Scalar Product (cont.)

D. H. Luecking

27 March 2024

A line is not that different from a plane.

A line is not that different from a plane. For example, the equation of a line perpendicular to $\binom{a}{b}$ that passes through $P_{0}=\left(x_{0}, y_{0}\right)$ is $a\left(x-x_{0}\right)+b\left(y-y_{0}\right)=0$.

A line is not that different from a plane. For example, the equation of a line perpendicular to $\binom{a}{b}$ that passes through $P_{0}=\left(x_{0}, y_{0}\right)$ is $a\left(x-x_{0}\right)+b\left(y-y_{0}\right)=0$.
In this setup, the line through $(0,1)$ with slope $1 / 3$ would have $\binom{-1}{3}$ as a perpendicular vector

A line is not that different from a plane. For example, the equation of a line perpendicular to $\binom{a}{b}$ that passes through $P_{0}=\left(x_{0}, y_{0}\right)$ is $a\left(x-x_{0}\right)+b\left(y-y_{0}\right)=0$.
In this setup, the line through $(0,1)$ with slope $1 / 3$ would have $\binom{-1}{3}$
as a perpendicular vector (recall that the perpendicular to a line with slope m has slope $-1 / m$.)

A line is not that different from a plane. For example, the equation of a line perpendicular to $\binom{a}{b}$ that passes through $P_{0}=\left(x_{0}, y_{0}\right)$ is $a\left(x-x_{0}\right)+b\left(y-y_{0}\right)=0$.
In this setup, the line through $(0,1)$ with slope $1 / 3$ would have $\binom{-1}{3}$
as a perpendicular vector (recall that the perpendicular to a line with slope m has slope $-1 / m$.)
Then the distance from a point $P=(x, y)$ to the line would be the length of the projection of $\overrightarrow{P_{0} P}$ onto the perpendicular vector. That is,

$$
\text { distance }=\left|\frac{a\left(x-x_{0}\right)+b\left(y-y_{0}\right)}{\left(a^{2}+b^{2}\right)^{1 / 2}}\right|
$$

A line is not that different from a plane. For example, the equation of a line perpendicular to $\binom{a}{b}$ that passes through $P_{0}=\left(x_{0}, y_{0}\right)$ is $a\left(x-x_{0}\right)+b\left(y-y_{0}\right)=0$.
In this setup, the line through $(0,1)$ with slope $1 / 3$ would have $\binom{-1}{3}$ as a perpendicular vector (recall that the perpendicular to a line with slope m has slope $-1 / m$.)
Then the distance from a point $P=(x, y)$ to the line would be the length of the projection of $\overrightarrow{P_{0} P}$ onto the perpendicular vector. That is,

$$
\text { distance }=\left|\frac{a\left(x-x_{0}\right)+b\left(y-y_{0}\right)}{\left(a^{2}+b^{2}\right)^{1 / 2}}\right|
$$

Getting the nearest point Q in this setup may not seem obvious,

A line is not that different from a plane. For example, the equation of a line perpendicular to $\binom{a}{b}$ that passes through $P_{0}=\left(x_{0}, y_{0}\right)$ is $a\left(x-x_{0}\right)+b\left(y-y_{0}\right)=0$.
In this setup, the line through $(0,1)$ with slope $1 / 3$ would have $\binom{-1}{3}$ as a perpendicular vector (recall that the perpendicular to a line with slope m has slope $-1 / m$.)
Then the distance from a point $P=(x, y)$ to the line would be the length of the projection of $\overrightarrow{P_{0} P}$ onto the perpendicular vector. That is,

$$
\text { distance }=\left|\frac{a\left(x-x_{0}\right)+b\left(y-y_{0}\right)}{\left(a^{2}+b^{2}\right)^{1 / 2}}\right|
$$

Getting the nearest point Q in this setup may not seem obvious, but it could be gotten from the fact that the length of $\overrightarrow{Q P}$ is this distance and its direction is the same or opposite to that of $\binom{a}{b}$.

