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The following is sometimes called the Fredholm Alternative.

Theorem

If A is an n× k matrix and b ∈ Rn, then either there is a vector x ∈ Rk

such that Ax = b or there is a vector y ∈ Rn such that ATy = 0 and
yTb ̸= 0.

The first condition is the statement that b ∈ R(A). The second condition
is that b is not in N (AT )⊥. Since R(A) = N (AT )⊥, this theorem is
equivalent to “either b is in R(A) or b is not in R(A)”, which is obvious.

Suppose b is not in R(A) so that Ax = b has no solution. In many
problems, when this happens we would like to find a vector x̂ that makes
∥Ax̂− b∥ as small as possible.

We can write b = c+ d where c ∈ R(A) and d ∈ R(A)⊥ = N (AT ).

It turns out that solving Ax = c gives us the x̂ that makes ∥Ax̂− b∥ as
small as possible.

Because d ∈ N (AT ), if we apply AT to b = c+ d we get

AT (b) = AT (c+ d) = AT c
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So, if we multiply the equation Ax = b (which has no solution) by AT we
get ATAx = ATb = AT c.

This actually has a solution, as any solution of
Ax = c is also a solution of ATAx = AT c.

The reverse is also true: Any solution of ATAx = AT c is a solution of
Ax = c.

To see this, we can rewrite ATAx = AT c as AT (Ax− c) = 0. This
means Ax− c ∈ N (AT ). But, since also Ax− c ∈ R(A) and this is
orthogonal to N (AT ), we get Ax− c = 0.
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Recall that we have written b = c+ d where c ∈ R(A) and d ⊥ R(A).
We will now see that the closest vector to b in R(A) is c and the distance
from b to c is ∥d∥.

Suppose we take any vector v = Ax ∈ R(A) and consider ∥b− v∥2. This
equals

(b− v)T (b− v) = (d+ c− v)T (d+ c− v)

= dTd+ dT (c− v) + (c− v)Td+ (c− v)T (c− v)

∥b− v∥2 = ∥d∥2 + ∥c− v∥2

This means that the closest vector to b in R(A) is c. If we solve Ax = c
and get x̂, we get the best “solution” to Ax = b in the sense that it as
close as possible. Finally, we get all the solutions of Ax = c by solving
ATAx = ATb.

Example: Suppose we perform an experiment where we measure the
output y for various inputs x. That is we get a table of data of the form
{(xi, yi) | i = 1, 2, . . . , n}. Then we plot these points and try to find the
best curve of some sort that matches this data.
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Lets suppose we get the data, listed and plotted below

The data: (0, 4), (1, 1), (3, 1), (4, 3), (4, 5)

This looks vaguely like a parabola, so we might conjecture that (apart
from small random deviations) the relationship between x and y has the
form y = ax2 + bx+ c.

The data can be used to determine what a, b, c must be. Ideally, we want
the equations to ax2i + bxi + c = yi to hold for each data point.
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We cannot expect there to be values of a, b, c that make this true for every
data point, so we look for values that make it as close as possible.

The equations for a, b, c are

c = 4

1a+ 1b+ c = 2

9a+ 3b+ c = 1

16a+ 4b+ c = 3

16a+ 4b+ c = 5

or Ax = b where

A =


0 0 1
1 1 1
9 3 1
16 4 1
16 4 1

 , x =


a
b
c

 , and b =


4
2
1
3
5

 ,
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By the previous argument, we get the vector x that makes Ax closest to b
by solving ATAx = ATb.

So we compute

ATA =


594 156 42
156 42 12
42 12 5

 and ATb =


139
37
15


and row-reduce 

594 156 42 139
156 42 12 37
42 12 5 15

 .

to get (approximately) a = 1.35, b = −5.5 and c = 4.65.

