Orthogonal Subspaces

D. H. Luecking

29 March 2024

$$\mathcal{R}(A)^{\perp} = \mathcal{N}(A^T) \text{ and } \mathcal{N}(A)^{\perp} = \mathcal{R}(A^T).$$

$$\mathcal{R}(A)^{\perp} = \mathcal{N}(A^T)$$
 and $\mathcal{N}(A)^{\perp} = \mathcal{R}(A^T)$.

To get the second half we need quite a bit of prep work.

$$\mathcal{R}(A)^{\perp} = \mathcal{N}(A^T)$$
 and $\mathcal{N}(A)^{\perp} = \mathcal{R}(A^T)$.

To get the second half we need quite a bit of prep work. But first, we note that applying the first half to A^T (in place of A) gives us $\mathcal{R}(A^T)^{\perp} = \mathcal{N}(A)$.

$$\mathcal{R}(A)^{\perp} = \mathcal{N}(A^T)$$
 and $\mathcal{N}(A)^{\perp} = \mathcal{R}(A^T)$.

To get the second half we need quite a bit of prep work. But first, we note that applying the first half to A^T (in place of A) gives us $\mathcal{R}(A^T)^{\perp} = \mathcal{N}(A)$. Ultimately, we will show that $(S^{\perp})^{\perp} = S$. If we apply that to $S = \mathcal{R}(A^T)$ we get

$$\mathcal{R}(A^T) = (\mathcal{R}(A^T)^{\perp})^{\perp} = \mathcal{N}(A)^{\perp},$$

which is the second half of the above theorem.

$$\mathcal{R}(A)^{\perp} = \mathcal{N}(A^T)$$
 and $\mathcal{N}(A)^{\perp} = \mathcal{R}(A^T)$.

To get the second half we need quite a bit of prep work. But first, we note that applying the first half to A^T (in place of A) gives us $\mathcal{R}(A^T)^{\perp} = \mathcal{N}(A)$. Ultimately, we will show that $(S^{\perp})^{\perp} = S$. If we apply that to $S = \mathcal{R}(A^T)$ we get

$$\mathcal{R}(A^T) = (\mathcal{R}(A^T)^{\perp})^{\perp} = \mathcal{N}(A)^{\perp},$$

which is the second half of the above theorem.

Theorem

If S is a subspace of \mathbb{R}^n then dim $S + \dim S^{\perp} = n$. Furthermore, if $\{\mathbf{x}_1, \ldots, \mathbf{x}_r\}$ is a basis for S and $\{\mathbf{x}_{r+1}, \ldots, \mathbf{x}_n\}$ is a basis for S^{\perp} , then $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$ is a basis for \mathbb{R}^n .

If we take the basis for S and make them the columns of a matrix A, then $S = \mathcal{R}(A)$ and dim S equals the rank of A.

If we take the basis for S and make them the columns of a matrix A, then $S = \mathcal{R}(A)$ and dim S equals the rank of A. By what we have already proved, $S^{\perp} = \mathcal{R}(A)^{\perp} = \mathcal{N}(A^T)$.

If we take the basis for S and make them the columns of a matrix A, then $S = \mathcal{R}(A)$ and dim S equals the rank of A. By what we have already proved, $S^{\perp} = \mathcal{R}(A)^{\perp} = \mathcal{N}(A^T)$. Since the rows of A are effectively the columns of A^T , it follows that A and A^T have the same rank.

If we take the basis for S and make them the columns of a matrix A, then $S = \mathcal{R}(A)$ and dim S equals the rank of A. By what we have already proved, $S^{\perp} = \mathcal{R}(A)^{\perp} = \mathcal{N}(A^T)$. Since the rows of A are effectively the columns of A^T , it follows that A and A^T have the same rank. Moreover, since $\mathcal{N}(A^T) = S^{\perp}$, the nullity of A^T equals dim S^{\perp} .

