Orthogonal Subspaces

D. H. Luecking

29 March 2024

Theorem
$\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$ and $\mathcal{N}(A)^{\perp}=\mathcal{R}\left(A^{T}\right)$.

Theorem

$\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$ and $\mathcal{N}(A)^{\perp}=\mathcal{R}\left(A^{T}\right)$.
To get the second half we need quite a bit of prep work.

Theorem

$\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$ and $\mathcal{N}(A)^{\perp}=\mathcal{R}\left(A^{T}\right)$.
To get the second half we need quite a bit of prep work. But first, we note that applying the first half to A^{T} (in place of A) gives us $\mathcal{R}\left(A^{T}\right)^{\perp}=\mathcal{N}(A)$.

Theorem

$\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$ and $\mathcal{N}(A)^{\perp}=\mathcal{R}\left(A^{T}\right)$.
To get the second half we need quite a bit of prep work. But first, we note that applying the first half to A^{T} (in place of A) gives us $\mathcal{R}\left(A^{T}\right)^{\perp}=\mathcal{N}(A)$. Ultimately, we will show that $\left(S^{\perp}\right)^{\perp}=S$. If we apply that to $S=\mathcal{R}\left(A^{T}\right)$ we get

$$
\mathcal{R}\left(A^{T}\right)=\left(\mathcal{R}\left(A^{T}\right)^{\perp}\right)^{\perp}=\mathcal{N}(A)^{\perp}
$$

which is the second half of the above theorem.

Theorem

$\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$ and $\mathcal{N}(A)^{\perp}=\mathcal{R}\left(A^{T}\right)$.
To get the second half we need quite a bit of prep work. But first, we note that applying the first half to A^{T} (in place of A) gives us $\mathcal{R}\left(A^{T}\right)^{\perp}=\mathcal{N}(A)$. Ultimately, we will show that $\left(S^{\perp}\right)^{\perp}=S$. If we apply that to $S=\mathcal{R}\left(A^{T}\right)$ we get

$$
\mathcal{R}\left(A^{T}\right)=\left(\mathcal{R}\left(A^{T}\right)^{\perp}\right)^{\perp}=\mathcal{N}(A)^{\perp}
$$

which is the second half of the above theorem.

Theorem

If S is a subspace of \mathbb{R}^{n} then $\operatorname{dim} S+\operatorname{dim} S^{\perp}=n$. Furthermore, if $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{r}\right\}$ is a basis for S and $\left\{\mathbf{x}_{r+1}, \ldots, \mathbf{x}_{n}\right\}$ is a basis for S^{\perp}, then $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ is a basis for \mathbb{R}^{n}.

If we take the basis for S and make them the columns of a matrix A, then $S=\mathcal{R}(A)$ and $\operatorname{dim} S$ equals the rank of A.

If we take the basis for S and make them the columns of a matrix A, then $S=\mathcal{R}(A)$ and $\operatorname{dim} S$ equals the rank of A. By what we have already proved, $S^{\perp}=\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$.

If we take the basis for S and make them the columns of a matrix A, then $S=\mathcal{R}(A)$ and $\operatorname{dim} S$ equals the rank of A. By what we have already proved, $S^{\perp}=\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$. Since the rows of A are effectively the columns of A^{T}, it follows that A and A^{T} have the same rank.

If we take the basis for S and make them the columns of a matrix A, then $S=\mathcal{R}(A)$ and $\operatorname{dim} S$ equals the rank of A. By what we have already proved, $S^{\perp}=\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$. Since the rows of A are effectively the columns of A^{T}, it follows that A and A^{T} have the same rank. Moreover, since $\mathcal{N}\left(A^{T}\right)=S^{\perp}$, the nullity of A^{T} equals $\operatorname{dim} S^{\perp}$.

