{v}_{2}=\mathbf{w}_{2}-\mathbf{p}_{2}$. Then $\mathbf{v}_{2} \neq 0$ and $\mathbf{v}_{2} \perp \mathbf{v}_{1}$.
If $r=2$ then $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=S$ and we are done.

Let $r=\operatorname{dim} S$. Pick any nonzero vector \mathbf{v}_{1} in S. If $r=1$ then $\left\{\mathbf{v}_{1}\right\}$ will do. If $r>1$, pick any vector \mathbf{w}_{2} that's in S but not in $\operatorname{Span}\left(\mathbf{v}_{1}\right)$. Let \mathbf{p}_{2} be the closest vector to \mathbf{w}_{2} in $\operatorname{Span}\left(\mathbf{v}_{1}\right)$ and let $\mathbf{v}_{2}=\mathbf{w}_{2}-\mathbf{p}_{2}$. Then $\mathbf{v}_{2} \neq 0$ and $\mathbf{v}_{2} \perp \mathbf{v}_{1}$.
If $r=2$ then $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=S$ and we are done. Otherwise repeat this:

Let $r=\operatorname{dim} S$. Pick any nonzero vector \mathbf{v}_{1} in S. If $r=1$ then $\left\{\mathbf{v}_{1}\right\}$ will do. If $r>1$, pick any vector \mathbf{w}_{2} that's in S but not in $\operatorname{Span}\left(\mathbf{v}_{1}\right)$. Let \mathbf{p}_{2} be the closest vector to \mathbf{w}_{2} in $\operatorname{Span}\left(\mathbf{v}_{1}\right)$ and let $\mathbf{v}_{2}=\mathbf{w}_{2}-\mathbf{p}_{2}$. Then $\mathbf{v}_{2} \neq 0$ and $\mathbf{v}_{2} \perp \mathbf{v}_{1}$.
If $r=2$ then $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=S$ and we are done. Otherwise repeat this: pick any \mathbf{w}_{3} in S but not in $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$.

Let $r=\operatorname{dim} S$. Pick any nonzero vector \mathbf{v}_{1} in S. If $r=1$ then $\left\{\mathbf{v}_{1}\right\}$ will do. If $r>1$, pick any vector \mathbf{w}_{2} that's in S but not in $\operatorname{Span}\left(\mathbf{v}_{1}\right)$. Let \mathbf{p}_{2} be the closest vector to \mathbf{w}_{2} in $\operatorname{Span}\left(\mathbf{v}_{1}\right)$ and let $\mathbf{v}_{2}=\mathbf{w}_{2}-\mathbf{p}_{2}$. Then $\mathbf{v}_{2} \neq 0$ and $\mathbf{v}_{2} \perp \mathbf{v}_{1}$.
If $r=2$ then $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=S$ and we are done. Otherwise repeat this: pick any \mathbf{w}_{3} in S but not in $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$. Let \mathbf{p}_{3} be the closest vector to \mathbf{w}_{3} in that span and let $\mathbf{v}_{3}=\mathbf{w}_{3}-\mathbf{p}_{3}$.

Let $r=\operatorname{dim} S$. Pick any nonzero vector \mathbf{v}_{1} in S. If $r=1$ then $\left\{\mathbf{v}_{1}\right\}$ will do. If $r>1$, pick any vector \mathbf{w}_{2} that's in S but not in $\operatorname{Span}\left(\mathbf{v}_{1}\right)$. Let \mathbf{p}_{2} be the closest vector to \mathbf{w}_{2} in $\operatorname{Span}\left(\mathbf{v}_{1}\right)$ and let $\mathbf{v}_{2}=\mathbf{w}_{2}-\mathbf{p}_{2}$. Then $\mathbf{v}_{2} \neq 0$ and $\mathbf{v}_{2} \perp \mathbf{v}_{1}$.
If $r=2$ then $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=S$ and we are done. Otherwise repeat this: pick any \mathbf{w}_{3} in S but not in $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$. Let \mathbf{p}_{3} be the closest vector to \mathbf{w}_{3} in that span and let $\mathbf{v}_{3}=\mathbf{w}_{3}-\mathbf{p}_{3}$. Then \mathbf{v}_{3} is nonzero and orthogonal to both \mathbf{v}_{1} and \mathbf{v}_{2}.

Let $r=\operatorname{dim} S$. Pick any nonzero vector \mathbf{v}_{1} in S. If $r=1$ then $\left\{\mathbf{v}_{1}\right\}$ will do. If $r>1$, pick any vector \mathbf{w}_{2} that's in S but not in $\operatorname{Span}\left(\mathbf{v}_{1}\right)$. Let \mathbf{p}_{2} be the closest vector to \mathbf{w}_{2} in $\operatorname{Span}\left(\mathbf{v}_{1}\right)$ and let $\mathbf{v}_{2}=\mathbf{w}_{2}-\mathbf{p}_{2}$. Then $\mathbf{v}_{2} \neq 0$ and $\mathbf{v}_{2} \perp \mathbf{v}_{1}$.
If $r=2$ then $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=S$ and we are done. Otherwise repeat this: pick any \mathbf{w}_{3} in S but not in $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$. Let \mathbf{p}_{3} be the closest vector to \mathbf{w}_{3} in that span and let $\mathbf{v}_{3}=\mathbf{w}_{3}-\mathbf{p}_{3}$. Then \mathbf{v}_{3} is nonzero and orthogonal to both \mathbf{v}_{1} and \mathbf{v}_{2}.
We can repeat this until we have an orthogonal set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ in S with $r=\operatorname{dim} S$.

Let $r=\operatorname{dim} S$. Pick any nonzero vector \mathbf{v}_{1} in S. If $r=1$ then $\left\{\mathbf{v}_{1}\right\}$ will do. If $r>1$, pick any vector \mathbf{w}_{2} that's in S but not in $\operatorname{Span}\left(\mathbf{v}_{1}\right)$. Let \mathbf{p}_{2} be the closest vector to \mathbf{w}_{2} in $\operatorname{Span}\left(\mathbf{v}_{1}\right)$ and let $\mathbf{v}_{2}=\mathbf{w}_{2}-\mathbf{p}_{2}$. Then $\mathbf{v}_{2} \neq 0$ and $\mathbf{v}_{2} \perp \mathbf{v}_{1}$.
If $r=2$ then $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=S$ and we are done. Otherwise repeat this: pick any \mathbf{w}_{3} in S but not in $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$. Let \mathbf{p}_{3} be the closest vector to \mathbf{w}_{3} in that span and let $\mathbf{v}_{3}=\mathbf{w}_{3}-\mathbf{p}_{3}$. Then \mathbf{v}_{3} is nonzero and orthogonal to both \mathbf{v}_{1} and \mathbf{v}_{2}.
We can repeat this until we have an orthogonal set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ in S with $r=\operatorname{dim} S$. Since the set is independent and its size is $\operatorname{dim} S$, it must also be spanning and so is a basis.