That is,

$$
\overrightarrow{Q P}=\frac{a\left(x-x_{0}\right)+b\left(y-y_{0}\right)}{a^{2}+b^{2}}\binom{a}{b}
$$

That is,

$$
\overrightarrow{Q P}=\frac{a\left(x-x_{0}\right)+b\left(y-y_{0}\right)}{a^{2}+b^{2}}\binom{a}{b}
$$

To get Q, you subtract this from the coordinates of P.

That is,

$$
\overrightarrow{Q P}=\frac{a\left(x-x_{0}\right)+b\left(y-y_{0}\right)}{a^{2}+b^{2}}\binom{a}{b}
$$

To get Q, you subtract this from the coordinates of P. The same thing can be done with planes. The distance from a point to a plane

That is,

$$
\overrightarrow{Q P}=\frac{a\left(x-x_{0}\right)+b\left(y-y_{0}\right)}{a^{2}+b^{2}}\binom{a}{b}
$$

To get Q, you subtract this from the coordinates of P.
The same thing can be done with planes.
The distance from a point to a plane
If $P=(x, y, z)$ is a point and

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

is the equation of a plane that contains the point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$,

That is,

$$
\overrightarrow{Q P}=\frac{a\left(x-x_{0}\right)+b\left(y-y_{0}\right)}{a^{2}+b^{2}}\binom{a}{b}
$$

To get Q, you subtract this from the coordinates of P.
The same thing can be done with planes.
The distance from a point to a plane
If $P=(x, y, z)$ is a point and

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

is the equation of a plane that contains the point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$, then the distance from P to that plane is the length of the projection of
$\mathbf{x}=\overrightarrow{P_{0} P}$ onto the perpendicular vector $\mathbf{a}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$. This is the absolute value of the scalar projection.

$$
\left|\frac{\mathbf{x}^{T} \mathbf{a}}{\|\mathbf{a}\|}\right|=\left|\frac{a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)}{\left(a^{2}+b^{2}+c^{2}\right)^{1 / 2}}\right|
$$

To get the point Q on the plane that is nearest to P we use

$$
\overrightarrow{Q P}=\frac{a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)}{a^{2}+b^{2}+c^{2}} \mathbf{a} .
$$

A plane can be specified in other ways than containing a point and being perpendicular to some vector.

To get the point Q on the plane that is nearest to P we use

$$
\overrightarrow{Q P}=\frac{a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)}{a^{2}+b^{2}+c^{2}} \mathbf{a} .
$$

A plane can be specified in other ways than containing a point and being perpendicular to some vector. The most common other way is to specify three points that lie in the plane.

To get the point Q on the plane that is nearest to P we use

$$
\overrightarrow{Q P}=\frac{a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)}{a^{2}+b^{2}+c^{2}} \mathbf{a} .
$$

A plane can be specified in other ways than containing a point and being perpendicular to some vector. The most common other way is to specify three points that lie in the plane.
Example: find an equation for the plane that contains the points $P_{0}=(1,0,1), P_{1}=(2,-1,4)$, and $P_{2}=(0,2,0)$.

To get the point Q on the plane that is nearest to P we use

$$
\overrightarrow{Q P}=\frac{a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)}{a^{2}+b^{2}+c^{2}} \mathbf{a} .
$$

A plane can be specified in other ways than containing a point and being perpendicular to some vector. The most common other way is to specify three points that lie in the plane.
Example: find an equation for the plane that contains the points $P_{0}=(1,0,1), P_{1}=(2,-1,4)$, and $P_{2}=(0,2,0)$.

$$
\text { The vectors } \mathbf{a}_{1}=\vec{P}_{0} \vec{P}_{1}=\left(\begin{array}{r}
1 \\
-1 \\
3
\end{array}\right) \quad \text { and } \quad \mathbf{a}_{2}=\vec{P}_{0} \vec{P}_{2}=\left(\begin{array}{r}
-1 \\
2 \\
-1
\end{array}\right)
$$

lie in the plane.

