Scalar Product (cont.)

D. H. Luecking

27 March 2024

A line is not that different from a plane.

In this setup, the line through (0,1) with slope 1/3 would have $\begin{pmatrix} -1\\ 3 \end{pmatrix}$ as a perpendicular vector

In this setup, the line through (0,1) with slope 1/3 would have $\begin{bmatrix} -1\\ 3 \end{bmatrix}$

as a perpendicular vector (recall that the perpendicular to a line with slope m has slope -1/m.)

In this setup, the line through (0,1) with slope 1/3 would have $\begin{bmatrix} -1\\ 3 \end{bmatrix}$

as a perpendicular vector (recall that the perpendicular to a line with slope m has slope -1/m.)

Then the distance from a point P = (x, y) to the line would be the length of the projection of $\overrightarrow{P_0P}$ onto the perpendicular vector. That is,

distance
$$= \left| \frac{a(x - x_0) + b(y - y_0)}{(a^2 + b^2)^{1/2}} \right|$$

In this setup, the line through (0,1) with slope 1/3 would have $\begin{bmatrix} -1\\ 3 \end{bmatrix}$

as a perpendicular vector (recall that the perpendicular to a line with slope m has slope -1/m.)

Then the distance from a point P = (x, y) to the line would be the length of the projection of $\overrightarrow{P_0P}$ onto the perpendicular vector. That is,

distance
$$= \left| \frac{a(x-x_0) + b(y-y_0)}{(a^2 + b^2)^{1/2}} \right|$$

Getting the nearest point Q in this setup may not seem obvious,

In this setup, the line through (0,1) with slope 1/3 would have $\begin{bmatrix} -1\\ 3 \end{bmatrix}$

as a perpendicular vector (recall that the perpendicular to a line with slope m has slope -1/m.)

Then the distance from a point P = (x, y) to the line would be the length of the projection of $\overrightarrow{P_0P}$ onto the perpendicular vector. That is,

distance =
$$\left| \frac{a(x - x_0) + b(y - y_0)}{(a^2 + b^2)^{1/2}} \right|$$

Getting the nearest point Q in this setup may not seem obvious, but it could be gotten from the fact that the length of \overrightarrow{QP} is this distance and its direction is the same or opposite to that of $\begin{pmatrix} a \\ b \end{pmatrix}$.

$$\overrightarrow{QP} = \frac{a(x-x_0) + b(y-y_0)}{a^2 + b^2} \left(\begin{array}{c} a\\ b \end{array}\right)$$

$$\overrightarrow{QP} = \frac{a(x-x_0) + b(y-y_0)}{a^2 + b^2} \left(\begin{array}{c} a\\ b \end{array}\right)$$

To get Q, you subtract this from the coordinates of P.

$$\overrightarrow{QP} = \frac{a(x - x_0) + b(y - y_0)}{a^2 + b^2} \left(\begin{array}{c} a\\ b \end{array}\right)$$

To get Q, you subtract this from the coordinates of P. The same thing can be done with planes.

The distance from a point to a plane

$$\overrightarrow{QP} = \frac{a(x - x_0) + b(y - y_0)}{a^2 + b^2} \left(\begin{array}{c} a\\ b \end{array}\right)$$

To get Q, you subtract this from the coordinates of P. The same thing can be done with planes.

The distance from a point to a plane

If P = (x, y, z) is a point and

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

is the equation of a plane that contains the point $P_0 = (x_0, y_0, z_0)$,

$$\overrightarrow{QP} = \frac{a(x-x_0) + b(y-y_0)}{a^2 + b^2} \left(\begin{array}{c} a\\ b \end{array}\right)$$

To get Q, you subtract this from the coordinates of P. The same thing can be done with planes.

