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A line is not that different from a plane.

For example, the equation of a

line perpendicular to

 a
b

 that passes through P0 = (x0, y0) is

a(x− x0) + b(y − y0) = 0.

In this setup, the line through (0, 1) with slope 1/3 would have

 −1
3


as a perpendicular vector (recall that the perpendicular to a line with slope
m has slope −1/m.)

Then the distance from a point P = (x, y) to the line would be the length

of the projection of
−−→
P0P onto the perpendicular vector. That is,

distance =

∣∣∣∣a(x− x0) + b(y − y0)

(a2 + b2)1/2

∣∣∣∣
Getting the nearest point Q in this setup may not seem obvious, but it

could be gotten from the fact that the length of
−→
QP is this distance and

its direction is the same or opposite to that of

 a
b

.
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That is,
−→
QP =

a(x− x0) + b(y − y0)

a2 + b2

 a
b



To get Q, you subtract this from the coordinates of P .

The same thing can be done with planes.

The distance from a point to a plane

If P = (x, y, z) is a point and

a(x− x0) + b(y − y0) + c(z − z0) = 0

is the equation of a plane that contains the point P0 = (x0, y0, z0), then
the distance from P to that plane is the length of the projection of

x =
−−→
P0P onto the perpendicular vector a =


a
b
c

. This is the absolute

value of the scalar projection.∣∣∣∣xTa

∥a∥

∣∣∣∣ = ∣∣∣∣a(x− x0) + b(y − y0) + c(z − z0)

(a2 + b2 + c2)1/2

∣∣∣∣
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To get the point Q on the plane that is nearest to P we use

−→
QP =

a(x− x0) + b(y − y0) + c(z − z0)

a2 + b2 + c2
a.

A plane can be specified in other ways than containing a point and being
perpendicular to some vector.

The most common other way is to specify
three points that lie in the plane.

Example: find an equation for the plane that contains the points
P0 = (1, 0, 1), P1 = (2,−1, 4), and P2 = (0, 2, 0).

The vectors a1 =
−−→
P0P1 =


1

−1
3

 and a2 =
−−→
P0P2 =


−1
2

−1


lie in the plane. We can find a vector perpendicular to the plane by finding
a vector orthogonal to both a1 and a2. We saw how to do this earlier (with

exactly these two vectors). One such perpendicular vector is


−5
−2
1


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Then one equation for the plane is obtained using P0 and this
perpendicular vector:

−5(x− 1)− 2(y − 0) + (z − 1) = 0 or − 5x− 2y + z + 4 = 0

Orthogonal subspaces

Definition

If V and W are subspaces of Rn then we say they are orthogonal
subspaces if every vector in V is orthogonal to every vector in W .

One way to get orthogonal subspaces is to take the spans of sets that are
orthogonal: Suppose v1,v2, . . . ,vr and w1,w2, . . . ,ws are vectors such
that vi ⊥ wj for every 1 ≤ i ≤ r and 1 ≤ j ≤ s. Then
V = Span(v1,v2, . . . ,vr) and W = Span(w1,w2, . . . ,ws) are orthogonal
subspaces.
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For example, in R3, both the vector e1, e2 are orthogonal to e3. Thus, the
following are orthogonal subspaces

V =




α
β
0

 α, β ∈ R

 and W =




0
0
γ

 γ ∈ R



Definition

If S is a subspace of Rn then the orthogonal complement of S is the set of
all vectors that are orthogonal to every vector in S. We denote this set
S⊥. Formally:

S⊥ = {x ∈ Rn | xTy = 0 for all y ∈ S}.
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Properties of orthogonal subspaces

1. If V and W are orthogonal subspaces of Rn then the only vector that
belongs to both V and W is 0. Proof: if x ∈ V and x ∈ W then by
orthogonality xTx = 0. But we have seen this means x = 0.

2. For any subspace S, S⊥ is also a subspace. Proof of closure under
addition: if x1 ∈ S⊥ and x2 ∈ S⊥, and if y is any vector in S then
yT (x1+x2) = yTx1+yTx2 = 0+0 = 0. This means x1+x2 ∈ S⊥.

Proof of closure under scalar multiplication: if x ∈ S⊥ and α ∈ R,
and if y is any vector in S then yT (αx) = αyTx = α · 0 = 0. This
means αx ∈ S⊥.

Application to matrices.

One kind of subspace of Rn is the span of a set of vectors. If we put those
vectors in a matrix A, this is the column space of that matrix.

Another kind is the null space of an m× n matrix.

We will see how to calculate the orthogonal complement of both of these
kinds of subspaces.
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We have seen that any product like Ax is a linear combination of the
columns of A.

If A and n× k matrix, we define

R(A) = {b ∈ Rn | b = Ax for some x ∈ Rk}

then this is the range of the matrix transformation Ax from Rk to Rn. It
is also the column space of A.

What is R(A)⊥? A vector y belongs to R(A)⊥ if and only if it is
orthogonal to every column of A. But this is the same as yTA = 0. If we
transpose that equation we get ATy = 0. Therefore we get half of the
following theorem

Theorem

R(A)⊥ = N (AT ) and N (A)⊥ = R(AT ).
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