I have graphed
the quadratic 1.35x2 − 5.5x+ 4.65 on the same plot as the data points on
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A more straightforward example:

Find the least squares solution of the following system:

x1 + x2 = 3

−2x1 + 3x2 = 1

2x1 − x2 = 2

Which is the same as
1 1

−2 3
2 −1


 x1

x2

 =


3
1
2


Multiplying by the transpose gives 9 −7

−7 11

 x1
x2

 =

 5
4


This has a solution x̂ =

 83/50
71/50

 =

 1.66
1.42

.
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If we want to see how close we have come, we find

Ax̂ =


3.08
0.94
1.9


these values differ from (3, 1, 2)T by (−0.08, 0.06, 0.1)T which has norm√
0.02 ≈ 0.1414

In any problem Ax = b, the difference r(x) = b−Ax is called the
residual vector assosiated to x. The least squares solution, is a vector x̂
that gives the residual vector the smallest possible norm.
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Using the method of least squares to get vectors orthogonal to a
subspace.

If S is a subspace of Rn and b is a vector in Rn, we know that there exist
unique vectors u ∈ S and v ∈ S⊥ such that b = u+ v. Often we are
required to find one or both of these. The method of least squares allows
us to find them.

If S is R(A) for some matrix then, by what we have seen, the least squares
solution x̂ of Ax = b (which satisfies ATAx̂ = ATb) has the following
property: Ax̂ is the closest element of R(A) to b and the residual vector
b−Ax̂ is orthogonal to R(A). That is u = Ax̂ and v = b−Ax̂.

But every subspace S of Rn is the column space of some matrix: take any
basis of S (or any set of vectors whose span is S) and make them the
columns of a matrix A. Then S = R(A).

If we apply this to AT in place of A we can split b into u in
R(AT ) = N (A)⊥ and v in R(AT )⊥ = N (A).

That is, we solve AATx = Ab to get x̂ and then u = AT x̂ is in N (A)⊥

and v = b−AT x̂ is in N (A).

11 / 12



Using the method of least squares to get vectors orthogonal to a
subspace.

If S is a subspace of Rn and b is a vector in Rn, we know that there exist
unique vectors u ∈ S and v ∈ S⊥ such that b = u+ v.

Often we are
required to find one or both of these. The method of least squares allows
us to find them.

If S is R(A) for some matrix then, by what we have seen, the least squares
solution x̂ of Ax = b (which satisfies ATAx̂ = ATb) has the following
property: Ax̂ is the closest element of R(A) to b and the residual vector
b−Ax̂ is orthogonal to R(A). That is u = Ax̂ and v = b−Ax̂.

But every subspace S of Rn is the column space of some matrix: take any
basis of S (or any set of vectors whose span is S) and make them the
columns of a matrix A. Then S = R(A).

If we apply this to AT in place of A we can split b into u in
R(AT ) = N (A)⊥ and v in R(AT )⊥ = N (A).

That is, we solve AATx = Ab to get x̂ and then u = AT x̂ is in N (A)⊥

and v = b−AT x̂ is in N (A).

11 / 12



Using the method of least squares to get vectors orthogonal to a
subspace.

If S is a subspace of Rn and b is a vector in Rn, we know that there exist
unique vectors u ∈ S and v ∈ S⊥ such that b = u+ v. Often we are
required to find one or both of these.

The method of least squares allows
us to find them.

If S is R(A) for some matrix then, by what we have seen, the least squares
solution x̂ of Ax = b (which satisfies ATAx̂ = ATb) has the following
property: Ax̂ is the closest element of R(A) to b and the residual vector
b−Ax̂ is orthogonal to R(A). That is u = Ax̂ and v = b−Ax̂.

But every subspace S of Rn is the column space of some matrix: take any
basis of S (or any set of vectors whose span is S) and make them the
columns of a matrix A. Then S = R(A).

If we apply this to AT in place of A we can split b into u in
R(AT ) = N (A)⊥ and v in R(AT )⊥ = N (A).

That is, we solve AATx = Ab to get x̂ and then u = AT x̂ is in N (A)⊥

and v = b−AT x̂ is in N (A).

11 / 12



Using the method of least squares to get vectors orthogonal to a
subspace.

If S is a subspace of Rn and b is a vector in Rn, we know that there exist
unique vectors u ∈ S and v ∈ S⊥ such that b = u+ v. Often we are
required to find one or both of these. The method of least squares allows
us to find them.