The distance from a point to a plane

If P = (x, y, z) is a point and

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

is the equation of a plane that contains the point $P_0 = (x_0, y_0, z_0)$, then the distance from P to that plane is the length of the projection of

 $\mathbf{x} = \overrightarrow{P_0P}$ onto the perpendicular vector $\mathbf{a} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$. This is the absolute

value of the scalar projection.

$$\left|\frac{\mathbf{x}^T \mathbf{a}}{\|\mathbf{a}\|}\right| = \left|\frac{a(x-x_0) + b(y-y_0) + c(z-z_0)}{(a^2 + b^2 + c^2)^{1/2}}\right|$$

$$\overrightarrow{QP} = \frac{a(x-x_0) + b(y-y_0) + c(z-z_0)}{a^2 + b^2 + c^2} \mathbf{a}.$$

A plane can be specified in other ways than containing a point and being perpendicular to some vector.

$$\overrightarrow{QP} = \frac{a(x-x_0) + b(y-y_0) + c(z-z_0)}{a^2 + b^2 + c^2} \mathbf{a}.$$

A plane can be specified in other ways than containing a point and being perpendicular to some vector. The most common other way is to specify three points that lie in the plane.

$$\overrightarrow{QP} = \frac{a(x-x_0) + b(y-y_0) + c(z-z_0)}{a^2 + b^2 + c^2} \mathbf{a}.$$

A plane can be specified in other ways than containing a point and being perpendicular to some vector. The most common other way is to specify three points that lie in the plane.

Example: find an equation for the plane that contains the points $P_0 = (1, 0, 1)$, $P_1 = (2, -1, 4)$, and $P_2 = (0, 2, 0)$.

$$\overrightarrow{QP} = \frac{a(x-x_0) + b(y-y_0) + c(z-z_0)}{a^2 + b^2 + c^2} \mathbf{a}.$$

A plane can be specified in other ways than containing a point and being perpendicular to some vector. The most common other way is to specify three points that lie in the plane.

Example: find an equation for the plane that contains the points $P_0 = (1, 0, 1)$, $P_1 = (2, -1, 4)$, and $P_2 = (0, 2, 0)$.

The vectors
$$\mathbf{a}_1 = \overrightarrow{P_0P_1} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$$
 and $\mathbf{a}_2 = \overrightarrow{P_0P_2} = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$

lie in the plane.

$$\overrightarrow{QP} = \frac{a(x-x_0) + b(y-y_0) + c(z-z_0)}{a^2 + b^2 + c^2} \mathbf{a}.$$

A plane can be specified in other ways than containing a point and being perpendicular to some vector. The most common other way is to specify three points that lie in the plane.

Example: find an equation for the plane that contains the points $P_0 = (1, 0, 1)$, $P_1 = (2, -1, 4)$, and $P_2 = (0, 2, 0)$.

The vectors
$$\mathbf{a}_1 = \overrightarrow{P_0P_1} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$$
 and $\mathbf{a}_2 = \overrightarrow{P_0P_2} = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$

lie in the plane. We can find a vector perpendicular to the plane by finding a vector orthogonal to both a_1 and a_2 .

$$\overrightarrow{QP} = \frac{a(x-x_0) + b(y-y_0) + c(z-z_0)}{a^2 + b^2 + c^2} \mathbf{a}.$$

A plane can be specified in other ways than containing a point and being perpendicular to some vector. The most common other way is to specify three points that lie in the plane.

Example: find an equation for the plane that contains the points $P_0 = (1, 0, 1)$, $P_1 = (2, -1, 4)$, and $P_2 = (0, 2, 0)$.

The vectors
$$\mathbf{a}_1 = \overrightarrow{P_0P_1} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$$
 and $\mathbf{a}_2 = \overrightarrow{P_0P_2} = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$

lie in the plane. We can find a vector perpendicular to the plane by finding a vector orthogonal to both a_1 and a_2 . We saw how to do this earlier

$$\overrightarrow{QP} = \frac{a(x-x_0) + b(y-y_0) + c(z-z_0)}{a^2 + b^2 + c^2} \mathbf{a}.$$

A plane can be specified in other ways than containing a point and being perpendicular to some vector. The most common other way is to specify three points that lie in the plane.

Example: find an equation for the plane that contains the points $P_0 = (1, 0, 1)$, $P_1 = (2, -1, 4)$, and $P_2 = (0, 2, 0)$.

