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. . a
line perpendicular to [ b

a(z —x0) + b(y —yo) = 0.

] that passes through Py = (xg,yo) is

In this setup, the line through (0, 1) with slope 1/3 would have [ —; ]

as a perpendicular vector (recall that the perpendicular to a line with slope
m has slope —1/m.)

Then the distance from a point P = (x,y) to the line would be the length
of the projection of ]ﬁ’ onto the perpendicular vector. That is,

a(xr —x0) + b(y — yo)

distance = (@ + b2)1/2

Getting the nearest point (Q in this setup may not seem obvious, but it
could be gotten from the fact that the length of 627’ is this distance and

. . . . . a
its direction is the same or opposite to that of b
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That is,

QP -

a(z — o) + b(y — yo)

a? + b2

(7]
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To get @, you subtract this from the coordinates of P.
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That is,

Qﬁ}):a(m—ﬁfo)er(y—yo) [ a ]

a? + b? b
To get @, you subtract this from the coordinates of P.
The same thing can be done with planes.
The distance from a point to a plane
If P = (z,y,z) is a point and

a(x —x0) +b(y —yo) +c(z —20) =0

is the equation of a plane that contains the point Py = (xg, Yo, 20), then
the distance from P to that plane is the length of the projection of
a
X = ]ﬁ’ onto the perpendicular vectora= | b |. This is the absolute
c
value of the scalar projection.

a(x — o) + b(y — yo) + c(z — 20)
(a2 4 b2 4 ¢2)1/2

T

Il
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To get the point @ on the plane that is nearest to P we use

a(x —xo) + by — yo)+C(Z—Zo)
Cﬁ) a? + b2 4 2

A plane can be specified in other ways than containing a point and being
perpendicular to some vector.
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To get the point @ on the plane that is nearest to P we use

a(x — xg) + by — yo)—i'C(Z—Zo)
Cﬁ) a? + b2 4 2

A plane can be specified in other ways than containing a point and being
perpendicular to some vector. The most common other way is to specify
three points that lie in the plane.

Example: find an equation for the plane that contains the points
Py=(1,0,1), P, = (2,—1,4), and P» = (0,2,0).

1 J—
The vectors a; = POB = -1 and az = POR = [

3

lie in the plane. We can find a vector perpendicular to the plane by finding
a vector orthogonal to both a; and ay. We saw how to do this earlier (with
-5
exactly these two vectors). One such perpendicular vector is | —2
1
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Then one equation for the plane is obtained using Py and this
perpendicular vector:

—5x—1)—-2y—0)+(2—1)=0 or —bz—2y+2+4=0
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Then one equation for the plane is obtained using Py and this
perpendicular vector:

—5x—1)—-2y—0)+(2—1)=0 or —bz—2y+2+4=0

Orthogonal subspaces

Definition
If V and W are subspaces of R™ then we say they are orthogonal
subspaces if every vector in V' is orthogonal to every vector in W.

One way to get orthogonal subspaces is to take the spans of sets that are

orthogonal: Suppose vi,va,..., v, and w1, Wa, ..., W, are vectors such
that v; L w; forevery 1 <i<rand1<j<s. Then

V = Span(vy,ve,...,v,) and W = Span(wy, wa, ..., W) are orthogonal
subspaces.
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For example, in R?, both the vector e;, ey are orthogonal to es. Thus, the
following are orthogonal subspaces

« 0
V= 15} a,BER ) and W = 0 vyeR
0
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For example, in R?, both the vector e;, ey are orthogonal to es. Thus, the
following are orthogonal subspaces

« 0
V= 15} a,BER ) and W = 0 vyeR

[an)
-2

Definition
If S is a subspace of R™ then the orthogonal complement of S is the set of
all vectors that are orthogonal to every vector in S. We denote this set
S+, Formally:

St ={xeR"|xTy=0forally € S}.
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Properties of orthogonal subspaces

1. If V and W are orthogonal subspaces of R™ then the only vector that
belongs to both V' and W is 0. Proof: if x € V and x € W then by
orthogonality x”x = 0. But we have seen this means x = 0.
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Proof of closure under scalar multiplication: if x € S+ and a € R,
and if y is any vector in S then y” (ax) = ay’x = a- 0= 0. This
means ax € S+.

Application to matrices.

One kind of subspace of R" is the span of a set of vectors. If we put those
vectors in a matrix A, this is the column space of that matrix.

Another kind is the null space of an m X n matrix.

We will see how to calculate the orthogonal complement of both of these
kinds of subspaces.
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