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Definition
A set of vectors {vi,va,...,Vv,} is called orthogonal if v; L v; for every
i ]

It is called orthonormal if it is orthogonal and also ||v;|| =1 for every j.

If a set of nonzero vectors is orthogonal, we can make it orthonormal
simply by multiplying each v; by (1/|v;]|).

Theorem
If a set of nonzero vectors is orthogonal, then it is independent.

Note: Any set that contains O is dependent because we can always find a
nontrivial solution to

c10+covo+ -+ ¢ v, =0.

Simply set ¢; = 1 and the rest of the ¢; = 0.
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Now suppose {vi,Vva,...,Vv,} is orthogonal and that
T
Z C;V; = 0
i=1
We can multiply this by v;-F to get

T T
0= V?’ Zcivi = Zcivavi = ¢; ||v;]?
i=1 =1

and then solve to get ¢c; = 0. That is, the only linear combination equal to
0 is the trivial one with all ¢; = 0. Thus, the set is independent.

Theorem
Every nonzero subspace of R" has a basis that is orthonormal.

To see this, let S be a subspace. It is enough to find an orthogonal
spanning set in S: it will automatically be independent. Then we can
replace each vector v; with (1/||v;||)v; to get an orthonormal basis.
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do. If r > 1, pick any vector wo that's in S but not in Span(vy). Let po
be the closest vector to wy in Span(vy) and let vo = wy — pa2. Then

Vo 75 0 and V9 J_Vl.

If » = 2 then Span(vy,va) = S and we are done. Otherwise repeat this:
pick any ws in S but not in Span(vy,vs). Let p3 be the closest vector to
w3 in that span and let v3 = w3 — p3. Then v3 is nonzero and orthogonal
to both v; and vs.

We can repeat this until we have an orthogonal set {vy,va,...,v,.} in S
with » = dim S. Since the set is independent and its size is dim S, it must
also be spanning and so is a basis.
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Let S is a subspace of R and let {vi,va,...,v,} be an orthogonal basis
for S. If v is any vector in R™ and p the element of S that is closest to v,
then

T
: : viv,
Notice that each term in the sum >_"_, ——2 v; has the same formula as
J=1 Ty
i Vi
the vector projection of v onto v;. We will call p the projection of v onto

Span(viy, ..., vy).

To see why this is true, recall that the closest vector p is the one that
makes v — p L S. So we only need to check that this formula makes
v — p L v; for each of the basis vectors v;.
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j=1 "3 J
,
vivi o1
:VZV—E ViV,
viv, '
j=1 "J J
T
=V;V— ——V,Vi=V; V-V V=
v,V

Some key properties of the scalar product:

1. 070=0, and if v # 0 then viv > 0.
2. viw =wlv.
3. (au+ Bw)Tv = aulv + gwlv.

We have seen that, because of the first of these, we can use
[v|| = (vT'v)1/? as a measure of the size of v. Moreover, in the special
cases R? and R3, ||x — y|| is the distance between the points with
coordinates x and y.
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There are many vector spaces with a similar type of product. One of the
most productive examples comes from the theory of Fourier series. For two
functions f and g, define

1
(f.9) = /0 f(@)g(z) dx

Then
1. (0,0) =0, and if f # 0 then (f, f) > 0.
2. (f,9) = (g, ).

3. (af +Bg,h) = a(f, h) + B (g,h).
This suggests the following definition.
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Some useful additional properties. Here x,y,z are any vectors in an inner
product space and «, 8 are any real numbers:

(a) (x,ay + fz) = a(x,y) + 5 (x,2z): use condition (2) in the definition
to reverse the inner products in (3).

(b) (0,x) =0: (0,x) = (x —x,X) = (x,X) — (x,x) = 0.
(c) {(ay,x) = a(y,x) = (y,ax): apply (3) and then (a) with z = 0.

8/1



For R™ the scalar product is an inner product. We could have introduced
the notation (x,y) = x’y from the beginning.

9/1



For R™ the scalar product is an inner product. We could have introduced
the notation (x,y) = x’y from the beginning.

On any vector space of functions on [0, 1] for which multiplication and
integration is possible, the integral of the product is an inner product.

9/1



For R™ the scalar product is an inner product. We could have introduced
the notation (x,y) = x’y from the beginning.

On any vector space of functions on [0, 1] for which multiplication and
integration is possible, the integral of the product is an inner product.

For example, this inner product applied to two polynomials
f(x) = ap + a1x + azx?® and g(z) = by + byx + bax? gives

(f,9) = aobo + (1/2)(aob1 + a1bo) + (1/3)(apbs + a1b1 + azbo)
+ (1/4)(a1b2 + agbl) + (1/5)0,2[)2

9/1



For R™ the scalar product is an inner product. We could have introduced
the notation (x,y) = x’y from the beginning.