If we take the basis for S and make them the columns of a matrix A, then $S=\mathcal{R}(A)$ and $\operatorname{dim} S$ equals the rank of A. By what we have already proved, $S^{\perp}=\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$. Since the rows of A are effectively the columns of A^{T}, it follows that A and A^{T} have the same rank. Moreover, since $\mathcal{N}\left(A^{T}\right)=S^{\perp}$, the nullity of A^{T} equals $\operatorname{dim} S^{\perp}$.
The width of A^{T} is n and so

$$
\operatorname{dim} S+\operatorname{dim} S^{\perp}=\operatorname{rank} A^{T}+\operatorname{nullity} A^{T}=\text { width } A^{T}=n
$$

If we take the basis for S and make them the columns of a matrix A, then $S=\mathcal{R}(A)$ and $\operatorname{dim} S$ equals the rank of A. By what we have already proved, $S^{\perp}=\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$. Since the rows of A are effectively the columns of A^{T}, it follows that A and A^{T} have the same rank. Moreover, since $\mathcal{N}\left(A^{T}\right)=S^{\perp}$, the nullity of A^{T} equals $\operatorname{dim} S^{\perp}$.
The width of A^{T} is n and so

$$
\operatorname{dim} S+\operatorname{dim} S^{\perp}=\operatorname{rank} A^{T}+\operatorname{nullity} A^{T}=\text { width } A^{T}=n
$$

To see that the two bases for S and S^{\perp} together form a basis for \mathbb{R}^{n}, we first show it is independent.

To check independence, consider a linear combination

$$
c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{n} \mathbf{x}_{n}=\mathbf{0}
$$

To check independence, consider a linear combination

$$
c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{n} \mathbf{x}_{n}=\mathbf{0}
$$

We want to show that all the c_{i} are zero. Set
$\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{r} \mathbf{x}_{r}$ and $\mathbf{y}=c_{r+1} \mathbf{x}_{r+1}+c_{r+2} \mathbf{x}_{r+2}+\cdots+c_{n} \mathbf{x}_{n}$.
Then $\mathbf{x} \in S, \mathbf{y} \in S^{\perp}$ and $\mathbf{x}+\mathbf{y}=\mathbf{0}$.

To check independence, consider a linear combination

$$
c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{n} \mathbf{x}_{n}=\mathbf{0}
$$

We want to show that all the c_{i} are zero. Set
$\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{r} \mathbf{x}_{r}$ and $\mathbf{y}=c_{r+1} \mathbf{x}_{r+1}+c_{r+2} \mathbf{x}_{r+2}+\cdots+c_{n} \mathbf{x}_{n}$.
Then $\mathbf{x} \in S, \mathbf{y} \in S^{\perp}$ and $\mathbf{x}+\mathbf{y}=\mathbf{0}$. This says that $\mathbf{x}=-\mathbf{y} \in S^{\perp}$.

To check independence, consider a linear combination

$$
c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{n} \mathbf{x}_{n}=\mathbf{0}
$$

We want to show that all the c_{i} are zero. Set
$\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{r} \mathbf{x}_{r}$ and $\mathbf{y}=c_{r+1} \mathbf{x}_{r+1}+c_{r+2} \mathbf{x}_{r+2}+\cdots+c_{n} \mathbf{x}_{n}$.
Then $\mathbf{x} \in S, \mathbf{y} \in S^{\perp}$ and $\mathbf{x}+\mathbf{y}=\mathbf{0}$. This says that $\mathbf{x}=-\mathbf{y} \in S^{\perp}$. Thus \mathbf{x} is in both S and S^{\perp} and so $\mathbf{x}=\mathbf{0}$. That is,

$$
c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{r} \mathbf{x}_{r}=\mathbf{0}
$$

To check independence, consider a linear combination

$$
c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{n} \mathbf{x}_{n}=\mathbf{0}
$$

We want to show that all the c_{i} are zero. Set
$\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{r} \mathbf{x}_{r}$ and $\mathbf{y}=c_{r+1} \mathbf{x}_{r+1}+c_{r+2} \mathbf{x}_{r+2}+\cdots+c_{n} \mathbf{x}_{n}$.
Then $\mathbf{x} \in S, \mathbf{y} \in S^{\perp}$ and $\mathbf{x}+\mathbf{y}=\mathbf{0}$. This says that $\mathbf{x}=-\mathbf{y} \in S^{\perp}$. Thus \mathbf{x} is in both S and S^{\perp} and so $\mathbf{x}=\mathbf{0}$. That is,

$$
c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{r} \mathbf{x}_{r}=\mathbf{0}
$$

and so $c_{1}=c_{2}=\cdots=c_{r}=0$ by independence.