If we take the basis for S and make them the columns of a matrix A, then $S = \mathcal{R}(A)$ and $\dim S$ equals the rank of A. By what we have already proved, $S^{\perp} = \mathcal{R}(A)^{\perp} = \mathcal{N}(A^T)$. Since the rows of A are effectively the columns of A^T , it follows that A and A^T have the same rank. Moreover, since $\mathcal{N}(A^T) = S^{\perp}$, the nullity of A^T equals $\dim S^{\perp}$. The width of A^T is n and so

$$\dim S + \dim S^{\perp} = \operatorname{rank} A^{T} + \operatorname{nullity} A^{T} = \operatorname{width} A^{T} = n.$$

If we take the basis for S and make them the columns of a matrix A, then $S = \mathcal{R}(A)$ and $\dim S$ equals the rank of A. By what we have already proved, $S^{\perp} = \mathcal{R}(A)^{\perp} = \mathcal{N}(A^T)$. Since the rows of A are effectively the columns of A^T , it follows that A and A^T have the same rank. Moreover, since $\mathcal{N}(A^T) = S^{\perp}$, the nullity of A^T equals $\dim S^{\perp}$. The width of A^T is n and so

$$\dim S + \dim S^{\perp} = \operatorname{rank} A^{T} + \operatorname{nullity} A^{T} = \operatorname{width} A^{T} = n.$$

To see that the two bases for S and S^{\perp} together form a basis for \mathbb{R}^n , we first show it is independent.

$$c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \dots + c_n\mathbf{x}_n = \mathbf{0}.$$

$$c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \dots + c_n\mathbf{x}_n = \mathbf{0}.$$

We want to show that all the c_i are zero. Set

 $\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_r \mathbf{x}_r \text{ and } \mathbf{y} = c_{r+1} \mathbf{x}_{r+1} + c_{r+2} \mathbf{x}_{r+2} + \dots + c_n \mathbf{x}_n.$

Then $\mathbf{x} \in S$, $\mathbf{y} \in S^{\perp}$ and $\mathbf{x} + \mathbf{y} = \mathbf{0}$.

$$c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \dots + c_n\mathbf{x}_n = \mathbf{0}.$$

We want to show that all the c_i are zero. Set

 $\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_r \mathbf{x}_r \text{ and } \mathbf{y} = c_{r+1} \mathbf{x}_{r+1} + c_{r+2} \mathbf{x}_{r+2} + \dots + c_n \mathbf{x}_n.$

Then $\mathbf{x} \in S$, $\mathbf{y} \in S^{\perp}$ and $\mathbf{x} + \mathbf{y} = \mathbf{0}$. This says that $\mathbf{x} = -\mathbf{y} \in S^{\perp}$.

$$c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \dots + c_n\mathbf{x}_n = \mathbf{0}.$$

We want to show that all the c_i are zero. Set

 $\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_r \mathbf{x}_r \text{ and } \mathbf{y} = c_{r+1} \mathbf{x}_{r+1} + c_{r+2} \mathbf{x}_{r+2} + \dots + c_n \mathbf{x}_n.$

Then $\mathbf{x} \in S$, $\mathbf{y} \in S^{\perp}$ and $\mathbf{x} + \mathbf{y} = \mathbf{0}$. This says that $\mathbf{x} = -\mathbf{y} \in S^{\perp}$. Thus \mathbf{x} is in both S and S^{\perp} and so $\mathbf{x} = \mathbf{0}$. That is,

$$c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \dots + c_r\mathbf{x}_r = \mathbf{0}$$

$$c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \dots + c_n\mathbf{x}_n = \mathbf{0}.$$

We want to show that all the c_i are zero. Set

 $\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_r \mathbf{x}_r \text{ and } \mathbf{y} = c_{r+1} \mathbf{x}_{r+1} + c_{r+2} \mathbf{x}_{r+2} + \dots + c_n \mathbf{x}_n.$

Then $\mathbf{x} \in S$, $\mathbf{y} \in S^{\perp}$ and $\mathbf{x} + \mathbf{y} = \mathbf{0}$. This says that $\mathbf{x} = -\mathbf{y} \in S^{\perp}$. Thus \mathbf{x} is in both S and S^{\perp} and so $\mathbf{x} = \mathbf{0}$. That is,

$$c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \dots + c_r\mathbf{x}_r = \mathbf{0}$$

and so $c_1 = c_2 = \cdots = c_r = 0$ by independence.

$$c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \dots + c_n\mathbf{x}_n = \mathbf{0}.$$