If S is R(A) for some matrix then, by what we have seen, the least squares
solution x̂ of Ax = b (which satisfies ATAx̂ = ATb) has the following
property: Ax̂ is the closest element of R(A) to b and the residual vector
b−Ax̂ is orthogonal to R(A). That is u = Ax̂ and v = b−Ax̂.

But every subspace S of Rn is the column space of some matrix: take any
basis of S (or any set of vectors whose span is S) and make them the
columns of a matrix A. Then S = R(A).

If we apply this to AT in place of A we can split b into u in
R(AT ) = N (A)⊥ and v in R(AT )⊥ = N (A).

That is, we solve AATx = Ab to get x̂ and then u = AT x̂ is in N (A)⊥

and v = b−AT x̂ is in N (A).

11 / 12



Using the method of least squares to get vectors orthogonal to a
subspace.

If S is a subspace of Rn and b is a vector in Rn, we know that there exist
unique vectors u ∈ S and v ∈ S⊥ such that b = u+ v. Often we are
required to find one or both of these. The method of least squares allows
us to find them.

If S is R(A) for some matrix then, by what we have seen, the least squares
solution x̂ of Ax = b

(which satisfies ATAx̂ = ATb) has the following
property: Ax̂ is the closest element of R(A) to b and the residual vector
b−Ax̂ is orthogonal to R(A). That is u = Ax̂ and v = b−Ax̂.

But every subspace S of Rn is the column space of some matrix: take any
basis of S (or any set of vectors whose span is S) and make them the
columns of a matrix A. Then S = R(A).

If we apply this to AT in place of A we can split b into u in
R(AT ) = N (A)⊥ and v in R(AT )⊥ = N (A).

That is, we solve AATx = Ab to get x̂ and then u = AT x̂ is in N (A)⊥

and v = b−AT x̂ is in N (A).

11 / 12



Using the method of least squares to get vectors orthogonal to a
subspace.

If S is a subspace of Rn and b is a vector in Rn, we know that there exist
unique vectors u ∈ S and v ∈ S⊥ such that b = u+ v. Often we are
required to find one or both of these. The method of least squares allows
us to find them.

If S is R(A) for some matrix then, by what we have seen, the least squares
solution x̂ of Ax = b (which satisfies ATAx̂ = ATb)

has the following
property: Ax̂ is the closest element of R(A) to b and the residual vector
b−Ax̂ is orthogonal to R(A). That is u = Ax̂ and v = b−Ax̂.

But every subspace S of Rn is the column space of some matrix: take any
basis of S (or any set of vectors whose span is S) and make them the
columns of a matrix A. Then S = R(A).

If we apply this to AT in place of A we can split b into u in
R(AT ) = N (A)⊥ and v in R(AT )⊥ = N (A).

That is, we solve AATx = Ab to get x̂ and then u = AT x̂ is in N (A)⊥

and v = b−AT x̂ is in N (A).

11 / 12



Using the method of least squares to get vectors orthogonal to a
subspace.

If S is a subspace of Rn and b is a vector in Rn, we know that there exist
unique vectors u ∈ S and v ∈ S⊥ such that b = u+ v. Often we are
required to find one or both of these. The method of least squares allows
us to find them.

If S is R(A) for some matrix then, by what we have seen, the least squares
solution x̂ of Ax = b (which satisfies ATAx̂ = ATb) has the following
property: Ax̂ is the closest element of R(A) to b and the residual vector
b−Ax̂ is orthogonal to R(A). That is u = Ax̂ and v = b−Ax̂.

But every subspace S of Rn is the column space of some matrix: take any
basis of S (or any set of vectors whose span is S) and make them the
columns of a matrix A. Then S = R(A).

If we apply this to AT in place of A we can split b into u in
R(AT ) = N (A)⊥ and v in R(AT )⊥ = N (A).

That is, we solve AATx = Ab to get x̂ and then u = AT x̂ is in N (A)⊥

and v = b−AT x̂ is in N (A).

11 / 12



Using the method of least squares to get vectors orthogonal to a
subspace.

If S is a subspace of Rn and b is a vector in Rn, we know that there exist
unique vectors u ∈ S and v ∈ S⊥ such that b = u+ v. Often we are
required to find one or both of these. The method of least squares allows
us to find them.

