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Theorem

R(A)⊥ = N (AT ) and N (A)⊥ = R(AT ).

To get the second half we need quite a bit of prep work. But first, we note
that applying the first half to AT (in place of A) gives us
R(AT )⊥ = N (A). Ultimately, we will show that (S⊥)⊥ = S. If we apply
that to S = R(AT ) we get

R(AT ) = (R(AT )⊥)⊥ = N (A)⊥,

which is the second half of the above theorem.

Theorem

If S is a subspace of Rn then dimS + dimS⊥ = n. Furthermore, if
{x1, . . . ,xr} is a basis for S and {xr+1, . . . ,xn} is a basis for S⊥, then
{x1, . . . ,xn} is a basis for Rn.
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If we take the basis for S and make them the columns of a matrix A, then
S = R(A) and dimS equals the rank of A.

By what we have already
proved, S⊥ = R(A)⊥ = N (AT ). Since the rows of A are effectively the
columns of AT , it follows that A and AT have the same rank. Moreover,
since N (AT ) = S⊥, the nullity of AT equals dimS⊥.

The width of AT is n and so

dimS + dimS⊥ = rankAT + nullityAT = widthAT = n.

To see that the two bases for S and S⊥ together form a basis for Rn, we
first show it is independent.
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To check independence, consider a linear combination

c1x1 + c2x2 + · · ·+ cnxn = 0.

We want to show that all the ci are zero. Set

x = c1x1+ c2x2+ · · ·+ crxr and y = cr+1xr+1+ cr+2xr+2+ · · ·+ cnxn.

Then x ∈ S, y ∈ S⊥ and x+ y = 0. This says that x = −y ∈ S⊥. Thus
x is in both S and S⊥ and so x = 0. That is,

c1x1 + c2x2 + · · ·+ crxr = 0

and so c1 = c2 = · · · = cr = 0 by independence.

Similarly, y is also in both S and S⊥ and the same argument shows that
cr+1 = cr+2 = · · · = cn = 0.

Since the set {x1, . . .xn} has n elements and is independent, it must also
span Rn, so it is a basis of Rn
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Theorem

If S is a subspace of Rn then every vector x in Rn can be written uniquely
as a sum x = u+ v with u ∈ S and v ∈ S⊥.

The fact that any x can be so written comes from the previous theorem:
Take any basis {x1, . . . ,xr} of S and any basis {xr+1, . . . ,xn} of S⊥.
Since their union is a basis for Rn we can write x as a linear combination

x = (c1x1 + · · ·+ crxr) + (cr+1xr+1 + · · ·+ cnxn)

Call the sum in the first parentheses u and the sum in the second v and
we have u ∈ S and v ∈ S⊥ and x = u+ v.

To see that u and v are unique, suppose there were another pair u′ ∈ S
and v′ ∈ S⊥ and x = u′ + v′. Then

u+ v = u′ + v′ =⇒ u− u′ = v′ − v

Thus, u− u′ belongs to both S and S⊥ and so u− u′ = 0 and u = u′.

The same argument shows v′ = v.
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Theorem

If S is a subspace of Rn then (S⊥)⊥ = S.

By definition of S⊥, if x ∈ S then x ⊥ v for every v in S⊥. This says that
x ∈ (S⊥)⊥. That is, every x in S is contained in (S⊥)⊥.

Now suppose x ∈ (S⊥)⊥. We want to show that it belongs to S. From
before, x = u+ v where u ∈ S and v ∈ S⊥. Then x ⊥ v, and this means

0 = vTx = vT (u+ v) = vTu+ vTv = vTv

But vTv = 0 implies v = 0. Therefore, x = u+ 0 ∈ S.
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Recall what we had seen earlier:

• R(A)⊥ = N (AT ) (both sides are the solutions of the same system of
equations)

• R(AT )⊥ = N (A) (previous fact applied to the matrix AT ).

Now we can apply the ”double ⊥” theorem to these two facts to get

• R(AT ) = N (A)⊥.

• R(A) = N (AT )⊥.

This last one provides another answer to the question: for which vectors b
does the equation Ax = b have a solution? The existence of x such that
Ax = b means that b is in the column space of A. By the above, b must
be orthogonal to the null space of AT . If we find a basis {v1, . . . ,vk} for
the null space of AT , then the condition for Ax = b to have a solution is
that vT

1 b = 0, . . . ,vT
k b = 0.

7 / 8



Recall what we had seen earlier:

• R(A)⊥ = N (AT ) (both sides are the solutions of the same system of
equations)

• R(AT )⊥ = N (A) (previous fact applied to the matrix AT ).

Now we can apply the ”double ⊥” theorem to these two facts to get

• R(AT ) = N (A)⊥.

• R(A) = N (AT )⊥.

This last one provides another answer to the question: for which vectors b
does the equation Ax = b have a solution? The existence of x such that
Ax = b means that b is in the column space of A. By the above, b must
be orthogonal to the null space of AT . If we find a basis {v1, . . . ,vk} for
the null space of AT , then the condition for Ax = b to have a solution is
that vT

1 b = 0, . . . ,vT
k b = 0.