To get the point Q on the plane that is nearest to P we use

$$
\overrightarrow{Q P}=\frac{a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)}{a^{2}+b^{2}+c^{2}} \mathbf{a} .
$$

A plane can be specified in other ways than containing a point and being perpendicular to some vector. The most common other way is to specify three points that lie in the plane.
Example: find an equation for the plane that contains the points $P_{0}=(1,0,1), P_{1}=(2,-1,4)$, and $P_{2}=(0,2,0)$.

$$
\text { The vectors } \mathbf{a}_{1}=\vec{P}_{0} \vec{P}_{1}=\left(\begin{array}{r}
1 \\
-1 \\
3
\end{array}\right) \quad \text { and } \quad \mathbf{a}_{2}={\overrightarrow{P_{0} P}}_{2}=\left(\begin{array}{r}
-1 \\
2 \\
-1
\end{array}\right)
$$

lie in the plane. We can find a vector perpendicular to the plane by finding a vector orthogonal to both \mathbf{a}_{1} and \mathbf{a}_{2}.

To get the point Q on the plane that is nearest to P we use

$$
\overrightarrow{Q P}=\frac{a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)}{a^{2}+b^{2}+c^{2}} \mathbf{a}
$$

A plane can be specified in other ways than containing a point and being perpendicular to some vector. The most common other way is to specify three points that lie in the plane.
Example: find an equation for the plane that contains the points $P_{0}=(1,0,1), P_{1}=(2,-1,4)$, and $P_{2}=(0,2,0)$.

$$
\text { The vectors } \mathbf{a}_{1}=\vec{P}_{0} \vec{P}_{1}=\left(\begin{array}{r}
1 \\
-1 \\
3
\end{array}\right) \quad \text { and } \quad \mathbf{a}_{2}={\overrightarrow{P_{0} P}}_{2}=\left(\begin{array}{r}
-1 \\
2 \\
-1
\end{array}\right)
$$

lie in the plane. We can find a vector perpendicular to the plane by finding a vector orthogonal to both \mathbf{a}_{1} and \mathbf{a}_{2}. We saw how to do this earlier

To get the point Q on the plane that is nearest to P we use

$$
\overrightarrow{Q P}=\frac{a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)}{a^{2}+b^{2}+c^{2}} \mathbf{a}
$$

A plane can be specified in other ways than containing a point and being perpendicular to some vector. The most common other way is to specify three points that lie in the plane.
Example: find an equation for the plane that contains the points $P_{0}=(1,0,1), P_{1}=(2,-1,4)$, and $P_{2}=(0,2,0)$.

$$
\text { The vectors } \mathbf{a}_{1}=\vec{P}_{0} \vec{P}_{1}=\left(\begin{array}{r}
1 \\
-1 \\
3
\end{array}\right) \quad \text { and } \quad \mathbf{a}_{2}={\overrightarrow{P_{0} P}}_{2}=\left(\begin{array}{r}
-1 \\
2 \\
-1
\end{array}\right)
$$

lie in the plane. We can find a vector perpendicular to the plane by finding a vector orthogonal to both \mathbf{a}_{1} and \mathbf{a}_{2}. We saw how to do this earlier (with
exactly these two vectors).