To check independence, consider a linear combination

$$
c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{n} \mathbf{x}_{n}=\mathbf{0}
$$

We want to show that all the c_{i} are zero. Set
$\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{r} \mathbf{x}_{r}$ and $\mathbf{y}=c_{r+1} \mathbf{x}_{r+1}+c_{r+2} \mathbf{x}_{r+2}+\cdots+c_{n} \mathbf{x}_{n}$.
Then $\mathbf{x} \in S, \mathbf{y} \in S^{\perp}$ and $\mathbf{x}+\mathbf{y}=\mathbf{0}$. This says that $\mathbf{x}=-\mathbf{y} \in S^{\perp}$. Thus \mathbf{x} is in both S and S^{\perp} and so $\mathbf{x}=\mathbf{0}$. That is,

$$
c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{r} \mathbf{x}_{r}=\mathbf{0}
$$

and so $c_{1}=c_{2}=\cdots=c_{r}=0$ by independence.
Similarly, \mathbf{y} is also in both S and S^{\perp} and the same argument shows that $c_{r+1}=c_{r+2}=\cdots=c_{n}=0$.

To check independence, consider a linear combination

$$
c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{n} \mathbf{x}_{n}=\mathbf{0}
$$

We want to show that all the c_{i} are zero. Set
$\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{r} \mathbf{x}_{r}$ and $\mathbf{y}=c_{r+1} \mathbf{x}_{r+1}+c_{r+2} \mathbf{x}_{r+2}+\cdots+c_{n} \mathbf{x}_{n}$.
Then $\mathbf{x} \in S, \mathbf{y} \in S^{\perp}$ and $\mathbf{x}+\mathbf{y}=\mathbf{0}$. This says that $\mathbf{x}=-\mathbf{y} \in S^{\perp}$. Thus \mathbf{x} is in both S and S^{\perp} and so $\mathbf{x}=\mathbf{0}$. That is,

$$
c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{r} \mathbf{x}_{r}=\mathbf{0}
$$

and so $c_{1}=c_{2}=\cdots=c_{r}=0$ by independence.
Similarly, \mathbf{y} is also in both S and S^{\perp} and the same argument shows that $c_{r+1}=c_{r+2}=\cdots=c_{n}=0$.
Since the set $\left\{\mathbf{x}_{1}, \ldots \mathbf{x}_{n}\right\}$ has n elements and is independent, it must also span \mathbb{R}^{n}, so it is a basis of \mathbb{R}^{n}

Theorem

If S is a subspace of \mathbb{R}^{n} then every vector \mathbf{x} in \mathbb{R}^{n} can be written uniquely as a sum $\mathbf{x}=\mathbf{u}+\mathbf{v}$ with $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$.

Theorem

If S is a subspace of \mathbb{R}^{n} then every vector \mathbf{x} in \mathbb{R}^{n} can be written uniquely as a sum $\mathbf{x}=\mathbf{u}+\mathbf{v}$ with $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$.

The fact that any x can be so written comes from the previous theorem:

Theorem

If S is a subspace of \mathbb{R}^{n} then every vector \mathbf{x} in \mathbb{R}^{n} can be written uniquely as a sum $\mathbf{x}=\mathbf{u}+\mathbf{v}$ with $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$.

The fact that any \mathbf{x} can be so written comes from the previous theorem: Take any basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{r}\right\}$ of S and any basis $\left\{\mathbf{x}_{r+1}, \ldots, \mathbf{x}_{n}\right\}$ of S^{\perp}.

Theorem

If S is a subspace of \mathbb{R}^{n} then every vector \mathbf{x} in \mathbb{R}^{n} can be written uniquely as a sum $\mathbf{x}=\mathbf{u}+\mathbf{v}$ with $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$.