We want to show that all the c_i are zero. Set

 $\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_r \mathbf{x}_r \text{ and } \mathbf{y} = c_{r+1} \mathbf{x}_{r+1} + c_{r+2} \mathbf{x}_{r+2} + \dots + c_n \mathbf{x}_n.$

Then $\mathbf{x} \in S$, $\mathbf{y} \in S^{\perp}$ and $\mathbf{x} + \mathbf{y} = \mathbf{0}$. This says that $\mathbf{x} = -\mathbf{y} \in S^{\perp}$. Thus \mathbf{x} is in both S and S^{\perp} and so $\mathbf{x} = \mathbf{0}$. That is,

$$c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \dots + c_r\mathbf{x}_r = \mathbf{0}$$

and so $c_1 = c_2 = \cdots = c_r = 0$ by independence.

Similarly, y is also in both S and S^{\perp} and the same argument shows that $c_{r+1} = c_{r+2} = \cdots = c_n = 0.$

$$c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \dots + c_n\mathbf{x}_n = \mathbf{0}.$$

We want to show that all the c_i are zero. Set

 $\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_r \mathbf{x}_r \text{ and } \mathbf{y} = c_{r+1} \mathbf{x}_{r+1} + c_{r+2} \mathbf{x}_{r+2} + \dots + c_n \mathbf{x}_n.$

Then $\mathbf{x} \in S$, $\mathbf{y} \in S^{\perp}$ and $\mathbf{x} + \mathbf{y} = \mathbf{0}$. This says that $\mathbf{x} = -\mathbf{y} \in S^{\perp}$. Thus \mathbf{x} is in both S and S^{\perp} and so $\mathbf{x} = \mathbf{0}$. That is,

$$c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \dots + c_r\mathbf{x}_r = \mathbf{0}$$

and so $c_1 = c_2 = \cdots = c_r = 0$ by independence.

Similarly, y is also in both S and S^{\perp} and the same argument shows that $c_{r+1} = c_{r+2} = \cdots = c_n = 0.$

Since the set $\{x_1, \dots x_n\}$ has n elements and is independent, it must also span \mathbb{R}^n , so it is a basis of \mathbb{R}^n

If S is a subspace of \mathbb{R}^n then every vector \mathbf{x} in \mathbb{R}^n can be written uniquely as a sum $\mathbf{x} = \mathbf{u} + \mathbf{v}$ with $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$.

If S is a subspace of \mathbb{R}^n then every vector \mathbf{x} in \mathbb{R}^n can be written uniquely as a sum $\mathbf{x} = \mathbf{u} + \mathbf{v}$ with $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$.

The fact that any \mathbf{x} can be so written comes from the previous theorem:

If S is a subspace of \mathbb{R}^n then every vector \mathbf{x} in \mathbb{R}^n can be written uniquely as a sum $\mathbf{x} = \mathbf{u} + \mathbf{v}$ with $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$.

The fact that any \mathbf{x} can be so written comes from the previous theorem: Take any basis $\{\mathbf{x}_1, \ldots, \mathbf{x}_r\}$ of S and any basis $\{\mathbf{x}_{r+1}, \ldots, \mathbf{x}_n\}$ of S^{\perp} .

If S is a subspace of \mathbb{R}^n then every vector \mathbf{x} in \mathbb{R}^n can be written uniquely as a sum $\mathbf{x} = \mathbf{u} + \mathbf{v}$ with $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$.

The fact that any x can be so written comes from the previous theorem: Take any basis $\{x_1, \ldots, x_r\}$ of S and any basis $\{x_{r+1}, \ldots, x_n\}$ of S^{\perp} . Since their union is a basis for \mathbb{R}^n we can write x as a linear combination

$$\mathbf{x} = (c_1 \mathbf{x}_1 + \dots + c_r \mathbf{x}_r) + (c_{r+1} \mathbf{x}_{r+1} + \dots + c_n \mathbf{x}_n)$$

If S is a subspace of \mathbb{R}^n then every vector \mathbf{x} in \mathbb{R}^n can be written uniquely as a sum $\mathbf{x} = \mathbf{u} + \mathbf{v}$ with $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$.