The vectors
$$\mathbf{a}_1 = \overrightarrow{P_0P_1} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$$
 and $\mathbf{a}_2 = \overrightarrow{P_0P_2} = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$

lie in the plane. We can find a vector perpendicular to the plane by finding a vector orthogonal to both a_1 and a_2 . We saw how to do this earlier (with

exactly these two vectors).

$$\overrightarrow{QP} = \frac{a(x-x_0) + b(y-y_0) + c(z-z_0)}{a^2 + b^2 + c^2} \mathbf{a}.$$

A plane can be specified in other ways than containing a point and being perpendicular to some vector. The most common other way is to specify three points that lie in the plane.

Example: find an equation for the plane that contains the points $P_0 = (1, 0, 1)$, $P_1 = (2, -1, 4)$, and $P_2 = (0, 2, 0)$.

The vectors
$$\mathbf{a}_1 = \overrightarrow{P_0P_1} = \begin{pmatrix} 1\\ -1\\ 3 \end{pmatrix}$$
 and $\mathbf{a}_2 = \overrightarrow{P_0P_2} = \begin{pmatrix} -1\\ 2\\ -1 \end{pmatrix}$

lie in the plane. We can find a vector perpendicular to the plane by finding a vector orthogonal to both \mathbf{a}_1 and \mathbf{a}_2 . We saw how to do this earlier (with exactly these two vectors). One such perpendicular vector is $\begin{pmatrix} -5 \\ -2 \\ 1 \end{pmatrix}$

$$-5(x-1) - 2(y-0) + (z-1) = 0 \text{ or } -5x - 2y + z + 4 = 0$$

$$-5(x-1) - 2(y-0) + (z-1) = 0 \text{ or } -5x - 2y + z + 4 = 0$$

Orthogonal subspaces

$$-5(x-1) - 2(y-0) + (z-1) = 0 \text{ or } -5x - 2y + z + 4 = 0$$

Orthogonal subspaces

Definition

If V and W are subspaces of \mathbb{R}^n then we say they are *orthogonal* subspaces if every vector in V is orthogonal to every vector in W.

$$-5(x-1) - 2(y-0) + (z-1) = 0 \text{ or } -5x - 2y + z + 4 = 0$$

Orthogonal subspaces

Definition

If V and W are subspaces of \mathbb{R}^n then we say they are *orthogonal* subspaces if every vector in V is orthogonal to every vector in W.

One way to get orthogonal subspaces is to take the spans of sets that are orthogonal:

$$-5(x-1) - 2(y-0) + (z-1) = 0 \text{ or } -5x - 2y + z + 4 = 0$$

Orthogonal subspaces

Definition

If V and W are subspaces of \mathbb{R}^n then we say they are *orthogonal* subspaces if every vector in V is orthogonal to every vector in W.

One way to get orthogonal subspaces is to take the spans of sets that are orthogonal: Suppose $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_r$ and $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_s$ are vectors such that $\mathbf{v}_i \perp \mathbf{w}_j$ for every $1 \leq i \leq r$ and $1 \leq j \leq s$.

$$-5(x-1) - 2(y-0) + (z-1) = 0 \text{ or } -5x - 2y + z + 4 = 0$$

Orthogonal subspaces

Definition

If V and W are subspaces of \mathbb{R}^n then we say they are *orthogonal* subspaces if every vector in V is orthogonal to every vector in W.

One way to get orthogonal subspaces is to take the spans of sets that are orthogonal: Suppose $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_r$ and $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_s$ are vectors such that $\mathbf{v}_i \perp \mathbf{w}_j$ for every $1 \leq i \leq r$ and $1 \leq j \leq s$. Then $V = \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_r)$ and $W = \operatorname{Span}(\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_s)$ are orthogonal subspaces.

For example, in \mathbb{R}^3 , both the vector e_1,e_2 are orthogonal to $e_3.$ Thus, the following are orthogonal subspaces

$$V = \left\{ \left(\begin{array}{c} \alpha \\ \beta \\ 0 \end{array} \right) \middle| \alpha, \beta \in \mathbb{R} \right\} \text{ and } W = \left\{ \left(\begin{array}{c} 0 \\ 0 \\ \gamma \end{array} \right) \middle| \gamma \in \mathbb{R} \right\}$$