The fact that any \mathbf{x} can be so written comes from the previous theorem: Take any basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{r}\right\}$ of S and any basis $\left\{\mathbf{x}_{r+1}, \ldots, \mathbf{x}_{n}\right\}$ of S^{\perp}. Since their union is a basis for \mathbb{R}^{n} we can write \mathbf{x} as a linear combination

$$
\mathbf{x}=\left(c_{1} \mathbf{x}_{1}+\cdots+c_{r} \mathbf{x}_{r}\right)+\left(c_{r+1} \mathbf{x}_{r+1}+\cdots+c_{n} \mathbf{x}_{n}\right)
$$

Theorem

If S is a subspace of \mathbb{R}^{n} then every vector \mathbf{x} in \mathbb{R}^{n} can be written uniquely as a sum $\mathbf{x}=\mathbf{u}+\mathbf{v}$ with $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$.

The fact that any \mathbf{x} can be so written comes from the previous theorem: Take any basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{r}\right\}$ of S and any basis $\left\{\mathbf{x}_{r+1}, \ldots, \mathbf{x}_{n}\right\}$ of S^{\perp}. Since their union is a basis for \mathbb{R}^{n} we can write \mathbf{x} as a linear combination

$$
\mathbf{x}=\left(c_{1} \mathbf{x}_{1}+\cdots+c_{r} \mathbf{x}_{r}\right)+\left(c_{r+1} \mathbf{x}_{r+1}+\cdots+c_{n} \mathbf{x}_{n}\right)
$$

Call the sum in the first parentheses \mathbf{u} and the sum in the second \mathbf{v} and we have $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$ and $\mathbf{x}=\mathbf{u}+\mathbf{v}$.

Theorem

If S is a subspace of \mathbb{R}^{n} then every vector \mathbf{x} in \mathbb{R}^{n} can be written uniquely as a sum $\mathbf{x}=\mathbf{u}+\mathbf{v}$ with $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$.

The fact that any \mathbf{x} can be so written comes from the previous theorem: Take any basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{r}\right\}$ of S and any basis $\left\{\mathbf{x}_{r+1}, \ldots, \mathbf{x}_{n}\right\}$ of S^{\perp}. Since their union is a basis for \mathbb{R}^{n} we can write \mathbf{x} as a linear combination

$$
\mathbf{x}=\left(c_{1} \mathbf{x}_{1}+\cdots+c_{r} \mathbf{x}_{r}\right)+\left(c_{r+1} \mathbf{x}_{r+1}+\cdots+c_{n} \mathbf{x}_{n}\right)
$$

Call the sum in the first parentheses \mathbf{u} and the sum in the second \mathbf{v} and we have $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$ and $\mathbf{x}=\mathbf{u}+\mathbf{v}$.
To see that \mathbf{u} and \mathbf{v} are unique, suppose there were another pair $\mathbf{u}^{\prime} \in S$ and $\mathbf{v}^{\prime} \in S^{\perp}$ and $\mathbf{x}=\mathbf{u}^{\prime}+\mathbf{v}^{\prime}$. Then

$$
\mathbf{u}+\mathbf{v}=\mathbf{u}^{\prime}+\mathbf{v}^{\prime} \Longrightarrow \mathbf{u}-\mathbf{u}^{\prime}=\mathbf{v}^{\prime}-\mathbf{v}
$$

Theorem

If S is a subspace of \mathbb{R}^{n} then every vector \mathbf{x} in \mathbb{R}^{n} can be written uniquely as a sum $\mathbf{x}=\mathbf{u}+\mathbf{v}$ with $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$.

The fact that any \mathbf{x} can be so written comes from the previous theorem: Take any basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{r}\right\}$ of S and any basis $\left\{\mathbf{x}_{r+1}, \ldots, \mathbf{x}_{n}\right\}$ of S^{\perp}. Since their union is a basis for \mathbb{R}^{n} we can write \mathbf{x} as a linear combination

$$
\mathbf{x}=\left(c_{1} \mathbf{x}_{1}+\cdots+c_{r} \mathbf{x}_{r}\right)+\left(c_{r+1} \mathbf{x}_{r+1}+\cdots+c_{n} \mathbf{x}_{n}\right)
$$