To get the point Q on the plane that is nearest to P we use

$$
\overrightarrow{Q P}=\frac{a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)}{a^{2}+b^{2}+c^{2}} \mathbf{a}
$$

A plane can be specified in other ways than containing a point and being perpendicular to some vector. The most common other way is to specify three points that lie in the plane.
Example: find an equation for the plane that contains the points $P_{0}=(1,0,1), P_{1}=(2,-1,4)$, and $P_{2}=(0,2,0)$.

$$
\text { The vectors } \mathbf{a}_{1}=\vec{P}_{0} \vec{P}_{1}=\left(\begin{array}{r}
1 \\
-1 \\
3
\end{array}\right) \quad \text { and } \quad \mathbf{a}_{2}={\overrightarrow{P_{0} P}}_{2}=\left(\begin{array}{r}
-1 \\
2 \\
-1
\end{array}\right)
$$

lie in the plane. We can find a vector perpendicular to the plane by finding a vector orthogonal to both \mathbf{a}_{1} and \mathbf{a}_{2}. We saw how to do this earlier (with
exactly these two vectors). One such perpendicular vector is $\left(\begin{array}{r}-5 \\ -2 \\ 1\end{array}\right)$

Then one equation for the plane is obtained using P_{0} and this perpendicular vector:

$$
-5(x-1)-2(y-0)+(z-1)=0 \text { or }-5 x-2 y+z+4=0
$$

Then one equation for the plane is obtained using P_{0} and this perpendicular vector:

$$
-5(x-1)-2(y-0)+(z-1)=0 \text { or }-5 x-2 y+z+4=0
$$

Orthogonal subspaces

Then one equation for the plane is obtained using P_{0} and this perpendicular vector:

$$
-5(x-1)-2(y-0)+(z-1)=0 \text { or }-5 x-2 y+z+4=0
$$

Orthogonal subspaces

Definition

If V and W are subspaces of \mathbb{R}^{n} then we say they are orthogonal subspaces if every vector in V is orthogonal to every vector in W.

Then one equation for the plane is obtained using P_{0} and this perpendicular vector:

$$
-5(x-1)-2(y-0)+(z-1)=0 \text { or }-5 x-2 y+z+4=0
$$

Orthogonal subspaces

Definition

If V and W are subspaces of \mathbb{R}^{n} then we say they are orthogonal subspaces if every vector in V is orthogonal to every vector in W.

One way to get orthogonal subspaces is to take the spans of sets that are orthogonal:

Then one equation for the plane is obtained using P_{0} and this perpendicular vector:

$$
-5(x-1)-2(y-0)+(z-1)=0 \text { or }-5 x-2 y+z+4=0
$$

Orthogonal subspaces

Definition

If V and W are subspaces of \mathbb{R}^{n} then we say they are orthogonal subspaces if every vector in V is orthogonal to every vector in W.

One way to get orthogonal subspaces is to take the spans of sets that are orthogonal: Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ and $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{s}$ are vectors such that $\mathbf{v}_{i} \perp \mathbf{w}_{j}$ for every $1 \leq i \leq r$ and $1 \leq j \leq s$.

Then one equation for the plane is obtained using P_{0} and this perpendicular vector:

$$
-5(x-1)-2(y-0)+(z-1)=0 \text { or }-5 x-2 y+z+4=0
$$

Orthogonal subspaces

Definition

If V and W are subspaces of \mathbb{R}^{n} then we say they are orthogonal subspaces if every vector in V is orthogonal to every vector in W.

One way to get orthogonal subspaces is to take the spans of sets that are orthogonal: Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ and $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{s}$ are vectors such that $\mathbf{v}_{i} \perp \mathbf{w}_{j}$ for every $1 \leq i \leq r$ and $1 \leq j \leq s$. Then $V=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right)$ and $W=\operatorname{Span}\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{s}\right)$ are orthogonal subspaces.