Theorem

Let S is a subspace of \mathbb{R}^{n} and let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ be an orthogonal basis for S. If \mathbf{v} is any vector in \mathbb{R}^{n} and \mathbf{p} the element of S that is closest to \mathbf{v}, then

$$
\mathbf{p}=\sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{j}
$$

Theorem

Let S is a subspace of \mathbb{R}^{n} and let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ be an orthogonal basis for S. If \mathbf{v} is any vector in \mathbb{R}^{n} and \mathbf{p} the element of S that is closest to \mathbf{v}, then

$$
\mathbf{p}=\sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{j}
$$

Notice that each term in the sum $\sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{j}$ has the same formula as the vector projection of \mathbf{v} onto \mathbf{v}_{j}.

Theorem

Let S is a subspace of \mathbb{R}^{n} and let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ be an orthogonal basis for S. If \mathbf{v} is any vector in \mathbb{R}^{n} and \mathbf{p} the element of S that is closest to \mathbf{v}, then

$$
\mathbf{p}=\sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{j}
$$

Notice that each term in the sum $\sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{j}$ has the same formula as the vector projection of \mathbf{v} onto \mathbf{v}_{j}. We will call \mathbf{p} the projection of \mathbf{v} onto $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right)$.

Theorem

Let S is a subspace of \mathbb{R}^{n} and let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ be an orthogonal basis for S. If \mathbf{v} is any vector in \mathbb{R}^{n} and \mathbf{p} the element of S that is closest to \mathbf{v}, then

$$
\mathbf{p}=\sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{j}
$$

Notice that each term in the sum $\sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{j}$ has the same formula as the vector projection of \mathbf{v} onto \mathbf{v}_{j}. We will call \mathbf{p} the projection of \mathbf{v} onto $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right)$.
To see why this is true, recall that the closest vector \mathbf{p} is the one that makes $\mathbf{v}-\mathbf{p} \perp S$.

Theorem

Let S is a subspace of \mathbb{R}^{n} and let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ be an orthogonal basis for S. If \mathbf{v} is any vector in \mathbb{R}^{n} and \mathbf{p} the element of S that is closest to \mathbf{v}, then

$$
\mathbf{p}=\sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{j}
$$

Notice that each term in the sum $\sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{j}$ has the same formula as the vector projection of \mathbf{v} onto \mathbf{v}_{j}. We will call \mathbf{p} the projection of \mathbf{v} onto $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right)$.
To see why this is true, recall that the closest vector \mathbf{p} is the one that makes $\mathbf{v}-\mathbf{p} \perp S$. So we only need to check that this formula makes $\mathbf{v}-\mathbf{p} \perp \mathbf{v}_{i}$ for each of the basis vectors \mathbf{v}_{i}.

$$
\begin{aligned}
\mathbf{v}_{i}^{T}(\mathbf{v}-\mathbf{p}) & =\mathbf{v}_{i}^{T} \mathbf{v}-\mathbf{v}_{i}^{T} \sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{j} \\
& =\mathbf{v}_{i}^{T} \mathbf{v}-\sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{i}^{T} \mathbf{v}_{j} \\
& =\mathbf{v}_{i}^{T} \mathbf{v}-\frac{\mathbf{v}^{T} \mathbf{v}_{i}}{\mathbf{v}_{i}^{T} \mathbf{v}_{i}} \mathbf{v}_{i}^{T} \mathbf{v}_{i}=\mathbf{v}_{i}^{T} \mathbf{v}-\mathbf{v}^{T} \mathbf{v}_{i}=0
\end{aligned}
$$

Some key properties of the scalar product:

1. $\mathbf{0}^{T} \mathbf{0}=0$, and if $\mathbf{v} \neq \mathbf{0}$ then $\mathbf{v}^{T} \mathbf{v}>0$.

$$
\begin{aligned}
\mathbf{v}_{i}^{T}(\mathbf{v}-\mathbf{p}) & =\mathbf{v}_{i}^{T} \mathbf{v}-\mathbf{v}_{i}^{T} \sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{j} \\
& =\mathbf{v}_{i}^{T} \mathbf{v}-\sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{i}^{T} \mathbf{v}_{j} \\
& =\mathbf{v}_{i}^{T} \mathbf{v}-\frac{\mathbf{v}^{T} \mathbf{v}_{i}}{\mathbf{v}_{i}^{T} \mathbf{v}_{i}} \mathbf{v}_{i}^{T} \mathbf{v}_{i}=\mathbf{v}_{i}^{T} \mathbf{v}-\mathbf{v}^{T} \mathbf{v}_{i}=0
\end{aligned}
$$

Some key properties of the scalar product:

1. $\mathbf{0}^{T} \mathbf{0}=0$, and if $\mathbf{v} \neq \mathbf{0}$ then $\mathbf{v}^{T} \mathbf{v}>0$.
2. $\mathbf{v}^{T} \mathbf{w}=\mathbf{w}^{T} \mathbf{v}$.

$$
\begin{aligned}
\mathbf{v}_{i}^{T}(\mathbf{v}-\mathbf{p}) & =\mathbf{v}_{i}^{T} \mathbf{v}-\mathbf{v}_{i}^{T} \sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{j} \\
& =\mathbf{v}_{i}^{T} \mathbf{v}-\sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{i}^{T} \mathbf{v}_{j} \\
& =\mathbf{v}_{i}^{T} \mathbf{v}-\frac{\mathbf{v}^{T} \mathbf{v}_{i}}{\mathbf{v}_{i}^{T} \mathbf{v}_{i}} \mathbf{v}_{i}^{T} \mathbf{v}_{i}=\mathbf{v}_{i}^{T} \mathbf{v}-\mathbf{v}^{T} \mathbf{v}_{i}=0
\end{aligned}
$$

Some key properties of the scalar product:

1. $\mathbf{0}^{T} \mathbf{0}=0$, and if $\mathbf{v} \neq \mathbf{0}$ then $\mathbf{v}^{T} \mathbf{v}>0$.
2. $\mathbf{v}^{T} \mathbf{w}=\mathbf{w}^{T} \mathbf{v}$.
3. $(\alpha \mathbf{u}+\beta \mathbf{w})^{T} \mathbf{v}=\alpha \mathbf{u}^{T} \mathbf{v}+\beta \mathbf{w}^{T} \mathbf{v}$.