Call the sum in the first parentheses \mathbf{u} and the sum in the second \mathbf{v} and we have $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$ and $\mathbf{x}=\mathbf{u}+\mathbf{v}$.
To see that \mathbf{u} and \mathbf{v} are unique, suppose there were another pair $\mathbf{u}^{\prime} \in S$ and $\mathbf{v}^{\prime} \in S^{\perp}$ and $\mathbf{x}=\mathbf{u}^{\prime}+\mathbf{v}^{\prime}$. Then

$$
\mathbf{u}+\mathbf{v}=\mathbf{u}^{\prime}+\mathbf{v}^{\prime} \Longrightarrow \mathbf{u}-\mathbf{u}^{\prime}=\mathbf{v}^{\prime}-\mathbf{v}
$$

Thus, $\mathbf{u}-\mathbf{u}^{\prime}$ belongs to both S and S^{\perp} and so $\mathbf{u}-\mathbf{u}^{\prime}=\mathbf{0}$ and $\mathbf{u}=\mathbf{u}^{\prime}$.

Theorem

If S is a subspace of \mathbb{R}^{n} then every vector \mathbf{x} in \mathbb{R}^{n} can be written uniquely as a sum $\mathbf{x}=\mathbf{u}+\mathbf{v}$ with $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$.

The fact that any \mathbf{x} can be so written comes from the previous theorem: Take any basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{r}\right\}$ of S and any basis $\left\{\mathbf{x}_{r+1}, \ldots, \mathbf{x}_{n}\right\}$ of S^{\perp}. Since their union is a basis for \mathbb{R}^{n} we can write \mathbf{x} as a linear combination

$$
\mathbf{x}=\left(c_{1} \mathbf{x}_{1}+\cdots+c_{r} \mathbf{x}_{r}\right)+\left(c_{r+1} \mathbf{x}_{r+1}+\cdots+c_{n} \mathbf{x}_{n}\right)
$$

Call the sum in the first parentheses \mathbf{u} and the sum in the second \mathbf{v} and we have $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$ and $\mathbf{x}=\mathbf{u}+\mathbf{v}$.
To see that \mathbf{u} and \mathbf{v} are unique, suppose there were another pair $\mathbf{u}^{\prime} \in S$ and $\mathbf{v}^{\prime} \in S^{\perp}$ and $\mathbf{x}=\mathbf{u}^{\prime}+\mathbf{v}^{\prime}$. Then

$$
\mathbf{u}+\mathbf{v}=\mathbf{u}^{\prime}+\mathbf{v}^{\prime} \Longrightarrow \mathbf{u}-\mathbf{u}^{\prime}=\mathbf{v}^{\prime}-\mathbf{v}
$$

Thus, $\mathbf{u}-\mathbf{u}^{\prime}$ belongs to both S and S^{\perp} and so $\mathbf{u}-\mathbf{u}^{\prime}=\mathbf{0}$ and $\mathbf{u}=\mathbf{u}^{\prime}$. The same argument shows $\mathbf{v}^{\prime}=\mathbf{v}$.

Theorem

If S is a subspace of \mathbb{R}^{n} then $\left(S^{\perp}\right)^{\perp}=S$.

Theorem

If S is a subspace of \mathbb{R}^{n} then $\left(S^{\perp}\right)^{\perp}=S$.
By definition of S^{\perp}, if $\mathbf{x} \in S$ then $\mathbf{x} \perp \mathbf{v}$ for every \mathbf{v} in S^{\perp}.

Theorem

If S is a subspace of \mathbb{R}^{n} then $\left(S^{\perp}\right)^{\perp}=S$.
By definition of S^{\perp}, if $\mathbf{x} \in S$ then $\mathbf{x} \perp \mathbf{v}$ for every \mathbf{v} in S^{\perp}. This says that $\mathbf{x} \in\left(S^{\perp}\right)^{\perp}$.

Theorem

If S is a subspace of \mathbb{R}^{n} then $\left(S^{\perp}\right)^{\perp}=S$.
By definition of S^{\perp}, if $\mathbf{x} \in S$ then $\mathbf{x} \perp \mathbf{v}$ for every \mathbf{v} in S^{\perp}. This says that $\mathbf{x} \in\left(S^{\perp}\right)^{\perp}$. That is, every \mathbf{x} in S is contained in $\left(S^{\perp}\right)^{\perp}$.