For example, in \mathbb{R}^{3}, both the vector $\mathbf{e}_{1}, \mathbf{e}_{2}$ are orthogonal to \mathbf{e}_{3}. Thus, the following are orthogonal subspaces

$$
V=\left\{\left.\left(\begin{array}{c}
\alpha \\
\beta \\
0
\end{array}\right) \right\rvert\, \alpha, \beta \in \mathbb{R}\right\} \quad \text { and } W=\left\{\left.\left(\begin{array}{l}
0 \\
0 \\
\gamma
\end{array}\right) \right\rvert\, \gamma \in \mathbb{R}\right\}
$$

For example, in \mathbb{R}^{3}, both the vector $\mathbf{e}_{1}, \mathbf{e}_{2}$ are orthogonal to \mathbf{e}_{3}. Thus, the following are orthogonal subspaces

$$
V=\left\{\left.\left(\begin{array}{c}
\alpha \\
\beta \\
0
\end{array}\right) \right\rvert\, \alpha, \beta \in \mathbb{R}\right\} \quad \text { and } W=\left\{\left.\left(\begin{array}{l}
0 \\
0 \\
\gamma
\end{array}\right) \right\rvert\, \gamma \in \mathbb{R}\right\}
$$

Definition

If S is a subspace of \mathbb{R}^{n} then the orthogonal complement of S is the set of all vectors that are orthogonal to every vector in S. We denote this set S^{\perp}. Formally:

$$
S^{\perp}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x}^{T} \mathbf{y}=0 \text { for all } \mathbf{y} \in S\right\}
$$

Properties of orthogonal subspaces

Properties of orthogonal subspaces

1. If V and W are orthogonal subspaces of \mathbb{R}^{n} then the only vector that belongs to both V and W is $\mathbf{0}$. Proof: if $\mathbf{x} \in V$ and $\mathbf{x} \in W$ then by orthogonality $\mathbf{x}^{T} \mathbf{x}=0$. But we have seen this means $\mathbf{x}=\mathbf{0}$.

Properties of orthogonal subspaces

1. If V and W are orthogonal subspaces of \mathbb{R}^{n} then the only vector that belongs to both V and W is $\mathbf{0}$. Proof: if $\mathbf{x} \in V$ and $\mathbf{x} \in W$ then by orthogonality $\mathbf{x}^{T} \mathbf{x}=0$. But we have seen this means $\mathbf{x}=\mathbf{0}$.
2. For any subspace S, S^{\perp} is also a subspace. Proof of closure under addition: if $\mathbf{x}_{1} \in S^{\perp}$ and $\mathbf{x}_{2} \in S^{\perp}$, and if \mathbf{y} is any vector in S then $\mathbf{y}^{T}\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)=\mathbf{y}^{T} \mathbf{x}_{1}+\mathbf{y}^{T} \mathbf{x}_{2}=0+0=0$. This means $\mathbf{x}_{1}+\mathbf{x}_{2} \in S^{\perp}$.

Properties of orthogonal subspaces

1. If V and W are orthogonal subspaces of \mathbb{R}^{n} then the only vector that belongs to both V and W is $\mathbf{0}$. Proof: if $\mathbf{x} \in V$ and $\mathbf{x} \in W$ then by orthogonality $\mathbf{x}^{T} \mathbf{x}=0$. But we have seen this means $\mathbf{x}=\mathbf{0}$.
2. For any subspace S, S^{\perp} is also a subspace. Proof of closure under addition: if $\mathbf{x}_{1} \in S^{\perp}$ and $\mathbf{x}_{2} \in S^{\perp}$, and if \mathbf{y} is any vector in S then $\mathbf{y}^{T}\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)=\mathbf{y}^{T} \mathbf{x}_{1}+\mathbf{y}^{T} \mathbf{x}_{2}=0+0=0$. This means $\mathbf{x}_{1}+\mathbf{x}_{2} \in S^{\perp}$. Proof of closure under scalar multiplication: if $\mathbf{x} \in S^{\perp}$ and $\alpha \in \mathbb{R}$, and if \mathbf{y} is any vector in S then $\mathbf{y}^{T}(\alpha \mathbf{x})=\alpha \mathbf{y}^{T} \mathbf{x}=\alpha \cdot 0=0$. This means $\alpha \mathbf{x} \in S^{\perp}$.