On any vector space of functions on [0, 1] for which multiplication and
integration is possible, the integral of the product is an inner product.

For example, this inner product applied to two polynomials
f(x) = ap + a1x + azx?® and g(z) = by + byx + bax? gives

(f,9) = aobo + (1/2)(aob1 + a1bo) + (1/3)(apbs + a1b1 + azbo)
+ (1/4)(a1b2 + agbl) + (1/5)0,2[)2

It is not so obvious from this formula that (f, f) > 0.

9/1



For R™ the scalar product is an inner product. We could have introduced
the notation (x,y) = x’y from the beginning.

On any vector space of functions on [0, 1] for which multiplication and
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For example, this inner product applied to two polynomials
f(x) = ap + a1x + azx?® and g(z) = by + byx + bax? gives

(f,9) = aobo + (1/2)(aob1 + a1bo) + (1/3)(apbs + a1b1 + azbo)
+ (1/4)(a1b2 + agbl) + (1/5)0,2[)2

It is not so obvious from this formula that (f, f) > 0. Note that

1 1/2 1/3 bo
(o= (a0 ar ax ) | 172 173 14 | | by
1/3 1/4 1/5 by
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The vector space R™ ¥ of n x k matrices can be given a number of inner
products. The usual one is

n k
<A, B> = Z Z aijb,-j.
i=1 j=1
There is a shorter way to write this. First define the trace of a k x k
square matrix by tr(A) = Zle ai;. Then the above inner product has the

formula
(A, B) = tr(AT B).
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One way to create an inner product is to produce a linear one-to-one
correspondence from V' to a vector space that already has an inner
product. For example, if V has an ordered basis I3, we can define
(x,y) = [x]E[y]s. If we apply this to P3 with the basis [1,z,2?], then

<a0 + a1z + a2x2, bo + b1z + ng2> = apgbg + a1b1 + asby

Even R™ can have different inner products from the scalar product. If A is
any invertible n x n matrix, then

(x,y) = (Ax)T Ay = x" AT Ay

is an example of an inner product.
Let's verify this:
1. A0 =0 so (A0)T A0 = 0. If x # 0 then Ax # 0 and so
(Ax)TAx > 0.
2. (Ay)T Ax = (Ax)T Ay because the scalar product has that property.
3. (A(ax+ By))T Az = (aAx + BAY)T Az = (a(Ax)T + B(Ay)T) Az =
a(Ax)T Az + B(Ay)T Az

1/1
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If V' is a vector space with an inner product (x,y), then |x|| = \/(x, x).
This is called the norm induced by this inner product.

Definition

If V is a vector space with an inner product (x,y), then we say x is
orthogonal to y if (x,y) = 0. and we express this by x L y.

Theorem (Pythagorean Formula)

Ifx Ly then |lx +y|* = [Ix]* + Iyl
We prove this by

Ix+yl*=(x+yx+y)
=(xx+y)+{y,x+y)
= (x,x) +(x,y) + (y,x) + (¥, ¥)
= |Ix[I* + [lyll
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Theorem (Cauchy-Schwarz Inequality)

For any x and y in an inner product space,

| o6y | < Iyl

If either norm is zero that is, x or y is zero, then both sides are zero,
which is OK.

Otherwise consider the following for any real numbers « and 3
0 < {ax — By, ax — By)
0 < {ax, ax) + (ax, —fBy) + (—By, ax) + (—=By, —By)

0<a?(x,x) —af (x,y) — afB (y,x) + 8% (y,y)
0<a?|x|* - 208 (x,y) + 52|yl
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Altogether we get
af (x,y) < (1/2)(a” |xI* + B |ly|I*)
Since this holds for any a, 8, let « =1/ ||x|| and 8 =1/ ||y]|| to get

(x,y)
1% Iyl

<1

This just what we need if (x,y) > 0. If (x,y) <0, use g =—1/|y]| to
get

~ (xy)
Iyl —
In either case we have Rtshal <1.
| Iyl

Theorem (Triangle Inequality)

For any pair of vectors x and y, ||x +y|| < ||| + |yl
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The proof relies on the Cauchy-Schwarz Inequality:
I+ yl* = (x+y,x+y)
2 2
= [x[" +2 &,y + vl
2 2
< I + 2l Iyl + Iy 1™ = (]l + Iyl)?

Then take square roots to get [|x +y|| < [|x|| + |ly].

This allows us to express the distance between vectors by
d(x,y) = ||x — y|| and deduce that

d(x,2) =[x —z| =[x -y +y — 2|
< x =yl +lly -zl = dx.y) + d(y, 2)

15/1