Theorem

If S is a subspace of \mathbb{R}^{n} then $\left(S^{\perp}\right)^{\perp}=S$.
By definition of S^{\perp}, if $\mathbf{x} \in S$ then $\mathbf{x} \perp \mathbf{v}$ for every \mathbf{v} in S^{\perp}. This says that $\mathbf{x} \in\left(S^{\perp}\right)^{\perp}$. That is, every \mathbf{x} in S is contained in $\left(S^{\perp}\right)^{\perp}$.
Now suppose $\mathbf{x} \in\left(S^{\perp}\right)^{\perp}$. We want to show that it belongs to S.

Theorem

If S is a subspace of \mathbb{R}^{n} then $\left(S^{\perp}\right)^{\perp}=S$.
By definition of S^{\perp}, if $\mathbf{x} \in S$ then $\mathbf{x} \perp \mathbf{v}$ for every \mathbf{v} in S^{\perp}. This says that $\mathbf{x} \in\left(S^{\perp}\right)^{\perp}$. That is, every \mathbf{x} in S is contained in $\left(S^{\perp}\right)^{\perp}$.
Now suppose $\mathbf{x} \in\left(S^{\perp}\right)^{\perp}$. We want to show that it belongs to S. From before, $\mathbf{x}=\mathbf{u}+\mathbf{v}$ where $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$.

Theorem

If S is a subspace of \mathbb{R}^{n} then $\left(S^{\perp}\right)^{\perp}=S$.
By definition of S^{\perp}, if $\mathbf{x} \in S$ then $\mathbf{x} \perp \mathbf{v}$ for every \mathbf{v} in S^{\perp}. This says that $\mathbf{x} \in\left(S^{\perp}\right)^{\perp}$. That is, every \mathbf{x} in S is contained in $\left(S^{\perp}\right)^{\perp}$.
Now suppose $\mathbf{x} \in\left(S^{\perp}\right)^{\perp}$. We want to show that it belongs to S. From before, $\mathbf{x}=\mathbf{u}+\mathbf{v}$ where $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$. Then $\mathbf{x} \perp \mathbf{v}$, and this means

$$
0=\mathbf{v}^{T} \mathbf{x}=\mathbf{v}^{T}(\mathbf{u}+\mathbf{v})=\mathbf{v}^{T} \mathbf{u}+\mathbf{v}^{T} \mathbf{v}=\mathbf{v}^{T} \mathbf{v}
$$

Theorem

If S is a subspace of \mathbb{R}^{n} then $\left(S^{\perp}\right)^{\perp}=S$.
By definition of S^{\perp}, if $\mathbf{x} \in S$ then $\mathbf{x} \perp \mathbf{v}$ for every \mathbf{v} in S^{\perp}. This says that $\mathbf{x} \in\left(S^{\perp}\right)^{\perp}$. That is, every \mathbf{x} in S is contained in $\left(S^{\perp}\right)^{\perp}$.
Now suppose $\mathbf{x} \in\left(S^{\perp}\right)^{\perp}$. We want to show that it belongs to S. From before, $\mathbf{x}=\mathbf{u}+\mathbf{v}$ where $\mathbf{u} \in S$ and $\mathbf{v} \in S^{\perp}$. Then $\mathbf{x} \perp \mathbf{v}$, and this means

$$
0=\mathbf{v}^{T} \mathbf{x}=\mathbf{v}^{T}(\mathbf{u}+\mathbf{v})=\mathbf{v}^{T} \mathbf{u}+\mathbf{v}^{T} \mathbf{v}=\mathbf{v}^{T} \mathbf{v}
$$

But $\mathbf{v}^{T} \mathbf{v}=0$ implies $\mathbf{v}=\mathbf{0}$. Therefore, $\mathbf{x}=\mathbf{u}+\mathbf{0} \in S$.

Recall what we had seen earlier:

- $\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$ (both sides are the solutions of the same system of equations)

Recall what we had seen earlier:

- $\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$ (both sides are the solutions of the same system of equations)
- $\mathcal{R}\left(A^{T}\right)^{\perp}=\mathcal{N}(A)$ (previous fact applied to the matrix A^{T}).