For example, in \mathbb{R}^3 , both the vector $\mathbf{e}_1, \mathbf{e}_2$ are orthogonal to \mathbf{e}_3 . Thus, the following are orthogonal subspaces

$$V = \left\{ \left(\begin{array}{c} \alpha \\ \beta \\ 0 \end{array} \right) \middle| \alpha, \beta \in \mathbb{R} \right\} \text{ and } W = \left\{ \left(\begin{array}{c} 0 \\ 0 \\ \gamma \end{array} \right) \middle| \gamma \in \mathbb{R} \right\}$$

Definition

If S is a subspace of \mathbb{R}^n then the *orthogonal complement of* S is the set of all vectors that are orthogonal to every vector in S. We denote this set S^{\perp} . Formally:

$$S^{\perp} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x}^T \mathbf{y} = 0 \text{ for all } \mathbf{y} \in S \}.$$

1. If V and W are orthogonal subspaces of \mathbb{R}^n then the only vector that belongs to both V and W is 0. Proof: if $\mathbf{x} \in V$ and $\mathbf{x} \in W$ then by orthogonality $\mathbf{x}^T \mathbf{x} = 0$. But we have seen this means $\mathbf{x} = \mathbf{0}$.

- 1. If V and W are orthogonal subspaces of \mathbb{R}^n then the only vector that belongs to both V and W is 0. Proof: if $\mathbf{x} \in V$ and $\mathbf{x} \in W$ then by orthogonality $\mathbf{x}^T \mathbf{x} = 0$. But we have seen this means $\mathbf{x} = \mathbf{0}$.
- 2. For any subspace S, S^{\perp} is also a subspace. Proof of closure under addition: if $\mathbf{x}_1 \in S^{\perp}$ and $\mathbf{x}_2 \in S^{\perp}$, and if \mathbf{y} is any vector in S then $\mathbf{y}^T(\mathbf{x}_1 + \mathbf{x}_2) = \mathbf{y}^T \mathbf{x}_1 + \mathbf{y}^T \mathbf{x}_2 = 0 + 0 = 0$. This means $\mathbf{x}_1 + \mathbf{x}_2 \in S^{\perp}$.

- 1. If V and W are orthogonal subspaces of \mathbb{R}^n then the only vector that belongs to both V and W is 0. Proof: if $\mathbf{x} \in V$ and $\mathbf{x} \in W$ then by orthogonality $\mathbf{x}^T \mathbf{x} = 0$. But we have seen this means $\mathbf{x} = \mathbf{0}$.
- For any subspace S, S[⊥] is also a subspace. Proof of closure under addition: if x₁ ∈ S[⊥] and x₂ ∈ S[⊥], and if y is any vector in S then y^T(x₁+x₂) = y^Tx₁+y^Tx₂ = 0+0 = 0. This means x₁+x₂ ∈ S[⊥].

Proof of closure under scalar multiplication: if $\mathbf{x} \in S^{\perp}$ and $\alpha \in \mathbb{R}$, and if \mathbf{y} is any vector in S then $\mathbf{y}^{T}(\alpha \mathbf{x}) = \alpha \mathbf{y}^{T} \mathbf{x} = \alpha \cdot 0 = 0$. This means $\alpha \mathbf{x} \in S^{\perp}$.

- 1. If V and W are orthogonal subspaces of \mathbb{R}^n then the only vector that belongs to both V and W is 0. Proof: if $\mathbf{x} \in V$ and $\mathbf{x} \in W$ then by orthogonality $\mathbf{x}^T \mathbf{x} = 0$. But we have seen this means $\mathbf{x} = \mathbf{0}$.
- 2. For any subspace S, S^{\perp} is also a subspace. Proof of closure under addition: if $\mathbf{x}_1 \in S^{\perp}$ and $\mathbf{x}_2 \in S^{\perp}$, and if \mathbf{y} is any vector in S then $\mathbf{y}^T(\mathbf{x}_1 + \mathbf{x}_2) = \mathbf{y}^T \mathbf{x}_1 + \mathbf{y}^T \mathbf{x}_2 = 0 + 0 = 0$. This means $\mathbf{x}_1 + \mathbf{x}_2 \in S^{\perp}$. Proof of closure under scalar multiplication: if $\mathbf{x} \in S^{\perp}$ and $\alpha \in \mathbb{R}$, and if \mathbf{y} is any vector in S then $\mathbf{y}^T(\alpha \mathbf{x}) = \alpha \mathbf{y}^T \mathbf{x} = \alpha \cdot 0 = 0$. This means $\alpha \mathbf{x} \in S^{\perp}$.