Properties of orthogonal subspaces

1. If V and W are orthogonal subspaces of \mathbb{R}^{n} then the only vector that belongs to both V and W is $\mathbf{0}$. Proof: if $\mathbf{x} \in V$ and $\mathbf{x} \in W$ then by orthogonality $\mathbf{x}^{T} \mathbf{x}=0$. But we have seen this means $\mathbf{x}=\mathbf{0}$.
2. For any subspace S, S^{\perp} is also a subspace. Proof of closure under addition: if $\mathbf{x}_{1} \in S^{\perp}$ and $\mathbf{x}_{2} \in S^{\perp}$, and if \mathbf{y} is any vector in S then $\mathbf{y}^{T}\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)=\mathbf{y}^{T} \mathbf{x}_{1}+\mathbf{y}^{T} \mathbf{x}_{2}=0+0=0$. This means $\mathbf{x}_{1}+\mathbf{x}_{2} \in S^{\perp}$. Proof of closure under scalar multiplication: if $\mathbf{x} \in S^{\perp}$ and $\alpha \in \mathbb{R}$, and if \mathbf{y} is any vector in S then $\mathbf{y}^{T}(\alpha \mathbf{x})=\alpha \mathbf{y}^{T} \mathbf{x}=\alpha \cdot 0=0$. This means $\alpha \mathbf{x} \in S^{\perp}$.

Application to matrices.

One kind of subspace of \mathbb{R}^{n} is the span of a set of vectors.

Properties of orthogonal subspaces

1. If V and W are orthogonal subspaces of \mathbb{R}^{n} then the only vector that belongs to both V and W is $\mathbf{0}$. Proof: if $\mathbf{x} \in V$ and $\mathbf{x} \in W$ then by orthogonality $\mathbf{x}^{T} \mathbf{x}=0$. But we have seen this means $\mathbf{x}=\mathbf{0}$.
2. For any subspace S, S^{\perp} is also a subspace. Proof of closure under addition: if $\mathbf{x}_{1} \in S^{\perp}$ and $\mathbf{x}_{2} \in S^{\perp}$, and if \mathbf{y} is any vector in S then $\mathbf{y}^{T}\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)=\mathbf{y}^{T} \mathbf{x}_{1}+\mathbf{y}^{T} \mathbf{x}_{2}=0+0=0$. This means $\mathbf{x}_{1}+\mathbf{x}_{2} \in S^{\perp}$. Proof of closure under scalar multiplication: if $\mathbf{x} \in S^{\perp}$ and $\alpha \in \mathbb{R}$, and if \mathbf{y} is any vector in S then $\mathbf{y}^{T}(\alpha \mathbf{x})=\alpha \mathbf{y}^{T} \mathbf{x}=\alpha \cdot 0=0$. This means $\alpha \mathbf{x} \in S^{\perp}$.

Application to matrices.

One kind of subspace of \mathbb{R}^{n} is the span of a set of vectors. If we put those vectors in a matrix A, this is the column space of that matrix.

Properties of orthogonal subspaces

1. If V and W are orthogonal subspaces of \mathbb{R}^{n} then the only vector that belongs to both V and W is $\mathbf{0}$. Proof: if $\mathbf{x} \in V$ and $\mathbf{x} \in W$ then by orthogonality $\mathbf{x}^{T} \mathbf{x}=0$. But we have seen this means $\mathbf{x}=\mathbf{0}$.
2. For any subspace S, S^{\perp} is also a subspace. Proof of closure under addition: if $\mathbf{x}_{1} \in S^{\perp}$ and $\mathbf{x}_{2} \in S^{\perp}$, and if \mathbf{y} is any vector in S then $\mathbf{y}^{T}\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)=\mathbf{y}^{T} \mathbf{x}_{1}+\mathbf{y}^{T} \mathbf{x}_{2}=0+0=0$. This means $\mathbf{x}_{1}+\mathbf{x}_{2} \in S^{\perp}$. Proof of closure under scalar multiplication: if $\mathbf{x} \in S^{\perp}$ and $\alpha \in \mathbb{R}$, and if \mathbf{y} is any vector in S then $\mathbf{y}^{T}(\alpha \mathbf{x})=\alpha \mathbf{y}^{T} \mathbf{x}=\alpha \cdot 0=0$. This means $\alpha \mathbf{x} \in S^{\perp}$.