$$
\begin{aligned}
\mathbf{v}_{i}^{T}(\mathbf{v}-\mathbf{p}) & =\mathbf{v}_{i}^{T} \mathbf{v}-\mathbf{v}_{i}^{T} \sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{j} \\
& =\mathbf{v}_{i}^{T} \mathbf{v}-\sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{i}^{T} \mathbf{v}_{j} \\
& =\mathbf{v}_{i}^{T} \mathbf{v}-\frac{\mathbf{v}^{T} \mathbf{v}_{i}}{\mathbf{v}_{i}^{T} \mathbf{v}_{i}} \mathbf{v}_{i}^{T} \mathbf{v}_{i}=\mathbf{v}_{i}^{T} \mathbf{v}-\mathbf{v}^{T} \mathbf{v}_{i}=0
\end{aligned}
$$

Some key properties of the scalar product:

1. $\mathbf{0}^{T} \mathbf{0}=0$, and if $\mathbf{v} \neq \mathbf{0}$ then $\mathbf{v}^{T} \mathbf{v}>0$.
2. $\mathbf{v}^{T} \mathbf{w}=\mathbf{w}^{T} \mathbf{v}$.
3. $(\alpha \mathbf{u}+\beta \mathbf{w})^{T} \mathbf{v}=\alpha \mathbf{u}^{T} \mathbf{v}+\beta \mathbf{w}^{T} \mathbf{v}$.

We have seen that, because of the first of these, we can use $\|\mathbf{v}\|=\left(\mathbf{v}^{T} \mathbf{v}\right)^{1 / 2}$ as a measure of the size of \mathbf{v}.

$$
\begin{aligned}
\mathbf{v}_{i}^{T}(\mathbf{v}-\mathbf{p}) & =\mathbf{v}_{i}^{T} \mathbf{v}-\mathbf{v}_{i}^{T} \sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{j} \\
& =\mathbf{v}_{i}^{T} \mathbf{v}-\sum_{j=1}^{r} \frac{\mathbf{v}^{T} \mathbf{v}_{j}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}} \mathbf{v}_{i}^{T} \mathbf{v}_{j} \\
& =\mathbf{v}_{i}^{T} \mathbf{v}-\frac{\mathbf{v}^{T} \mathbf{v}_{i}}{\mathbf{v}_{i}^{T} \mathbf{v}_{i}} \mathbf{v}_{i}^{T} \mathbf{v}_{i}=\mathbf{v}_{i}^{T} \mathbf{v}-\mathbf{v}^{T} \mathbf{v}_{i}=0
\end{aligned}
$$

Some key properties of the scalar product:

1. $\mathbf{0}^{T} \mathbf{0}=0$, and if $\mathbf{v} \neq \mathbf{0}$ then $\mathbf{v}^{T} \mathbf{v}>0$.
2. $\mathbf{v}^{T} \mathbf{w}=\mathbf{w}^{T} \mathbf{v}$.
3. $(\alpha \mathbf{u}+\beta \mathbf{w})^{T} \mathbf{v}=\alpha \mathbf{u}^{T} \mathbf{v}+\beta \mathbf{w}^{T} \mathbf{v}$.

We have seen that, because of the first of these, we can use $\|\mathbf{v}\|=\left(\mathbf{v}^{T} \mathbf{v}\right)^{1 / 2}$ as a measure of the size of \mathbf{v}. Moreover, in the special cases \mathbb{R}^{2} and $\mathbb{R}^{3},\|\mathbf{x}-\mathbf{y}\|$ is the distance between the points with coordinates \mathbf{x} and \mathbf{y}.

There are many vector spaces with a similar type of product.

There are many vector spaces with a similar type of product. One of the most productive examples comes from the theory of Fourier series.

There are many vector spaces with a similar type of product. One of the most productive examples comes from the theory of Fourier series. For two functions f and g, define

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

There are many vector spaces with a similar type of product. One of the most productive examples comes from the theory of Fourier series. For two functions f and g, define

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

Then

1. $\langle\mathbf{0}, \mathbf{0}\rangle=0$, and if $f \neq \mathbf{0}$ then $\langle f, f\rangle>0$.

There are many vector spaces with a similar type of product. One of the most productive examples comes from the theory of Fourier series. For two functions f and g, define

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

Then

1. $\langle\mathbf{0}, \mathbf{0}\rangle=0$, and if $f \neq \mathbf{0}$ then $\langle f, f\rangle>0$.
2. $\langle f, g\rangle=\langle g, f\rangle$.

There are many vector spaces with a similar type of product. One of the most productive examples comes from the theory of Fourier series. For two functions f and g, define

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

Then

1. $\langle\mathbf{0}, \mathbf{0}\rangle=0$, and if $f \neq \mathbf{0}$ then $\langle f, f\rangle>0$.
2. $\langle f, g\rangle=\langle g, f\rangle$.
3. $\langle\alpha f+\beta g, h\rangle=\alpha\langle f, h\rangle+\beta\langle g, h\rangle$.

This suggests the following definition.

Definition

If V is a vector space, then an inner product is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V, a real number $\langle\mathbf{x}, \mathbf{y}\rangle$ satisfying

Definition

If V is a vector space, then an inner product is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V, a real number $\langle\mathbf{x}, \mathbf{y}\rangle$ satisfying

1. $\langle\mathbf{0}, \mathbf{0}\rangle=0$, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle\mathbf{x}, \mathbf{x}\rangle>0$.

Definition

If V is a vector space, then an inner product is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V, a real number $\langle\mathbf{x}, \mathbf{y}\rangle$ satisfying

1. $\langle\mathbf{0}, \mathbf{0}\rangle=0$, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle\mathbf{x}, \mathbf{x}\rangle>0$.
2. $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$, for every \mathbf{x}, \mathbf{y} in V

Definition

If V is a vector space, then an inner product is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V, a real number $\langle\mathbf{x}, \mathbf{y}\rangle$ satisfying

1. $\langle\mathbf{0}, \mathbf{0}\rangle=0$, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle\mathbf{x}, \mathbf{x}\rangle>0$.
2. $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$, for every \mathbf{x}, \mathbf{y} in V
3. $\langle\alpha \mathbf{y}+\beta \mathbf{z}, \mathbf{x}\rangle=\alpha\langle\mathbf{y}, \mathbf{x}\rangle+\beta\langle\mathbf{z}, \mathbf{x}\rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R}.

Definition

If V is a vector space, then an inner product is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V, a real number $\langle\mathbf{x}, \mathbf{y}\rangle$ satisfying

1. $\langle\mathbf{0}, \mathbf{0}\rangle=0$, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle\mathbf{x}, \mathbf{x}\rangle>0$.
2. $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$, for every \mathbf{x}, \mathbf{y} in V
3. $\langle\alpha \mathbf{y}+\beta \mathbf{z}, \mathbf{x}\rangle=\alpha\langle\mathbf{y}, \mathbf{x}\rangle+\beta\langle\mathbf{z}, \mathbf{x}\rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R}.