Recall what we had seen earlier:

- $\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$ (both sides are the solutions of the same system of equations)
- $\mathcal{R}\left(A^{T}\right)^{\perp}=\mathcal{N}(A)$ (previous fact applied to the matrix A^{T}).

Now we can apply the "double \perp " theorem to these two facts to get

- $\mathcal{R}\left(A^{T}\right)=\mathcal{N}(A)^{\perp}$.

Recall what we had seen earlier:

- $\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$ (both sides are the solutions of the same system of equations)
- $\mathcal{R}\left(A^{T}\right)^{\perp}=\mathcal{N}(A)$ (previous fact applied to the matrix A^{T}).

Now we can apply the "double \perp " theorem to these two facts to get

- $\mathcal{R}\left(A^{T}\right)=\mathcal{N}(A)^{\perp}$.
- $\mathcal{R}(A)=\mathcal{N}\left(A^{T}\right)^{\perp}$.

Recall what we had seen earlier:

- $\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$ (both sides are the solutions of the same system of equations)
- $\mathcal{R}\left(A^{T}\right)^{\perp}=\mathcal{N}(A)$ (previous fact applied to the matrix A^{T}).

Now we can apply the "double \perp " theorem to these two facts to get

- $\mathcal{R}\left(A^{T}\right)=\mathcal{N}(A)^{\perp}$.
- $\mathcal{R}(A)=\mathcal{N}\left(A^{T}\right)^{\perp}$.

This last one provides another answer to the question: for which vectors \mathbf{b} does the equation $A \mathrm{x}=\mathrm{b}$ have a solution?

Recall what we had seen earlier:

- $\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$ (both sides are the solutions of the same system of equations)
- $\mathcal{R}\left(A^{T}\right)^{\perp}=\mathcal{N}(A)$ (previous fact applied to the matrix A^{T}).

Now we can apply the "double \perp " theorem to these two facts to get

- $\mathcal{R}\left(A^{T}\right)=\mathcal{N}(A)^{\perp}$.
- $\mathcal{R}(A)=\mathcal{N}\left(A^{T}\right)^{\perp}$.

This last one provides another answer to the question: for which vectors \mathbf{b} does the equation $A \mathbf{x}=\mathbf{b}$ have a solution? The existence of x such that $A \mathbf{x}=\mathbf{b}$ means that \mathbf{b} is in the column space of A.

Recall what we had seen earlier:

- $\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$ (both sides are the solutions of the same system of equations)
- $\mathcal{R}\left(A^{T}\right)^{\perp}=\mathcal{N}(A)$ (previous fact applied to the matrix A^{T}).

Now we can apply the "double \perp " theorem to these two facts to get

- $\mathcal{R}\left(A^{T}\right)=\mathcal{N}(A)^{\perp}$.
- $\mathcal{R}(A)=\mathcal{N}\left(A^{T}\right)^{\perp}$.

This last one provides another answer to the question: for which vectors \mathbf{b} does the equation $A \mathbf{x}=\mathbf{b}$ have a solution? The existence of x such that $A \mathbf{x}=\mathbf{b}$ means that \mathbf{b} is in the column space of A. By the above, \mathbf{b} must be orthogonal to the null space of A^{T}.

Recall what we had seen earlier:

- $\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$ (both sides are the solutions of the same system of equations)
- $\mathcal{R}\left(A^{T}\right)^{\perp}=\mathcal{N}(A)$ (previous fact applied to the matrix A^{T}).

Now we can apply the "double \perp " theorem to these two facts to get

- $\mathcal{R}\left(A^{T}\right)=\mathcal{N}(A)^{\perp}$.
- $\mathcal{R}(A)=\mathcal{N}\left(A^{T}\right)^{\perp}$.