Application to matrices.

One kind of subspace of \mathbb{R}^{n} is the span of a set of vectors. If we put those vectors in a matrix A, this is the column space of that matrix.
Another kind is the null space of an $m \times n$ matrix.

Properties of orthogonal subspaces

1. If V and W are orthogonal subspaces of \mathbb{R}^{n} then the only vector that belongs to both V and W is $\mathbf{0}$. Proof: if $\mathbf{x} \in V$ and $\mathbf{x} \in W$ then by orthogonality $\mathbf{x}^{T} \mathbf{x}=0$. But we have seen this means $\mathbf{x}=\mathbf{0}$.
2. For any subspace S, S^{\perp} is also a subspace. Proof of closure under addition: if $\mathbf{x}_{1} \in S^{\perp}$ and $\mathbf{x}_{2} \in S^{\perp}$, and if \mathbf{y} is any vector in S then $\mathbf{y}^{T}\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)=\mathbf{y}^{T} \mathbf{x}_{1}+\mathbf{y}^{T} \mathbf{x}_{2}=0+0=0$. This means $\mathbf{x}_{1}+\mathbf{x}_{2} \in S^{\perp}$. Proof of closure under scalar multiplication: if $\mathbf{x} \in S^{\perp}$ and $\alpha \in \mathbb{R}$, and if \mathbf{y} is any vector in S then $\mathbf{y}^{T}(\alpha \mathbf{x})=\alpha \mathbf{y}^{T} \mathbf{x}=\alpha \cdot 0=0$. This means $\alpha \mathbf{x} \in S^{\perp}$.

Application to matrices.

One kind of subspace of \mathbb{R}^{n} is the span of a set of vectors. If we put those vectors in a matrix A, this is the column space of that matrix.
Another kind is the null space of an $m \times n$ matrix.
We will see how to calculate the orthogonal complement of both of these kinds of subspaces.

We have seen that any product like $A \mathrm{x}$ is a linear combination of the columns of A.

We have seen that any product like $A \mathbf{x}$ is a linear combination of the columns of A. If A and $n \times k$ matrix, we define

$$
\mathcal{R}(A)=\left\{\mathbf{b} \in \mathbb{R}^{n} \mid \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \in \mathbb{R}^{k}\right\}
$$

then this is the range of the matrix transformation $A \mathbf{x}$ from \mathbb{R}^{k} to \mathbb{R}^{n}.

We have seen that any product like $A \mathbf{x}$ is a linear combination of the columns of A. If A and $n \times k$ matrix, we define

$$
\mathcal{R}(A)=\left\{\mathbf{b} \in \mathbb{R}^{n} \mid \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \in \mathbb{R}^{k}\right\}
$$

then this is the range of the matrix transformation $A \mathrm{x}$ from \mathbb{R}^{k} to \mathbb{R}^{n}. It is also the column space of A.

We have seen that any product like $A \mathbf{x}$ is a linear combination of the columns of A. If A and $n \times k$ matrix, we define

$$
\mathcal{R}(A)=\left\{\mathbf{b} \in \mathbb{R}^{n} \mid \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \in \mathbb{R}^{k}\right\}
$$

then this is the range of the matrix transformation $A \mathrm{x}$ from \mathbb{R}^{k} to \mathbb{R}^{n}. It is also the column space of A.
What is $\mathcal{R}(A)^{\perp}$?