If S is R(A) for some matrix then, by what we have seen, the least squares
solution x̂ of Ax = b (which satisfies ATAx̂ = ATb) has the following
property: Ax̂ is the closest element of R(A) to b and the residual vector
b−Ax̂ is orthogonal to R(A). That is u = Ax̂ and v = b−Ax̂.

But every subspace S of Rn is the column space of some matrix: take any
basis of S (or any set of vectors whose span is S) and make them the
columns of a matrix A. Then S = R(A).

If we apply this to AT in place of A we can split b into u in
R(AT ) = N (A)⊥ and v in R(AT )⊥ = N (A).

That is, we solve AATx = Ab to get x̂ and then u = AT x̂ is in N (A)⊥

and v = b−AT x̂ is in N (A).

11 / 12



Using the method of least squares to get vectors orthogonal to a
subspace.

If S is a subspace of Rn and b is a vector in Rn, we know that there exist
unique vectors u ∈ S and v ∈ S⊥ such that b = u+ v. Often we are
required to find one or both of these. The method of least squares allows
us to find them.

If S is R(A) for some matrix then, by what we have seen, the least squares
solution x̂ of Ax = b (which satisfies ATAx̂ = ATb) has the following
property: Ax̂ is the closest element of R(A) to b and the residual vector
b−Ax̂ is orthogonal to R(A). That is u = Ax̂ and v = b−Ax̂.

But every subspace S of Rn is the column space of some matrix: take any
basis of S (or any set of vectors whose span is S) and make them the
columns of a matrix A. Then S = R(A).

If we apply this to AT in place of A we can split b into u in
R(AT ) = N (A)⊥ and v in R(AT )⊥ = N (A).

That is, we solve AATx = Ab to get x̂ and then u = AT x̂ is in N (A)⊥

and v = b−AT x̂ is in N (A).

11 / 12



Using the method of least squares to get vectors orthogonal to a
subspace.

If S is a subspace of Rn and b is a vector in Rn, we know that there exist
unique vectors u ∈ S and v ∈ S⊥ such that b = u+ v. Often we are
required to find one or both of these. The method of least squares allows
us to find them.

If S is R(A) for some matrix then, by what we have seen, the least squares
solution x̂ of Ax = b (which satisfies ATAx̂ = ATb) has the following
property: Ax̂ is the closest element of R(A) to b and the residual vector
b−Ax̂ is orthogonal to R(A). That is u = Ax̂ and v = b−Ax̂.

But every subspace S of Rn is the column space of some matrix: take any
basis of S (or any set of vectors whose span is S) and make them the
columns of a matrix A. Then S = R(A).

If we apply this to AT in place of A we can split b into u in
R(AT ) = N (A)⊥ and v in R(AT )⊥ = N (A).

That is, we solve AATx = Ab to get x̂ and then u = AT x̂ is in N (A)⊥

and v = b−AT x̂ is in N (A).

11 / 12



Example: Let S be the span of (1, 1, 2, 0)T and (0, 1, 2,−2)T and let
b = (1, 1, 1, 1)T . Find the vectors u ∈ S and v ∈ S⊥ such that b = u+v.

Now S is the column space of the 4× 2 matrix A below and we need the
least squares solution of

1 0
1 1
2 2
0 −2


 x1

x2

 =


1
1
1
1


Multiplying by AT we get 6 5

5 9

 x1
x2

 =

 4
1


which has solution x̂ = (31/29,−14/29)T . Then
u = Ax̂ = (31/29, 17/29, 34/29, 28/29)T and
v = b−Ax̂ = (−2/29, 12/29,−5/29, 1/29).
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least squares solution of

1 0
1 1
2 2
0 −2


 x1

x2

 =


1
1
1
1


Multiplying by AT we get 6 5

5 9

 x1
x2

 =

 4
1


which has solution x̂ = (31/29,−14/29)T . Then
u = Ax̂ = (31/29, 17/29, 34/29, 28/29)T

and
v = b−Ax̂ = (−2/29, 12/29,−5/29, 1/29).
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