A vector space with an inner product defined on it is called an inner product space.

Definition

If V is a vector space, then an inner product is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V, a real number $\langle\mathbf{x}, \mathbf{y}\rangle$ satisfying

1. $\langle\mathbf{0}, \mathbf{0}\rangle=0$, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle\mathbf{x}, \mathbf{x}\rangle>0$.
2. $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$, for every \mathbf{x}, \mathbf{y} in V
3. $\langle\alpha \mathbf{y}+\beta \mathbf{z}, \mathbf{x}\rangle=\alpha\langle\mathbf{y}, \mathbf{x}\rangle+\beta\langle\mathbf{z}, \mathbf{x}\rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R}.

A vector space with an inner product defined on it is called an inner product space.
Some useful additional properties. Here $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are any vectors in an inner product space and α, β are any real numbers:

Definition

If V is a vector space, then an inner product is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V, a real number $\langle\mathbf{x}, \mathbf{y}\rangle$ satisfying

1. $\langle\mathbf{0}, \mathbf{0}\rangle=0$, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle\mathbf{x}, \mathbf{x}\rangle>0$.
2. $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$, for every \mathbf{x}, \mathbf{y} in V
3. $\langle\alpha \mathbf{y}+\beta \mathbf{z}, \mathbf{x}\rangle=\alpha\langle\mathbf{y}, \mathbf{x}\rangle+\beta\langle\mathbf{z}, \mathbf{x}\rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R}.

A vector space with an inner product defined on it is called an inner product space.
Some useful additional properties. Here $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are any vectors in an inner product space and α, β are any real numbers:
(a) $\langle\mathbf{x}, \alpha \mathbf{y}+\beta \mathbf{z}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle+\beta\langle\mathbf{x}, \mathbf{z}\rangle$:

Definition

If V is a vector space, then an inner product is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V, a real number $\langle\mathbf{x}, \mathbf{y}\rangle$ satisfying

1. $\langle\mathbf{0}, \mathbf{0}\rangle=0$, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle\mathbf{x}, \mathbf{x}\rangle>0$.
2. $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$, for every \mathbf{x}, \mathbf{y} in V
3. $\langle\alpha \mathbf{y}+\beta \mathbf{z}, \mathbf{x}\rangle=\alpha\langle\mathbf{y}, \mathbf{x}\rangle+\beta\langle\mathbf{z}, \mathbf{x}\rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R}.

A vector space with an inner product defined on it is called an inner product space.
Some useful additional properties. Here $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are any vectors in an inner product space and α, β are any real numbers:
(a) $\langle\mathbf{x}, \alpha \mathbf{y}+\beta \mathbf{z}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle+\beta\langle\mathbf{x}, \mathbf{z}\rangle$: use condition (2) in the definition to reverse the inner products in (3).

Definition

If V is a vector space, then an inner product is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V, a real number $\langle\mathbf{x}, \mathbf{y}\rangle$ satisfying

1. $\langle\mathbf{0}, \mathbf{0}\rangle=0$, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle\mathbf{x}, \mathbf{x}\rangle>0$.
2. $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$, for every \mathbf{x}, \mathbf{y} in V
3. $\langle\alpha \mathbf{y}+\beta \mathbf{z}, \mathbf{x}\rangle=\alpha\langle\mathbf{y}, \mathbf{x}\rangle+\beta\langle\mathbf{z}, \mathbf{x}\rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R}.

A vector space with an inner product defined on it is called an inner product space.
Some useful additional properties. Here $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are any vectors in an inner product space and α, β are any real numbers:
(a) $\langle\mathbf{x}, \alpha \mathbf{y}+\beta \mathbf{z}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle+\beta\langle\mathbf{x}, \mathbf{z}\rangle$: use condition (2) in the definition to reverse the inner products in (3).
(b) $\langle\mathbf{0}, \mathbf{x}\rangle=0$:

Definition

If V is a vector space, then an inner product is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V, a real number $\langle\mathbf{x}, \mathbf{y}\rangle$ satisfying

1. $\langle\mathbf{0}, \mathbf{0}\rangle=0$, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle\mathbf{x}, \mathbf{x}\rangle>0$.
2. $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$, for every \mathbf{x}, \mathbf{y} in V
3. $\langle\alpha \mathbf{y}+\beta \mathbf{z}, \mathbf{x}\rangle=\alpha\langle\mathbf{y}, \mathbf{x}\rangle+\beta\langle\mathbf{z}, \mathbf{x}\rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R}.

A vector space with an inner product defined on it is called an inner product space.
Some useful additional properties. Here $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are any vectors in an inner product space and α, β are any real numbers:
(a) $\langle\mathbf{x}, \alpha \mathbf{y}+\beta \mathbf{z}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle+\beta\langle\mathbf{x}, \mathbf{z}\rangle$: use condition (2) in the definition to reverse the inner products in (3).
(b) $\langle\mathbf{0}, \mathbf{x}\rangle=0:\langle\mathbf{0}, \mathbf{x}\rangle=\langle\mathbf{x}-\mathbf{x}, \mathbf{x}\rangle=\langle\mathbf{x}, \mathbf{x}\rangle-\langle\mathbf{x}, \mathbf{x}\rangle=0$.

Definition

If V is a vector space, then an inner product is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V, a real number $\langle\mathbf{x}, \mathbf{y}\rangle$ satisfying

1. $\langle\mathbf{0}, \mathbf{0}\rangle=0$, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle\mathbf{x}, \mathbf{x}\rangle>0$.
2. $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$, for every \mathbf{x}, \mathbf{y} in V
3. $\langle\alpha \mathbf{y}+\beta \mathbf{z}, \mathbf{x}\rangle=\alpha\langle\mathbf{y}, \mathbf{x}\rangle+\beta\langle\mathbf{z}, \mathbf{x}\rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R}.