The fact that any x can be so written comes from the previous theorem: Take any basis $\{x_1, \ldots, x_r\}$ of S and any basis $\{x_{r+1}, \ldots, x_n\}$ of S^{\perp} . Since their union is a basis for \mathbb{R}^n we can write x as a linear combination

$$\mathbf{x} = (c_1 \mathbf{x}_1 + \dots + c_r \mathbf{x}_r) + (c_{r+1} \mathbf{x}_{r+1} + \dots + c_n \mathbf{x}_n)$$

Call the sum in the first parentheses u and the sum in the second v and we have $u \in S$ and $v \in S^{\perp}$ and x = u + v.

If S is a subspace of \mathbb{R}^n then every vector \mathbf{x} in \mathbb{R}^n can be written uniquely as a sum $\mathbf{x} = \mathbf{u} + \mathbf{v}$ with $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$.

The fact that any x can be so written comes from the previous theorem: Take any basis $\{x_1, \ldots, x_r\}$ of S and any basis $\{x_{r+1}, \ldots, x_n\}$ of S^{\perp} . Since their union is a basis for \mathbb{R}^n we can write x as a linear combination

$$\mathbf{x} = (c_1\mathbf{x}_1 + \dots + c_r\mathbf{x}_r) + (c_{r+1}\mathbf{x}_{r+1} + \dots + c_n\mathbf{x}_n)$$

Call the sum in the first parentheses u and the sum in the second v and we have $u \in S$ and $v \in S^{\perp}$ and x = u + v.

To see that u and v are unique, suppose there were another pair $u' \in S$ and $v' \in S^{\perp}$ and x = u' + v'. Then

$$\mathbf{u} + \mathbf{v} = \mathbf{u}' + \mathbf{v}' \implies \mathbf{u} - \mathbf{u}' = \mathbf{v}' - \mathbf{v}$$

If S is a subspace of \mathbb{R}^n then every vector \mathbf{x} in \mathbb{R}^n can be written uniquely as a sum $\mathbf{x} = \mathbf{u} + \mathbf{v}$ with $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$.

The fact that any x can be so written comes from the previous theorem: Take any basis $\{x_1, \ldots, x_r\}$ of S and any basis $\{x_{r+1}, \ldots, x_n\}$ of S^{\perp} . Since their union is a basis for \mathbb{R}^n we can write x as a linear combination

$$\mathbf{x} = (c_1\mathbf{x}_1 + \dots + c_r\mathbf{x}_r) + (c_{r+1}\mathbf{x}_{r+1} + \dots + c_n\mathbf{x}_n)$$

Call the sum in the first parentheses \mathbf{u} and the sum in the second \mathbf{v} and we have $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$ and $\mathbf{x} = \mathbf{u} + \mathbf{v}$.

To see that u and v are unique, suppose there were another pair $u' \in S$ and $v' \in S^{\perp}$ and x = u' + v'. Then

$$\mathbf{u} + \mathbf{v} = \mathbf{u}' + \mathbf{v}' \implies \mathbf{u} - \mathbf{u}' = \mathbf{v}' - \mathbf{v}$$

Thus, $\mathbf{u} - \mathbf{u}'$ belongs to both S and S^{\perp} and so $\mathbf{u} - \mathbf{u}' = \mathbf{0}$ and $\mathbf{u} = \mathbf{u}'$.

If S is a subspace of \mathbb{R}^n then every vector \mathbf{x} in \mathbb{R}^n can be written uniquely as a sum $\mathbf{x} = \mathbf{u} + \mathbf{v}$ with $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$.

The fact that any x can be so written comes from the previous theorem: Take any basis $\{x_1, \ldots, x_r\}$ of S and any basis $\{x_{r+1}, \ldots, x_n\}$ of S^{\perp} . Since their union is a basis for \mathbb{R}^n we can write x as a linear combination

$$\mathbf{x} = (c_1\mathbf{x}_1 + \dots + c_r\mathbf{x}_r) + (c_{r+1}\mathbf{x}_{r+1} + \dots + c_n\mathbf{x}_n)$$

Call the sum in the first parentheses \mathbf{u} and the sum in the second \mathbf{v} and we have $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$ and $\mathbf{x} = \mathbf{u} + \mathbf{v}$.