Application to matrices.

One kind of subspace of \mathbb{R}^n is the span of a set of vectors.

- 1. If V and W are orthogonal subspaces of \mathbb{R}^n then the only vector that belongs to both V and W is 0. Proof: if $\mathbf{x} \in V$ and $\mathbf{x} \in W$ then by orthogonality $\mathbf{x}^T \mathbf{x} = 0$. But we have seen this means $\mathbf{x} = \mathbf{0}$.
- 2. For any subspace S, S^{\perp} is also a subspace. Proof of closure under addition: if $\mathbf{x}_1 \in S^{\perp}$ and $\mathbf{x}_2 \in S^{\perp}$, and if \mathbf{y} is any vector in S then $\mathbf{y}^T(\mathbf{x}_1 + \mathbf{x}_2) = \mathbf{y}^T \mathbf{x}_1 + \mathbf{y}^T \mathbf{x}_2 = 0 + 0 = 0$. This means $\mathbf{x}_1 + \mathbf{x}_2 \in S^{\perp}$. Proof of closure under scalar multiplication: if $\mathbf{x} \in S^{\perp}$ and $\alpha \in \mathbb{R}$, and if \mathbf{y} is any vector in S then $\mathbf{y}^T(\alpha \mathbf{x}) = \alpha \mathbf{y}^T \mathbf{x} = \alpha \cdot 0 = 0$. This means $\alpha \mathbf{x} \in S^{\perp}$.

Application to matrices.

One kind of subspace of \mathbb{R}^n is the span of a set of vectors. If we put those vectors in a matrix A, this is the column space of that matrix.

- 1. If V and W are orthogonal subspaces of \mathbb{R}^n then the only vector that belongs to both V and W is 0. Proof: if $\mathbf{x} \in V$ and $\mathbf{x} \in W$ then by orthogonality $\mathbf{x}^T \mathbf{x} = 0$. But we have seen this means $\mathbf{x} = \mathbf{0}$.
- For any subspace S, S[⊥] is also a subspace. Proof of closure under addition: if x₁ ∈ S[⊥] and x₂ ∈ S[⊥], and if y is any vector in S then y^T(x₁ + x₂) = y^Tx₁ + y^Tx₂ = 0 + 0 = 0. This means x₁ + x₂ ∈ S[⊥]. Proof of closure under scalar multiplication: if x ∈ S[⊥] and α ∈ ℝ, and if y is any vector in S then y^T(αx) = αy^Tx = α ⋅ 0 = 0. This means αx ∈ S[⊥].

Application to matrices.

One kind of subspace of \mathbb{R}^n is the span of a set of vectors. If we put those vectors in a matrix A, this is the column space of that matrix.

Another kind is the null space of an $m \times n$ matrix.

- 1. If V and W are orthogonal subspaces of \mathbb{R}^n then the only vector that belongs to both V and W is 0. Proof: if $\mathbf{x} \in V$ and $\mathbf{x} \in W$ then by orthogonality $\mathbf{x}^T \mathbf{x} = 0$. But we have seen this means $\mathbf{x} = \mathbf{0}$.
- For any subspace S, S[⊥] is also a subspace. Proof of closure under addition: if x₁ ∈ S[⊥] and x₂ ∈ S[⊥], and if y is any vector in S then y^T(x₁ + x₂) = y^Tx₁ + y^Tx₂ = 0 + 0 = 0. This means x₁ + x₂ ∈ S[⊥]. Proof of closure under scalar multiplication: if x ∈ S[⊥] and α ∈ ℝ, and if y is any vector in S then y^T(αx) = αy^Tx = α ⋅ 0 = 0. This means αx ∈ S[⊥].

Application to matrices.

One kind of subspace of \mathbb{R}^n is the span of a set of vectors. If we put those vectors in a matrix A, this is the column space of that matrix.

Another kind is the null space of an $m \times n$ matrix.