A vector space with an inner product defined on it is called an inner product space.
Some useful additional properties. Here $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are any vectors in an inner product space and α, β are any real numbers:
(a) $\langle\mathbf{x}, \alpha \mathbf{y}+\beta \mathbf{z}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle+\beta\langle\mathbf{x}, \mathbf{z}\rangle$: use condition (2) in the definition to reverse the inner products in (3).
(b) $\langle\mathbf{0}, \mathbf{x}\rangle=0:\langle\mathbf{0}, \mathbf{x}\rangle=\langle\mathbf{x}-\mathbf{x}, \mathbf{x}\rangle=\langle\mathbf{x}, \mathbf{x}\rangle-\langle\mathbf{x}, \mathbf{x}\rangle=0$.
(c) $\langle\alpha \mathbf{y}, \mathbf{x}\rangle=\alpha\langle\mathbf{y}, \mathbf{x}\rangle=\langle\mathbf{y}, \alpha \mathbf{x}\rangle$:

Definition

If V is a vector space, then an inner product is an operation that assigns, to any pair of vectors \mathbf{x} and \mathbf{y} in V, a real number $\langle\mathbf{x}, \mathbf{y}\rangle$ satisfying

1. $\langle\mathbf{0}, \mathbf{0}\rangle=0$, and if $\mathbf{x} \neq \mathbf{0}$ then $\langle\mathbf{x}, \mathbf{x}\rangle>0$.
2. $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$, for every \mathbf{x}, \mathbf{y} in V
3. $\langle\alpha \mathbf{y}+\beta \mathbf{z}, \mathbf{x}\rangle=\alpha\langle\mathbf{y}, \mathbf{x}\rangle+\beta\langle\mathbf{z}, \mathbf{x}\rangle$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in V and every α, β in \mathbb{R}.

A vector space with an inner product defined on it is called an inner product space.
Some useful additional properties. Here $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are any vectors in an inner product space and α, β are any real numbers:
(a) $\langle\mathbf{x}, \alpha \mathbf{y}+\beta \mathbf{z}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle+\beta\langle\mathbf{x}, \mathbf{z}\rangle$: use condition (2) in the definition to reverse the inner products in (3).
(b) $\langle\mathbf{0}, \mathbf{x}\rangle=0:\langle\mathbf{0}, \mathbf{x}\rangle=\langle\mathbf{x}-\mathbf{x}, \mathbf{x}\rangle=\langle\mathbf{x}, \mathbf{x}\rangle-\langle\mathbf{x}, \mathbf{x}\rangle=0$.
(c) $\langle\alpha \mathbf{y}, \mathbf{x}\rangle=\alpha\langle\mathbf{y}, \mathbf{x}\rangle=\langle\mathbf{y}, \alpha \mathbf{x}\rangle$: apply (3) and then (a) with $\mathbf{z}=\mathbf{0}$.

For \mathbb{R}^{n} the scalar product is an inner product. We could have introduced the notation $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} \mathbf{y}$ from the beginning.

For \mathbb{R}^{n} the scalar product is an inner product. We could have introduced the notation $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} \mathbf{y}$ from the beginning.
On any vector space of functions on $[0,1]$ for which multiplication and integration is possible, the integral of the product is an inner product.

For \mathbb{R}^{n} the scalar product is an inner product. We could have introduced the notation $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} \mathbf{y}$ from the beginning.
On any vector space of functions on $[0,1]$ for which multiplication and integration is possible, the integral of the product is an inner product.
For example, this inner product applied to two polynomials $f(x)=a_{0}+a_{1} x+a_{2} x^{2}$ and $g(x)=b_{0}+b_{1} x+b_{2} x^{2}$ gives

$$
\begin{aligned}
\langle f, g\rangle= & a_{0} b_{0}+(1 / 2)\left(a_{0} b_{1}+a_{1} b_{0}\right)+(1 / 3)\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) \\
& +(1 / 4)\left(a_{1} b_{2}+a_{2} b_{1}\right)+(1 / 5) a_{2} b_{2}
\end{aligned}
$$

For \mathbb{R}^{n} the scalar product is an inner product. We could have introduced the notation $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} \mathbf{y}$ from the beginning.
On any vector space of functions on $[0,1]$ for which multiplication and integration is possible, the integral of the product is an inner product.
For example, this inner product applied to two polynomials $f(x)=a_{0}+a_{1} x+a_{2} x^{2}$ and $g(x)=b_{0}+b_{1} x+b_{2} x^{2}$ gives

$$
\begin{aligned}
\langle f, g\rangle= & a_{0} b_{0}+(1 / 2)\left(a_{0} b_{1}+a_{1} b_{0}\right)+(1 / 3)\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) \\
& +(1 / 4)\left(a_{1} b_{2}+a_{2} b_{1}\right)+(1 / 5) a_{2} b_{2}
\end{aligned}
$$

It is not so obvious from this formula that $\langle f, f\rangle>0$.

For \mathbb{R}^{n} the scalar product is an inner product. We could have introduced the notation $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} \mathbf{y}$ from the beginning.
On any vector space of functions on $[0,1]$ for which multiplication and integration is possible, the integral of the product is an inner product.
For example, this inner product applied to two polynomials $f(x)=a_{0}+a_{1} x+a_{2} x^{2}$ and $g(x)=b_{0}+b_{1} x+b_{2} x^{2}$ gives

$$
\begin{aligned}
\langle f, g\rangle= & a_{0} b_{0}+(1 / 2)\left(a_{0} b_{1}+a_{1} b_{0}\right)+(1 / 3)\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) \\
& +(1 / 4)\left(a_{1} b_{2}+a_{2} b_{1}\right)+(1 / 5) a_{2} b_{2}
\end{aligned}
$$

It is not so obvious from this formula that $\langle f, f\rangle>0$. Note that

$$
\langle f, g\rangle=\left(\begin{array}{lll}
a_{0} & a_{1} & a_{2}
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 / 2 & 1 / 3 \\
1 / 2 & 1 / 3 & 1 / 4 \\
1 / 3 & 1 / 4 & 1 / 5
\end{array}\right)\left(\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right)
$$

The vector space $\mathbb{R}^{n \times k}$ of $n \times k$ matrices can be given a number of inner products.

The vector space $\mathbb{R}^{n \times k}$ of $n \times k$ matrices can be given a number of inner products. The usual one is

$$
\langle A, B\rangle=\sum_{i=1}^{n} \sum_{j=1}^{k} a_{i j} b_{i j} .
$$

The vector space $\mathbb{R}^{n \times k}$ of $n \times k$ matrices can be given a number of inner products. The usual one is

$$
\langle A, B\rangle=\sum_{i=1}^{n} \sum_{j=1}^{k} a_{i j} b_{i j} .
$$

There is a shorter way to write this. First define the trace of a $k \times k$ square matrix by $\operatorname{tr}(A)=\sum_{i=1}^{k} a_{i i}$.

The vector space $\mathbb{R}^{n \times k}$ of $n \times k$ matrices can be given a number of inner products. The usual one is

$$
\langle A, B\rangle=\sum_{i=1}^{n} \sum_{j=1}^{k} a_{i j} b_{i j} .
$$

There is a shorter way to write this. First define the trace of a $k \times k$ square matrix by $\operatorname{tr}(A)=\sum_{i=1}^{k} a_{i i}$. Then the above inner product has the formula

$$
\langle A, B\rangle=\operatorname{tr}\left(A^{T} B\right)
$$

One way to create an inner product is to produce a linear one-to-one correspondence from V to a vector space that already has an inner product.