To see that u and v are unique, suppose there were another pair $u' \in S$ and $v' \in S^{\perp}$ and x = u' + v'. Then

$$\mathbf{u} + \mathbf{v} = \mathbf{u}' + \mathbf{v}' \implies \mathbf{u} - \mathbf{u}' = \mathbf{v}' - \mathbf{v}$$

Thus, $\mathbf{u} - \mathbf{u}'$ belongs to both S and S^{\perp} and so $\mathbf{u} - \mathbf{u}' = \mathbf{0}$ and $\mathbf{u} = \mathbf{u}'$. The same argument shows $\mathbf{v}' = \mathbf{v}$.

If S is a subspace of \mathbb{R}^n then $(S^{\perp})^{\perp} = S$.

If S is a subspace of \mathbb{R}^n then $(S^{\perp})^{\perp} = S$.

By definition of S^{\perp} , if $\mathbf{x} \in S$ then $\mathbf{x} \perp \mathbf{v}$ for every \mathbf{v} in S^{\perp} .

If S is a subspace of \mathbb{R}^n then $(S^{\perp})^{\perp} = S$.

By definition of S^{\perp} , if $\mathbf{x} \in S$ then $\mathbf{x} \perp \mathbf{v}$ for every \mathbf{v} in S^{\perp} . This says that $\mathbf{x} \in (S^{\perp})^{\perp}$.

If S is a subspace of \mathbb{R}^n then $(S^{\perp})^{\perp} = S$.

By definition of S^{\perp} , if $\mathbf{x} \in S$ then $\mathbf{x} \perp \mathbf{v}$ for every \mathbf{v} in S^{\perp} . This says that $\mathbf{x} \in (S^{\perp})^{\perp}$. That is, every \mathbf{x} in S is contained in $(S^{\perp})^{\perp}$.

If S is a subspace of \mathbb{R}^n then $(S^{\perp})^{\perp} = S$.

By definition of S^{\perp} , if $\mathbf{x} \in S$ then $\mathbf{x} \perp \mathbf{v}$ for every \mathbf{v} in S^{\perp} . This says that $\mathbf{x} \in (S^{\perp})^{\perp}$. That is, every \mathbf{x} in S is contained in $(S^{\perp})^{\perp}$. Now suppose $\mathbf{x} \in (S^{\perp})^{\perp}$. We want to show that it belongs to S.

If S is a subspace of \mathbb{R}^n then $(S^{\perp})^{\perp} = S$.

By definition of S^{\perp} , if $\mathbf{x} \in S$ then $\mathbf{x} \perp \mathbf{v}$ for every \mathbf{v} in S^{\perp} . This says that $\mathbf{x} \in (S^{\perp})^{\perp}$. That is, every \mathbf{x} in S is contained in $(S^{\perp})^{\perp}$. Now suppose $\mathbf{x} \in (S^{\perp})^{\perp}$. We want to show that it belongs to S. From before, $\mathbf{x} = \mathbf{u} + \mathbf{v}$ where $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$.

If S is a subspace of \mathbb{R}^n then $(S^{\perp})^{\perp} = S$.

By definition of S^{\perp} , if $\mathbf{x} \in S$ then $\mathbf{x} \perp \mathbf{v}$ for every \mathbf{v} in S^{\perp} . This says that $\mathbf{x} \in (S^{\perp})^{\perp}$. That is, every \mathbf{x} in S is contained in $(S^{\perp})^{\perp}$.

Now suppose $\mathbf{x} \in (S^{\perp})^{\perp}$. We want to show that it belongs to S. From before, $\mathbf{x} = \mathbf{u} + \mathbf{v}$ where $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$. Then $\mathbf{x} \perp \mathbf{v}$, and this means

$$0 = \mathbf{v}^T \mathbf{x} = \mathbf{v}^T (\mathbf{u} + \mathbf{v}) = \mathbf{v}^T \mathbf{u} + \mathbf{v}^T \mathbf{v} = \mathbf{v}^T \mathbf{v}$$

If S is a subspace of \mathbb{R}^n then $(S^{\perp})^{\perp} = S$.

By definition of S^{\perp} , if $\mathbf{x} \in S$ then $\mathbf{x} \perp \mathbf{v}$ for every \mathbf{v} in S^{\perp} . This says that $\mathbf{x} \in (S^{\perp})^{\perp}$. That is, every \mathbf{x} in S is contained in $(S^{\perp})^{\perp}$.