We have seen that any product like $A \mathbf{x}$ is a linear combination of the columns of A. If A and $n \times k$ matrix, we define

$$
\mathcal{R}(A)=\left\{\mathbf{b} \in \mathbb{R}^{n} \mid \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \in \mathbb{R}^{k}\right\}
$$

then this is the range of the matrix transformation $A \mathrm{x}$ from \mathbb{R}^{k} to \mathbb{R}^{n}. It is also the column space of A.
What is $\mathcal{R}(A)^{\perp}$? A vector y belongs to $\mathcal{R}(A)^{\perp}$ if and only if it is orthogonal to every column of A.

We have seen that any product like $A \mathbf{x}$ is a linear combination of the columns of A. If A and $n \times k$ matrix, we define

$$
\mathcal{R}(A)=\left\{\mathbf{b} \in \mathbb{R}^{n} \mid \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \in \mathbb{R}^{k}\right\}
$$

then this is the range of the matrix transformation $A \mathbf{x}$ from \mathbb{R}^{k} to \mathbb{R}^{n}. It is also the column space of A.
What is $\mathcal{R}(A)^{\perp}$? A vector y belongs to $\mathcal{R}(A)^{\perp}$ if and only if it is orthogonal to every column of A. But this is the same as $\mathbf{y}^{T} A=\mathbf{0}$.

We have seen that any product like $A \mathbf{x}$ is a linear combination of the columns of A. If A and $n \times k$ matrix, we define

$$
\mathcal{R}(A)=\left\{\mathbf{b} \in \mathbb{R}^{n} \mid \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \in \mathbb{R}^{k}\right\}
$$

then this is the range of the matrix transformation $A \mathbf{x}$ from \mathbb{R}^{k} to \mathbb{R}^{n}. It is also the column space of A.
What is $\mathcal{R}(A)^{\perp}$? A vector y belongs to $\mathcal{R}(A)^{\perp}$ if and only if it is orthogonal to every column of A. But this is the same as $\mathbf{y}^{T} A=\mathbf{0}$. If we transpose that equation we get $A^{T} \mathbf{y}=\mathbf{0}$.

We have seen that any product like $A \mathbf{x}$ is a linear combination of the columns of A. If A and $n \times k$ matrix, we define

$$
\mathcal{R}(A)=\left\{\mathbf{b} \in \mathbb{R}^{n} \mid \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \in \mathbb{R}^{k}\right\}
$$

then this is the range of the matrix transformation $A \mathrm{x}$ from \mathbb{R}^{k} to \mathbb{R}^{n}. It is also the column space of A.
What is $\mathcal{R}(A)^{\perp}$? A vector y belongs to $\mathcal{R}(A)^{\perp}$ if and only if it is orthogonal to every column of A. But this is the same as $\mathbf{y}^{T} A=\mathbf{0}$. If we transpose that equation we get $A^{T} \mathbf{y}=\mathbf{0}$. Therefore we get half of the following theorem

Theorem

$\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$ and $\mathcal{N}(A)^{\perp}=\mathcal{R}\left(A^{T}\right)$.

We have seen that any product like $A \mathbf{x}$ is a linear combination of the columns of A. If A and $n \times k$ matrix, we define

$$
\mathcal{R}(A)=\left\{\mathbf{b} \in \mathbb{R}^{n} \mid \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \in \mathbb{R}^{k}\right\}
$$

then this is the range of the matrix transformation $A \mathrm{x}$ from \mathbb{R}^{k} to \mathbb{R}^{n}. It is also the column space of A.
What is $\mathcal{R}(A)^{\perp}$? A vector y belongs to $\mathcal{R}(A)^{\perp}$ if and only if it is orthogonal to every column of A. But this is the same as $\mathbf{y}^{T} A=\mathbf{0}$. If we transpose that equation we get $A^{T} \mathbf{y}=\mathbf{0}$. Therefore we get half of the following theorem

Theorem

$\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$ and $\mathcal{N}(A)^{\perp}=\mathcal{R}\left(A^{T}\right)$.