One way to create an inner product is to produce a linear one-to-one correspondence from V to a vector space that already has an inner product. For example, if V has an ordered basis \mathcal{B}, we can define $\langle\mathbf{x}, \mathbf{y}\rangle=[\mathbf{x}]_{\mathcal{B}}^{T}[\mathbf{y}]_{\mathcal{B}}$.

One way to create an inner product is to produce a linear one-to-one correspondence from V to a vector space that already has an inner product. For example, if V has an ordered basis \mathcal{B}, we can define $\langle\mathbf{x}, \mathbf{y}\rangle=[\mathbf{x}]_{\mathcal{B}}^{T}[\mathbf{y}]_{\mathcal{B}}$. If we apply this to \mathcal{P}_{3} with the basis $\left[1, x, x^{2}\right]$, then

$$
\left\langle a_{0}+a_{1} x+a_{2} x^{2}, b_{0}+b_{1} x+b_{2} x^{2}\right\rangle=a_{0} b_{0}+a_{1} b_{1}+a_{2} b_{2}
$$

One way to create an inner product is to produce a linear one-to-one correspondence from V to a vector space that already has an inner product. For example, if V has an ordered basis \mathcal{B}, we can define $\langle\mathbf{x}, \mathbf{y}\rangle=[\mathbf{x}]_{\mathcal{B}}^{T}[\mathbf{y}]_{\mathcal{B}}$. If we apply this to \mathcal{P}_{3} with the basis $\left[1, x, x^{2}\right]$, then

$$
\left\langle a_{0}+a_{1} x+a_{2} x^{2}, b_{0}+b_{1} x+b_{2} x^{2}\right\rangle=a_{0} b_{0}+a_{1} b_{1}+a_{2} b_{2}
$$

Even \mathbb{R}^{n} can have different inner products from the scalar product.

One way to create an inner product is to produce a linear one-to-one correspondence from V to a vector space that already has an inner product. For example, if V has an ordered basis \mathcal{B}, we can define $\langle\mathbf{x}, \mathbf{y}\rangle=[\mathbf{x}]_{\mathcal{B}}^{T}[\mathbf{y}]_{\mathcal{B}}$. If we apply this to \mathcal{P}_{3} with the basis $\left[1, x, x^{2}\right]$, then

$$
\left\langle a_{0}+a_{1} x+a_{2} x^{2}, b_{0}+b_{1} x+b_{2} x^{2}\right\rangle=a_{0} b_{0}+a_{1} b_{1}+a_{2} b_{2}
$$

Even \mathbb{R}^{n} can have different inner products from the scalar product. If A is any invertible $n \times n$ matrix, then

$$
\langle\mathbf{x}, \mathbf{y}\rangle=(A \mathbf{x})^{T} A \mathbf{y}=\mathbf{x}^{T} A^{T} A \mathbf{y}
$$

is an example of an inner product.

One way to create an inner product is to produce a linear one-to-one correspondence from V to a vector space that already has an inner product. For example, if V has an ordered basis \mathcal{B}, we can define $\langle\mathbf{x}, \mathbf{y}\rangle=[\mathbf{x}]_{\mathcal{B}}^{T}[\mathbf{y}]_{\mathcal{B}}$. If we apply this to \mathcal{P}_{3} with the basis $\left[1, x, x^{2}\right]$, then

$$
\left\langle a_{0}+a_{1} x+a_{2} x^{2}, b_{0}+b_{1} x+b_{2} x^{2}\right\rangle=a_{0} b_{0}+a_{1} b_{1}+a_{2} b_{2}
$$

Even \mathbb{R}^{n} can have different inner products from the scalar product. If A is any invertible $n \times n$ matrix, then

$$
\langle\mathbf{x}, \mathbf{y}\rangle=(A \mathbf{x})^{T} A \mathbf{y}=\mathbf{x}^{T} A^{T} A \mathbf{y}
$$

is an example of an inner product.
Let's verify this:

1. $A \mathbf{0}=\mathbf{0}$ so $(A \mathbf{0})^{T} A \mathbf{0}=0$. If $\mathbf{x} \neq \mathbf{0}$ then $A \mathbf{x} \neq \mathbf{0}$ and so $(A \mathbf{x})^{T} A \mathbf{x}>0$.

One way to create an inner product is to produce a linear one-to-one correspondence from V to a vector space that already has an inner product. For example, if V has an ordered basis \mathcal{B}, we can define $\langle\mathbf{x}, \mathbf{y}\rangle=[\mathbf{x}]_{\mathcal{B}}^{T}[\mathbf{y}]_{\mathcal{B}}$. If we apply this to \mathcal{P}_{3} with the basis $\left[1, x, x^{2}\right]$, then

$$
\left\langle a_{0}+a_{1} x+a_{2} x^{2}, b_{0}+b_{1} x+b_{2} x^{2}\right\rangle=a_{0} b_{0}+a_{1} b_{1}+a_{2} b_{2}
$$

Even \mathbb{R}^{n} can have different inner products from the scalar product. If A is any invertible $n \times n$ matrix, then

$$
\langle\mathbf{x}, \mathbf{y}\rangle=(A \mathbf{x})^{T} A \mathbf{y}=\mathbf{x}^{T} A^{T} A \mathbf{y}
$$

is an example of an inner product.
Let's verify this:

1. $A \mathbf{0}=\mathbf{0}$ so $(A \mathbf{0})^{T} A \mathbf{0}=0$. If $\mathbf{x} \neq \mathbf{0}$ then $A \mathbf{x} \neq \mathbf{0}$ and so $(A \mathbf{x})^{T} A \mathbf{x}>0$.
2. $(A \mathbf{y})^{T} A \mathbf{x}=(A \mathbf{x})^{T} A \mathbf{y}$ because the scalar product has that property.