Now suppose $\mathbf{x} \in (S^{\perp})^{\perp}$. We want to show that it belongs to S. From before, $\mathbf{x} = \mathbf{u} + \mathbf{v}$ where $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$. Then $\mathbf{x} \perp \mathbf{v}$, and this means

$$0 = \mathbf{v}^T \mathbf{x} = \mathbf{v}^T (\mathbf{u} + \mathbf{v}) = \mathbf{v}^T \mathbf{u} + \mathbf{v}^T \mathbf{v} = \mathbf{v}^T \mathbf{v}$$

But $\mathbf{v}^T \mathbf{v} = 0$ implies $\mathbf{v} = \mathbf{0}$. Therefore, $\mathbf{x} = \mathbf{u} + \mathbf{0} \in S$.

• $\mathcal{R}(A)^{\perp} = \mathcal{N}(A^T)$ (both sides are the solutions of the same system of equations)

- $\mathcal{R}(A)^{\perp} = \mathcal{N}(A^T)$ (both sides are the solutions of the same system of equations)
- $\mathcal{R}(A^T)^{\perp} = \mathcal{N}(A)$ (previous fact applied to the matrix A^T).

- $\mathcal{R}(A)^{\perp} = \mathcal{N}(A^T)$ (both sides are the solutions of the same system of equations)
- $\mathcal{R}(A^T)^{\perp} = \mathcal{N}(A)$ (previous fact applied to the matrix A^T).

Now we can apply the "double \perp " theorem to these two facts to get

•
$$\mathcal{R}(A^T) = \mathcal{N}(A)^{\perp}$$
.

- $\mathcal{R}(A)^{\perp} = \mathcal{N}(A^T)$ (both sides are the solutions of the same system of equations)
- $\mathcal{R}(A^T)^{\perp} = \mathcal{N}(A)$ (previous fact applied to the matrix A^T).

Now we can apply the "double \perp " theorem to these two facts to get

•
$$\mathcal{R}(A^T) = \mathcal{N}(A)^{\perp}$$
.

•
$$\mathcal{R}(A) = \mathcal{N}(A^T)^{\perp}$$
.

- $\mathcal{R}(A)^{\perp} = \mathcal{N}(A^T)$ (both sides are the solutions of the same system of equations)
- $\mathcal{R}(A^T)^{\perp} = \mathcal{N}(A)$ (previous fact applied to the matrix A^T).

Now we can apply the "double \perp " theorem to these two facts to get

•
$$\mathcal{R}(A^T) = \mathcal{N}(A)^{\perp}$$
.

• $\mathcal{R}(A) = \mathcal{N}(A^T)^{\perp}$.

This last one provides another answer to the question: for which vectors \mathbf{b} does the equation $A\mathbf{x} = \mathbf{b}$ have a solution?

- $\mathcal{R}(A)^{\perp} = \mathcal{N}(A^T)$ (both sides are the solutions of the same system of equations)
- $\mathcal{R}(A^T)^{\perp} = \mathcal{N}(A)$ (previous fact applied to the matrix A^T).

Now we can apply the "double \perp " theorem to these two facts to get

•
$$\mathcal{R}(A^T) = \mathcal{N}(A)^{\perp}$$
.

• $\mathcal{R}(A) = \mathcal{N}(A^T)^{\perp}$.

This last one provides another answer to the question: for which vectors \mathbf{b} does the equation $A\mathbf{x} = \mathbf{b}$ have a solution? The existence of \mathbf{x} such that $A\mathbf{x} = \mathbf{b}$ means that \mathbf{b} is in the column space of A.

- $\mathcal{R}(A)^{\perp} = \mathcal{N}(A^T)$ (both sides are the solutions of the same system of equations)
- $\mathcal{R}(A^T)^{\perp} = \mathcal{N}(A)$ (previous fact applied to the matrix A^T).

Now we can apply the "double \perp " theorem to these two facts to get

•
$$\mathcal{R}(A^T) = \mathcal{N}(A)^{\perp}$$
.

• $\mathcal{R}(A) = \mathcal{N}(A^T)^{\perp}$.

This last one provides another answer to the question: for which vectors \mathbf{b} does the equation $A\mathbf{x} = \mathbf{b}$ have a solution? The existence of \mathbf{x} such that $A\mathbf{x} = \mathbf{b}$ means that \mathbf{b} is in the column space of A. By the above, \mathbf{b} must be orthogonal to the null space of A^T .