7 / 8



Recall what we had seen earlier:

• R(A)⊥ = N (AT ) (both sides are the solutions of the same system of
equations)

• R(AT )⊥ = N (A) (previous fact applied to the matrix AT ).

Now we can apply the ”double ⊥” theorem to these two facts to get

• R(AT ) = N (A)⊥.

• R(A) = N (AT )⊥.

This last one provides another answer to the question: for which vectors b
does the equation Ax = b have a solution? The existence of x such that
Ax = b means that b is in the column space of A. By the above, b must
be orthogonal to the null space of AT . If we find a basis {v1, . . . ,vk} for
the null space of AT , then the condition for Ax = b to have a solution is
that vT

1 b = 0, . . . ,vT
k b = 0.

7 / 8



Recall what we had seen earlier:

• R(A)⊥ = N (AT ) (both sides are the solutions of the same system of
equations)

• R(AT )⊥ = N (A) (previous fact applied to the matrix AT ).

Now we can apply the ”double ⊥” theorem to these two facts to get

• R(AT ) = N (A)⊥.

• R(A) = N (AT )⊥.

This last one provides another answer to the question: for which vectors b
does the equation Ax = b have a solution? The existence of x such that
Ax = b means that b is in the column space of A. By the above, b must
be orthogonal to the null space of AT . If we find a basis {v1, . . . ,vk} for
the null space of AT , then the condition for Ax = b to have a solution is
that vT

1 b = 0, . . . ,vT
k b = 0.

7 / 8



Recall what we had seen earlier:

• R(A)⊥ = N (AT ) (both sides are the solutions of the same system of
equations)

• R(AT )⊥ = N (A) (previous fact applied to the matrix AT ).

Now we can apply the ”double ⊥” theorem to these two facts to get

• R(AT ) = N (A)⊥.

• R(A) = N (AT )⊥.

This last one provides another answer to the question: for which vectors b
does the equation Ax = b have a solution?

The existence of x such that
Ax = b means that b is in the column space of A. By the above, b must
be orthogonal to the null space of AT . If we find a basis {v1, . . . ,vk} for
the null space of AT , then the condition for Ax = b to have a solution is
that vT

1 b = 0, . . . ,vT
k b = 0.

7 / 8



Recall what we had seen earlier:

• R(A)⊥ = N (AT ) (both sides are the solutions of the same system of
equations)

• R(AT )⊥ = N (A) (previous fact applied to the matrix AT ).

Now we can apply the ”double ⊥” theorem to these two facts to get

• R(AT ) = N (A)⊥.

• R(A) = N (AT )⊥.

This last one provides another answer to the question: for which vectors b
does the equation Ax = b have a solution? The existence of x such that
Ax = b means that b is in the column space of A.

By the above, b must
be orthogonal to the null space of AT . If we find a basis {v1, . . . ,vk} for
the null space of AT , then the condition for Ax = b to have a solution is
that vT

1 b = 0, . . . ,vT
k b = 0.

7 / 8



Recall what we had seen earlier:

• R(A)⊥ = N (AT ) (both sides are the solutions of the same system of
equations)

• R(AT )⊥ = N (A) (previous fact applied to the matrix AT ).

Now we can apply the ”double ⊥” theorem to these two facts to get

• R(AT ) = N (A)⊥.

• R(A) = N (AT )⊥.

This last one provides another answer to the question: for which vectors b
does the equation Ax = b have a solution? The existence of x such that
Ax = b means that b is in the column space of A. By the above, b must
be orthogonal to the null space of AT .

If we find a basis {v1, . . . ,vk} for
the null space of AT , then the condition for Ax = b to have a solution is
that vT

1 b = 0, . . . ,vT
k b = 0.

7 / 8



Recall what we had seen earlier:

• R(A)⊥ = N (AT ) (both sides are the solutions of the same system of
equations)

• R(AT )⊥ = N (A) (previous fact applied to the matrix AT ).

Now we can apply the ”double ⊥” theorem to these two facts to get

• R(AT ) = N (A)⊥.

• R(A) = N (AT )⊥.

This last one provides another answer to the question: for which vectors b
does the equation Ax = b have a solution? The existence of x such that
Ax = b means that b is in the column space of A. By the above, b must
be orthogonal to the null space of AT . If we find a basis {v1, . . . ,vk} for
the null space of AT , then the condition for Ax = b to have a solution is
that vT

1 b = 0, . . . ,vT
k b = 0.

7 / 8



Example: For what vectors b does the following have a solution?

2x1 + 2x2 + 4x3 = b1

x1 + + x3 = b2

x2 + x3 = b3

Take the system matrix A, transpose it, and find the null space of AT
2 1 0
2 0 1
4 1 1

 6 EROs−−−−→


1 0 1/2
0 1 −1
0 0 0

 i.e.

{
x1 + (1/2)x3 = 0

x2 − x3 = 0

Then N (AT ) is spanned by one vector


−1/2
1
1

. So, we conclude that

a solution exists if and only if −1/2 1 1
b = −(1/2)b1 + b2 + b3 = 0
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