This last one provides another answer to the question: for which vectors \mathbf{b} does the equation $A \mathbf{x}=\mathbf{b}$ have a solution? The existence of x such that $A \mathbf{x}=\mathbf{b}$ means that \mathbf{b} is in the column space of A. By the above, \mathbf{b} must be orthogonal to the null space of A^{T}. If we find a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ for the null space of A^{T}, then the condition for $A \mathbf{x}=\mathbf{b}$ to have a solution is that $\mathbf{v}_{1}^{T} \mathbf{b}=0, \ldots, \mathbf{v}_{k}^{T} \mathbf{b}=0$.

Example: For what vectors \mathbf{b} does the following have a solution?

$$
\begin{aligned}
2 x_{1}+2 x_{2}+4 x_{3} & =b_{1} \\
x_{1}++x_{3} & =b_{2} \\
x_{2}+x_{3} & =b_{3}
\end{aligned}
$$

Example: For what vectors \mathbf{b} does the following have a solution?

$$
\begin{aligned}
2 x_{1}+2 x_{2}+4 x_{3} & =b_{1} \\
x_{1}++x_{3} & =b_{2} \\
x_{2}+x_{3} & =b_{3}
\end{aligned}
$$

Take the system matrix A, transpose it, and find the null space of A^{T}

Example: For what vectors \mathbf{b} does the following have a solution?

$$
\begin{aligned}
2 x_{1}+2 x_{2}+4 x_{3} & =b_{1} \\
x_{1}++x_{3} & =b_{2} \\
x_{2}+x_{3} & =b_{3}
\end{aligned}
$$

Take the system matrix A, transpose it, and find the null space of A^{T}

$$
\left(\begin{array}{lll}
2 & 1 & 0 \\
2 & 0 & 1 \\
4 & 1 & 1
\end{array}\right) \xrightarrow{6 \mathrm{EROs}}\left(\begin{array}{ccc}
1 & 0 & 1 / 2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) \text { i.e. }\left\{\begin{array}{r}
x_{1}+(1 / 2) x_{3}=0 \\
x_{2}-x_{3}=0
\end{array}\right.
$$

Example: For what vectors \mathbf{b} does the following have a solution?

$$
\begin{aligned}
2 x_{1}+2 x_{2}+4 x_{3} & =b_{1} \\
x_{1}++x_{3} & =b_{2} \\
x_{2}+x_{3} & =b_{3}
\end{aligned}
$$

Take the system matrix A, transpose it, and find the null space of A^{T}

$$
\left(\begin{array}{lll}
2 & 1 & 0 \\
2 & 0 & 1 \\
4 & 1 & 1
\end{array}\right) \xrightarrow{6 \mathrm{EROs}}\left(\begin{array}{ccc}
1 & 0 & 1 / 2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) \quad \text { i.e. }\left\{\begin{array}{r}
x_{1}+(1 / 2) x_{3}=0 \\
x_{2}-x_{3}=0
\end{array}\right.
$$

Then $\mathcal{N}\left(A^{T}\right)$ is spanned by one vector $\left(\begin{array}{c}-1 / 2 \\ 1 \\ 1\end{array}\right)$.

Example: For what vectors \mathbf{b} does the following have a solution?

$$
\begin{aligned}
2 x_{1}+2 x_{2}+4 x_{3} & =b_{1} \\
x_{1}++x_{3} & =b_{2} \\
x_{2}+x_{3} & =b_{3}
\end{aligned}
$$

Take the system matrix A, transpose it, and find the null space of A^{T}

$$
\left(\begin{array}{lll}
2 & 1 & 0 \\
2 & 0 & 1 \\
4 & 1 & 1
\end{array}\right) \xrightarrow{6 \mathrm{EROs}}\left(\begin{array}{ccc}
1 & 0 & 1 / 2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) \text { i.e. }\left\{\begin{array}{r}
x_{1}+(1 / 2) x_{3}=0 \\
x_{2}-x_{3}=0
\end{array}\right.
$$

Then $\mathcal{N}\left(A^{T}\right)$ is spanned by one vector $\left(\begin{array}{c}-1 / 2 \\ 1 \\ 1\end{array}\right)$. So, we conclude that a solution exists if and only if

$$
\left(\begin{array}{ccc}
-1 / 2 & 1 & 1
\end{array}\right) \mathbf{b}=-(1 / 2) b_{1}+b_{2}+b_{3}=0
$$