- $\mathcal{R}(A)^{\perp} = \mathcal{N}(A^T)$ (both sides are the solutions of the same system of equations)
- $\mathcal{R}(A^T)^{\perp} = \mathcal{N}(A)$ (previous fact applied to the matrix A^T).

Now we can apply the "double \perp " theorem to these two facts to get

•
$$\mathcal{R}(A^T) = \mathcal{N}(A)^{\perp}$$
.

• $\mathcal{R}(A) = \mathcal{N}(A^T)^{\perp}$.

This last one provides another answer to the question: for which vectors **b** does the equation $A\mathbf{x} = \mathbf{b}$ have a solution? The existence of **x** such that $A\mathbf{x} = \mathbf{b}$ means that **b** is in the column space of A. By the above, **b** must be orthogonal to the null space of A^T . If we find a basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ for the null space of A^T , then the condition for $A\mathbf{x} = \mathbf{b}$ to have a solution is that $\mathbf{v}_1^T \mathbf{b} = 0, \ldots, \mathbf{v}_k^T \mathbf{b} = 0$.

Example: For what vectors \mathbf{b} does the following have a solution?

$$2x_1 + 2x_2 + 4x_3 = b_1$$

$$x_1 + x_3 = b_2$$

$$x_2 + x_3 = b_3$$

Example: For what vectors b does the following have a solution?

$$2x_1 + 2x_2 + 4x_3 = b_1$$

$$x_1 + x_3 = b_2$$

$$x_2 + x_3 = b_3$$

Take the system matrix A, transpose it, and find the null space of A^T

Example: For what vectors \mathbf{b} does the following have a solution?

$$2x_1 + 2x_2 + 4x_3 = b_1$$

$$x_1 + x_3 = b_2$$

$$x_2 + x_3 = b_3$$

Take the system matrix A, transpose it, and find the null space of A^T

$$\begin{pmatrix} 2 & 1 & 0 \\ 2 & 0 & 1 \\ 4 & 1 & 1 \end{pmatrix} \xrightarrow{6 \text{ EROs}} \begin{pmatrix} 1 & 0 & 1/2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{i.e.} \quad \begin{cases} x_1 + (1/2)x_3 = 0 \\ x_2 - x_3 = 0 \end{cases}$$

Example: For what vectors b does the following have a solution?

$$2x_1 + 2x_2 + 4x_3 = b_1$$

$$x_1 + + x_3 = b_2$$

$$x_2 + x_3 = b_3$$

Take the system matrix A, transpose it, and find the null space of A^T

$$\begin{pmatrix} 2 & 1 & 0 \\ 2 & 0 & 1 \\ 4 & 1 & 1 \end{pmatrix} \xrightarrow{6 \text{ EROs}} \begin{pmatrix} 1 & 0 & 1/2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{i.e.} \quad \begin{cases} x_1 + (1/2)x_3 = 0 \\ x_2 - x_3 = 0 \end{cases}$$

Then $\mathcal{N}(A^T)$ is spanned by one vector $\begin{pmatrix} -1/2 \\ 1 \\ 1 \end{pmatrix}$.

Example: For what vectors b does the following have a solution?

$$2x_1 + 2x_2 + 4x_3 = b_1$$

$$x_1 + + x_3 = b_2$$

$$x_2 + x_3 = b_3$$

Take the system matrix A, transpose it, and find the null space of A^T

$$\begin{pmatrix} 2 & 1 & 0 \\ 2 & 0 & 1 \\ 4 & 1 & 1 \end{pmatrix} \xrightarrow{6 \text{ EROs}} \begin{pmatrix} 1 & 0 & 1/2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{i.e.} \quad \begin{cases} x_1 + (1/2)x_3 = 0 \\ x_2 - x_3 = 0 \end{cases}$$

Then $\mathcal{N}(A^T)$ is spanned by one vector $\begin{pmatrix} -1/2 \\ 1 \\ 1 \end{pmatrix}$. So, we conclude that a solution exists if and only if

$$\begin{pmatrix} -1/2 & 1 & 1 \end{pmatrix}$$
 b = $-(1/2)b_1 + b_2 + b_3 = 0$