One way to create an inner product is to produce a linear one-to-one correspondence from V to a vector space that already has an inner product. For example, if V has an ordered basis \mathcal{B}, we can define $\langle\mathbf{x}, \mathbf{y}\rangle=[\mathbf{x}]_{\mathcal{B}}^{T}[\mathbf{y}]_{\mathcal{B}}$. If we apply this to \mathcal{P}_{3} with the basis $\left[1, x, x^{2}\right]$, then

$$
\left\langle a_{0}+a_{1} x+a_{2} x^{2}, b_{0}+b_{1} x+b_{2} x^{2}\right\rangle=a_{0} b_{0}+a_{1} b_{1}+a_{2} b_{2}
$$

Even \mathbb{R}^{n} can have different inner products from the scalar product. If A is any invertible $n \times n$ matrix, then

$$
\langle\mathbf{x}, \mathbf{y}\rangle=(A \mathbf{x})^{T} A \mathbf{y}=\mathbf{x}^{T} A^{T} A \mathbf{y}
$$

is an example of an inner product.
Let's verify this:

1. $A \mathbf{0}=\mathbf{0}$ so $(A \mathbf{0})^{T} A \mathbf{0}=0$. If $\mathbf{x} \neq \mathbf{0}$ then $A \mathbf{x} \neq \mathbf{0}$ and so $(A \mathbf{x})^{T} A \mathbf{x}>0$.
2. $(A \mathbf{y})^{T} A \mathbf{x}=(A \mathbf{x})^{T} A \mathbf{y}$ because the scalar product has that property.
3. $(A(\alpha \mathbf{x}+\beta \mathbf{y}))^{T} A \mathbf{z}=(\alpha A \mathbf{x}+\beta A \mathbf{y})^{T} A \mathbf{z}=\left(\alpha(A \mathbf{x})^{T}+\beta(A \mathbf{y})^{T}\right) A \mathbf{z}=$ $\alpha(A \mathbf{x})^{T} A \mathbf{z}+\beta(A \mathbf{y})^{T} A \mathbf{z}$

Definition

If V is a vector space with an inner product $\langle\mathbf{x}, \mathbf{y}\rangle$, then $\|\mathbf{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$. This is called the norm induced by this inner product.

Definition

If V is a vector space with an inner product $\langle\mathbf{x}, \mathbf{y}\rangle$, then $\|\mathbf{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$. This is called the norm induced by this inner product.

Definition

If V is a vector space with an inner product $\langle\mathbf{x}, \mathbf{y}\rangle$, then we say \mathbf{x} is orthogonal to \mathbf{y} if $\langle\mathbf{x}, \mathbf{y}\rangle=0$. and we express this by $\mathbf{x} \perp \mathbf{y}$.

Definition

If V is a vector space with an inner product $\langle\mathbf{x}, \mathbf{y}\rangle$, then $\|\mathbf{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$. This is called the norm induced by this inner product.

Definition

If V is a vector space with an inner product $\langle\mathbf{x}, \mathbf{y}\rangle$, then we say \mathbf{x} is orthogonal to \mathbf{y} if $\langle\mathbf{x}, \mathbf{y}\rangle=0$. and we express this by $\mathbf{x} \perp \mathbf{y}$.

Theorem (Pythagorean Formula)
If $\mathbf{x} \perp \mathbf{y}$ then $\|\mathbf{x}+\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}$.

Definition

If V is a vector space with an inner product $\langle\mathbf{x}, \mathbf{y}\rangle$, then $\|\mathbf{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$. This is called the norm induced by this inner product.

Definition

If V is a vector space with an inner product $\langle\mathbf{x}, \mathbf{y}\rangle$, then we say \mathbf{x} is orthogonal to \mathbf{y} if $\langle\mathbf{x}, \mathbf{y}\rangle=0$. and we express this by $\mathbf{x} \perp \mathbf{y}$.

Theorem (Pythagorean Formula)

If $\mathbf{x} \perp \mathbf{y}$ then $\|\mathbf{x}+\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}$.
We prove this by

$$
\begin{aligned}
\|\mathbf{x}+\mathbf{y}\|^{2} & =\langle\mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y}\rangle \\
& =\langle\mathbf{x}, \mathbf{x}+\mathbf{y}\rangle+\langle\mathbf{y}, \mathbf{x}+\mathbf{y}\rangle \\
& =\langle\mathbf{x}, \mathbf{x}\rangle+\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{y}, \mathbf{x}\rangle+\langle\mathbf{y}, \mathbf{y}\rangle \\
& =\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}
\end{aligned}
$$

Theorem (Cauchy-Schwarz Inequality)
For any \mathbf{x} and \mathbf{y} in an inner product space,

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\|
$$

Theorem (Cauchy-Schwarz Inequality)

For any \mathbf{x} and \mathbf{y} in an inner product space,

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\|
$$

If either norm is zero that is, \mathbf{x} or \mathbf{y} is zero, then both sides are zero, which is OK.

Theorem (Cauchy-Schwarz Inequality)

For any \mathbf{x} and \mathbf{y} in an inner product space,

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\|
$$

If either norm is zero that is, \mathbf{x} or \mathbf{y} is zero, then both sides are zero, which is OK.
Otherwise consider the following for any real numbers α and β

$$
\begin{aligned}
& 0 \leq\langle\alpha \mathbf{x}-\beta \mathbf{y}, \alpha \mathbf{x}-\beta \mathbf{y}\rangle \\
& 0 \leq\langle\alpha \mathbf{x}, \alpha \mathbf{x}\rangle+\langle\alpha \mathbf{x},-\beta \mathbf{y}\rangle+\langle-\beta \mathbf{y}, \alpha \mathbf{x}\rangle+\langle-\beta \mathbf{y},-\beta \mathbf{y}\rangle \\
& 0 \leq \alpha^{2}\langle\mathbf{x}, \mathbf{x}\rangle-\alpha \beta\langle\mathbf{x}, \mathbf{y}\rangle-\alpha \beta\langle\mathbf{y}, \mathbf{x}\rangle+\beta^{2}\langle\mathbf{y}, \mathbf{y}\rangle \\
& 0 \leq \alpha^{2}\|\mathbf{x}\|^{2}-2 \alpha \beta\langle\mathbf{x}, \mathbf{y}\rangle+\beta^{2}\|\mathbf{y}\|^{2}
\end{aligned}
$$

Altogether we get

$$
\alpha \beta\langle\mathbf{x}, \mathbf{y}\rangle \leq(1 / 2)\left(\alpha^{2}\|\mathbf{x}\|^{2}+\beta^{2}\|\mathbf{y}\|^{2}\right)
$$

Altogether we get

$$
\alpha \beta\langle\mathbf{x}, \mathbf{y}\rangle \leq(1 / 2)\left(\alpha^{2}\|\mathbf{x}\|^{2}+\beta^{2}\|\mathbf{y}\|^{2}\right)
$$

Since this holds for any α, β, let $\alpha=1 /\|\mathbf{x}\|$ and $\beta=1 /\|\mathbf{y}\|$ to get

$$
\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathrm{x}\|\|\mathrm{y}\|} \leq 1
$$

Altogether we get

$$
\alpha \beta\langle\mathbf{x}, \mathbf{y}\rangle \leq(1 / 2)\left(\alpha^{2}\|\mathbf{x}\|^{2}+\beta^{2}\|\mathbf{y}\|^{2}\right)
$$

Since this holds for any α, β, let $\alpha=1 /\|\mathbf{x}\|$ and $\beta=1 /\|\mathbf{y}\|$ to get

$$
\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{x}\|\|\mathbf{y}\|} \leq 1
$$

This just what we need if $\langle\mathbf{x}, \mathbf{y}\rangle \geq 0$.

