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Theorem

If S is a subspace of R™ then dim S + dim S+ = n. Furthermore, if
{x1,...,%,} is a basis for S and {X,y1,...,X,} is a basis for S*, then
{x1,...,x,} is a basis for R™.
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If we take the basis for S and make them the columns of a matrix A, then
S =TR(A) and dim S equals the rank of A. By what we have already
proved, S+ = R(A)+ = N(AT). Since the rows of A are effectively the
columns of AT, it follows that A and AL have the same rank. Moreover,
since N'(AT) = S+, the nullity of AT equals dim S*.

The width of AT is n and so

dim S 4 dim S* = rank AT + nullity AT = width AT = n.

To see that the two bases for S and S+ together form a basis for R, we
first show it is independent.
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To check independence, consider a linear combination

c1X1 + coxo + -+ epxy, = 0.
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C1X1 + CoXo + - + Xy = 0.
We want to show that all the ¢; are zero. Set
X =C1X1+cXo+ -+ Xy and Y = CGrp1Xpp1 + CrpoXpg2 + 0 CpXp.

Thenx € S, y € S* and x +y = 0. This says that x = —y € S+. Thus
x is in both S and S+ and so x = 0. That is,

cxX)+cexe+ -+ ex, =0

and so ¢y = ce = -+ = ¢, = 0 by independence.

Similarly, y is also in both S and S and the same argument shows that
Crg1 =Crg2 = - = Cp = 0.

Since the set {x1,...x,} has n elements and is independent, it must also
span R"™, so it is a basis of R™
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X = (CIXI + -+ CTXT') + (Cr+1Xr+1 + -+ Can)

Call the sum in the first parentheses u and the sum in the second v and
we haveue Sandve Standx=u+v.

To see that u and v are unique, suppose there were another pair u’ € S
and v/ € S+ and x = u’ + v'. Then

/ / / /
ut+v=u-+Vv — u—u =V —V

Thus, u — u’ belongs to both S and S+ andsou—u' =0 and u=u'.

The same argument shows v/ = v.
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By definition of S, if x € S then x L v for every v in ST. This says that
x € (S*+)L. Thatis, every x in S is contained in (S+)*.

Now suppose x € (S*)L. We want to show that it belongs to S. From
before, x = u+ v where u € S and v € S*. Then x L v, and this means

T T

0=vix=vl(ut+v)=viut+vliv=vlv

But viv =0 implies v = 0. Therefore, x =u+0¢€ 5.
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Recall what we had seen earlier:

® R(A)t = N(AT) (both sides are the solutions of the same system of

equations)

e R(AT)L = N(A) (previous fact applied to the matrix AT).
Now we can apply the "double 1" theorem to these two facts to get

e R(AT) = N(A)*.

e R(A) = N(AT)*,
This last one provides another answer to the question: for which vectors b
does the equation Ax = b have a solution? The existence of x such that
Ax = b means that b is in the column space of A. By the above, b must
be orthogonal to the null space of AT If we find a basis {v1,..., v} for

the null space of AT, then the condition for Ax = b to have a solution is
that v{b = O,...,vgb =0.
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Example: For what vectors b does the following have a solution?

2x1 + 229 + 4x3 = by
xr1 + + x3 = by
x2 + w3 =b3

Take the system matrix A, transpose it, and find the null space of AT

2 10 10 1/2
1 =
2 0 1 6EROs | o | ) o {x1+(/2)x3 0
411 00 0 T2 — a3 =0
—1/2
Then N (AT) is spanned by one vector 1
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Example: For what vectors b does the following have a solution?

221 + 2x9 + 43 = by
xr1 + + x3 = by

To+ x3=bs

Take the system matrix A, transpose it, and find the null space of AT

2 10 10 1/2
1/2)z3 =0
201 | &ER% o1 -1 ie {x1+(/)x3
411 00 0 2 =3 =0
~1/2
Then N(AT) is spanned by one vector 1 . So, we conclude that
1

a solution exists if and only if
[ 12 1 1 ] b= —(1/2)by + by + bg = 0
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