We will see how to calculate the orthogonal complement of both of these kinds of subspaces.

We have seen that any product like $A\mathbf{x}$ is a linear combination of the columns of A.

$$\mathcal{R}(A) = \{ \mathbf{b} \in \mathbb{R}^n \mid \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^k \}$$

then this is the range of the matrix transformation $A\mathbf{x}$ from \mathbb{R}^k to \mathbb{R}^n .

$$\mathcal{R}(A) = \{ \mathbf{b} \in \mathbb{R}^n \mid \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^k \}$$

then this is the range of the matrix transformation $A\mathbf{x}$ from \mathbb{R}^k to \mathbb{R}^n . It is also the column space of A.

$$\mathcal{R}(A) = \{ \mathbf{b} \in \mathbb{R}^n \mid \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^k \}$$

then this is the range of the matrix transformation $A\mathbf{x}$ from \mathbb{R}^k to \mathbb{R}^n . It is also the column space of A.

What is $\mathcal{R}(A)^{\perp}$?

 $\mathcal{R}(A) = \{ \mathbf{b} \in \mathbb{R}^n \mid \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^k \}$

then this is the range of the matrix transformation $A\mathbf{x}$ from \mathbb{R}^k to \mathbb{R}^n . It is also the column space of A.

What is $\mathcal{R}(A)^{\perp}$? A vector y belongs to $\mathcal{R}(A)^{\perp}$ if and only if it is orthogonal to every column of A.

 $\mathcal{R}(A) = \{ \mathbf{b} \in \mathbb{R}^n \mid \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^k \}$

then this is the range of the matrix transformation $A\mathbf{x}$ from \mathbb{R}^k to \mathbb{R}^n . It is also the column space of A.

What is $\mathcal{R}(A)^{\perp}$? A vector y belongs to $\mathcal{R}(A)^{\perp}$ if and only if it is orthogonal to every column of A. But this is the same as $\mathbf{y}^T A = \mathbf{0}$.

 $\mathcal{R}(A) = \{ \mathbf{b} \in \mathbb{R}^n \mid \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^k \}$

then this is the range of the matrix transformation $A\mathbf{x}$ from \mathbb{R}^k to \mathbb{R}^n . It is also the column space of A.

What is $\mathcal{R}(A)^{\perp}$? A vector y belongs to $\mathcal{R}(A)^{\perp}$ if and only if it is orthogonal to every column of A. But this is the same as $\mathbf{y}^T A = \mathbf{0}$. If we transpose that equation we get $A^T \mathbf{y} = \mathbf{0}$.

 $\mathcal{R}(A) = \{ \mathbf{b} \in \mathbb{R}^n \mid \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^k \}$

then this is the range of the matrix transformation $A\mathbf{x}$ from \mathbb{R}^k to \mathbb{R}^n . It is also the column space of A.

What is $\mathcal{R}(A)^{\perp}$? A vector y belongs to $\mathcal{R}(A)^{\perp}$ if and only if it is orthogonal to every column of A. But this is the same as $\mathbf{y}^T A = \mathbf{0}$. If we transpose that equation we get $A^T \mathbf{y} = \mathbf{0}$. Therefore we get half of the following theorem

Theorem

$$\mathcal{R}(A)^{\perp} = \mathcal{N}(A^T)$$
 and $\mathcal{N}(A)^{\perp} = \mathcal{R}(A^T)$.

 $\mathcal{R}(A) = \{ \mathbf{b} \in \mathbb{R}^n \mid \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^k \}$

then this is the range of the matrix transformation $A\mathbf{x}$ from \mathbb{R}^k to \mathbb{R}^n . It is also the column space of A.

What is $\mathcal{R}(A)^{\perp}$? A vector y belongs to $\mathcal{R}(A)^{\perp}$ if and only if it is orthogonal to every column of A. But this is the same as $\mathbf{y}^T A = \mathbf{0}$. If we transpose that equation we get $A^T \mathbf{y} = \mathbf{0}$. Therefore we get half of the following theorem

Theorem

$$\mathcal{R}(A)^{\perp} = \mathcal{N}(A^T)$$
 and $\mathcal{N}(A)^{\perp} = \mathcal{R}(A^T)$.