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yI'b #£0.

The first condition is the statement that b € R(A). The second condition
is that b is not in N/ (AT)*. Since R(A) = N(AT)*, this theorem is
equivalent to “either b is in R(A) or b is not in R(A)", which is obvious.

Suppose b is not in R(A) so that Ax = b has no solution. In many
problems, when this happens we would like to find a vector X that makes
||Ax — b|| as small as possible.

We can write b = ¢ +d where ¢ € R(A) and d € R(A)* = N (AT).

It turns out that solving Ax = c gives us the X that makes ||[Ax — b|| as
small as possible.

Because d € NV (AT), if we apply AT to b =c + d we get
AT(b) = AT(c+d) = AT¢c
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So, if we multiply the equation Ax = b (which has no solution) by AT we
get ATAx = ATb = ATc.
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So, if we multiply the equation Ax = b (which has no solution) by AT we
get ATAx = ATb = AT c. This actually has a solution, as any solution of
Ax = c is also a solution of AT Ax = A”c.

The reverse is also true: Any solution of AT Ax = ATc is a solution of
Ax =c.

To see this, we can rewrite AT Ax = ATc as AT(Ax —c) = 0. This
means Ax — c € N(AT). But, since also Ax — ¢ € R(A) and this is
orthogonal to N'(AT), we get Ax —c = 0.

3/12



Recall that we have written b = ¢ 4+ d where c € R(A) and d L R(A).
We will now see that the closest vector to b in R(A) is ¢ and the distance
from b to c is ||d].
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output y for various inputs z.
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Example: Suppose we perform an experiment where we measure the
output y for various inputs . That is we get a table of data of the form

{(zi,yi) | i =1,2,...,n}.
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We will now see that the closest vector to b in R(A) is ¢ and the distance
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Suppose we take any vector v = Ax € R(A) and consider ||b — v||%. This
equals

b-v)Ib-v)=d+c—v)(d+c—v)
=dfd+df(c—v)+(c—v)Td+ (c—v)T(c—V)
b —vI[* = [|d|I* + [lc — v|*

This means that the closest vector to b in R(A) is c. If we solve Ax =c¢
and get X, we get the best “solution” to Ax = b in the sense that it as
close as possible. Finally, we get all the solutions of Ax = ¢ by solving
AT Ax = ATb.

Example: Suppose we perform an experiment where we measure the
output y for various inputs . That is we get a table of data of the form
{(zi,y:) | 1 =1,2,...,n}. Then we plot these points and try to find the
best curve of some sort that matches this data.
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Lets suppose we get the data, listed and plotted below

This looks vaguely like a parabola, so we might conjecture that (apart
from small random deviations) the relationship between = and y has the
form y = ax? + bx + c.

The data can be used to determine what a, b, c must be. ldeally, we want

the equations to aa:? + bx; + ¢ = y; to hold for each data point.
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We cannot expect there to be values of a, b, c that make this true for every
data point, so we look for values that make it as close as possible.
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We cannot expect there to be values of a, b, c that make this true for every
data point, so we look for values that make it as close as possible.

The equations for a, b, c are

c=4
la+1b+c=2
9a+3b+c=1

16a +4b+c=3
16a +4b+c=5

or Ax = b where

, and b=
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By the previous argument, we get the vector x that makes Ax closest to b
by solving AT Ax = ATb.

So we compute

594 156 42 139
ATA=1 156 42 12 and ATb=| 37
42 12 5 15

and row-reduce
594 156 42 | 139

156 42 12 | 37
42 12 5 15

to get (approximately) a = 1.35, b = —5.5 and ¢ = 4.65.
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By the previous argument, we get the vector x that makes Ax closest to b
by solving AT Ax = ATb.

So we compute

594 156 42 139
ATA=1 156 42 12 and ATb=| 37
42 12 5 15

and row-reduce
594 156 42 | 139

156 42 12 | 37
42 12 5 15

to get (approximately) a = 1.35, b = —5.5 and ¢ = 4.65. | have graphed
the quadratic 1.3522 — 5.5z 4 4.65 on the same plot as the data points on
the next slide.
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A more straightforward example:

Find the least squares solution of the following system:

1+ x9=3
—2x1+3x2 =1

2:1)1— :IZ2:2

Which is the same as

Multiplying by the transpose gives
9 -7 1) [ 5
=7 11 €T o 4

_ . (83/50 ) _ [ 1.66
This has a solution x = [ 71/50 ] - [ 1.42 ]
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If we want to see how close we have come, we find

3.08
Ax = | 0.94
1.9

these values differ from (3,1,2)” by (—0.08,0.06,0.1)” which has norm
1v/0.02 ~ 0.1414
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3.08
Ax = | 0.94
1.9

these values differ from (3,1,2)” by (—0.08,0.06,0.1)” which has norm
1v/0.02 ~ 0.1414

In any problem Ax = b, the difference r(x) = b — Ax is called the
residual vector assosiated to x. The least squares solution, is a vector x
that gives the residual vector the smallest possible norm.
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unique vectors u € S and v € S+ such that b = u + v. Often we are
required to find one or both of these. The method of least squares allows
us to find them.

If S'is R(A) for some matrix then, by what we have seen, the least squares
solution % of Ax = b (which satisfies AT Ax = ATb) has the following
property: AX is the closest element of R(A) to b and the residual vector
b — Ax is orthogonal to R(A). That is u = Ax and v =b — Ax.

But every subspace S of R™ is the column space of some matrix: take any
basis of S (or any set of vectors whose span is S) and make them the
columns of a matrix A. Then S = R(A).

If we apply this to A7 in place of A we can split b into u in

R(AT) = N(A)* and v in R(AT)L = N (A).

That is, we solve AATx = Ab to get & and then u = A”% is in AV/(A)+
and v=">b— AT% is in N(A).
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Example: Let S be the span of (1,1,2,0)" and (0,1,2,—2)7 and let
b = (1,1,1,1)". Find the vectors u € S and v € S+ such that b = u+v.
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Example: Let S be the span of (1,1,2,0)" and (0,1,2,—2)7 and let
b = (1,1,1,1)". Find the vectors u € S and v € St such that b = u+v.
Now S is the column space of the 4 x 2 matrix A below and we need the
least squares solution of

T1 o

x9 |

O N = =
NN = O
— ==

Multiplying by A7 we get

6 5 2 ) (4
5 9 o ] 1
which has solution % = (31/29, —14/29)T. Then

u= Ax = (31/29,17/29,34/29,28/29)" and
v=b— Ax = (-2/29,12/29, -5/29,1/29).
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