Altogether we get

$$
\alpha \beta\langle\mathbf{x}, \mathbf{y}\rangle \leq(1 / 2)\left(\alpha^{2}\|\mathbf{x}\|^{2}+\beta^{2}\|\mathbf{y}\|^{2}\right)
$$

Since this holds for any α, β, let $\alpha=1 /\|\mathbf{x}\|$ and $\beta=1 /\|\mathbf{y}\|$ to get

$$
\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathrm{x}\|\|\mathrm{y}\|} \leq 1
$$

This just what we need if $\langle\mathbf{x}, \mathbf{y}\rangle \geq 0$. If $\langle\mathbf{x}, \mathbf{y}\rangle<0$, use $\beta=-1 /\|\mathbf{y}\|$ to get

$$
-\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{x}\|\|\mathbf{y}\|} \leq 1
$$

Altogether we get

$$
\alpha \beta\langle\mathbf{x}, \mathbf{y}\rangle \leq(1 / 2)\left(\alpha^{2}\|\mathbf{x}\|^{2}+\beta^{2}\|\mathbf{y}\|^{2}\right)
$$

Since this holds for any α, β, let $\alpha=1 /\|\mathbf{x}\|$ and $\beta=1 /\|\mathbf{y}\|$ to get

$$
\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{x}\|\|\mathbf{y}\|} \leq 1
$$

This just what we need if $\langle\mathbf{x}, \mathbf{y}\rangle \geq 0$. If $\langle\mathbf{x}, \mathbf{y}\rangle<0$, use $\beta=-1 /\|\mathbf{y}\|$ to get

$$
-\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{x}\|\|\mathbf{y}\|} \leq 1
$$

In either case we have $\frac{|\langle\mathbf{x}, \mathbf{y}\rangle|}{\|\mathbf{x}\|\|\mathbf{y}\|} \leq 1$.

Altogether we get

$$
\alpha \beta\langle\mathbf{x}, \mathbf{y}\rangle \leq(1 / 2)\left(\alpha^{2}\|\mathbf{x}\|^{2}+\beta^{2}\|\mathbf{y}\|^{2}\right)
$$

Since this holds for any α, β, let $\alpha=1 /\|\mathbf{x}\|$ and $\beta=1 /\|\mathbf{y}\|$ to get

$$
\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{x}\|\|\mathbf{y}\|} \leq 1
$$

This just what we need if $\langle\mathbf{x}, \mathbf{y}\rangle \geq 0$. If $\langle\mathbf{x}, \mathbf{y}\rangle<0$, use $\beta=-1 /\|\mathbf{y}\|$ to get

$$
-\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{x}\|\|\mathbf{y}\|} \leq 1
$$

In either case we have $\frac{|\langle\mathbf{x}, \mathbf{y}\rangle|}{\|\mathbf{x}\|\|\mathbf{y}\|} \leq 1$.
Theorem (Triangle Inequality)
For any pair of vectors \mathbf{x} and $\mathbf{y},\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.

The proof relies on the Cauchy-Schwarz Inequality:

The proof relies on the Cauchy-Schwarz Inequality:

$$
\begin{aligned}
\|\mathbf{x}+\mathbf{y}\|^{2} & =\langle\mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y}\rangle \\
& =\|\mathbf{x}\|^{2}+2\langle\mathbf{x}, \mathbf{y}\rangle+\|\mathbf{y}\|^{2} \\
& \leq\|\mathbf{x}\|^{2}+2\|\mathbf{x}\|\|\mathbf{y}\|+\|\mathbf{y}\|^{2}=(\|\mathbf{x}\|+\|\mathbf{y}\|)^{2}
\end{aligned}
$$

The proof relies on the Cauchy-Schwarz Inequality:

$$
\begin{aligned}
\|\mathbf{x}+\mathbf{y}\|^{2} & =\langle\mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y}\rangle \\
& =\|\mathbf{x}\|^{2}+2\langle\mathbf{x}, \mathbf{y}\rangle+\|\mathbf{y}\|^{2} \\
& \leq\|\mathbf{x}\|^{2}+2\|\mathbf{x}\|\|\mathbf{y}\|+\|\mathbf{y}\|^{2}=(\|\mathbf{x}\|+\|\mathbf{y}\|)^{2}
\end{aligned}
$$

Then take square roots to get $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.

The proof relies on the Cauchy-Schwarz Inequality:

$$
\begin{aligned}
\|\mathbf{x}+\mathbf{y}\|^{2} & =\langle\mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y}\rangle \\
& =\|\mathbf{x}\|^{2}+2\langle\mathbf{x}, \mathbf{y}\rangle+\|\mathbf{y}\|^{2} \\
& \leq\|\mathbf{x}\|^{2}+2\|\mathbf{x}\|\|\mathbf{y}\|+\|\mathbf{y}\|^{2}=(\|\mathbf{x}\|+\|\mathbf{y}\|)^{2}
\end{aligned}
$$

Then take square roots to get $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.
This allows us to express the distance between vectors by $d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$

The proof relies on the Cauchy-Schwarz Inequality:

$$
\begin{aligned}
\|\mathbf{x}+\mathbf{y}\|^{2} & =\langle\mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y}\rangle \\
& =\|\mathbf{x}\|^{2}+2\langle\mathbf{x}, \mathbf{y}\rangle+\|\mathbf{y}\|^{2} \\
& \leq\|\mathbf{x}\|^{2}+2\|\mathbf{x}\|\|\mathbf{y}\|+\|\mathbf{y}\|^{2}=(\|\mathbf{x}\|+\|\mathbf{y}\|)^{2}
\end{aligned}
$$

Then take square roots to get $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.
This allows us to express the distance between vectors by $d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$ and deduce that

$$
\begin{aligned}
d(\mathbf{x}, \mathbf{z}) & =\|\mathbf{x}-\mathbf{z}\|=\|\mathbf{x}-\mathbf{y}+\mathbf{y}-\mathbf{z}\| \\
& \leq\|\mathbf{x}-\mathbf{y}\|+\|\mathbf{y}-\mathbf{z}\|=d(\mathbf{x}, \mathbf{y})+d(\mathbf{y}, \mathbf{z})
\end{aligned}
$$

