Scalar Product

Daniel H. Luecking

15 March 2024

If x and $y \in \mathbb{R}^n$ then the scalar product of x and y is $x^T y$

If x and $y \in \mathbb{R}^n$ then the scalar product of x and y is $x^T y$

In terms of the coordinates, if
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 and $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$, then $\mathbf{x}^T \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \mathbf{y}^T \mathbf{x}.$

If x and $y \in \mathbb{R}^n$ then the scalar product of x and y is $x^T y$

In terms of the coordinates, if
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 and $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$, then
 $\mathbf{x}^T \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \mathbf{y}^T \mathbf{x}.$

Definition

We write $\|\mathbf{x}\| = (\mathbf{x}^T \mathbf{x})^{1/2}$ and call this the *norm of* \mathbf{x} .

If x and $y \in \mathbb{R}^n$ then the scalar product of x and y is $x^T y$

In terms of the coordinates, if
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 and $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$, then
 $\mathbf{x}^T \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \mathbf{y}^T \mathbf{x}.$

Definition

We write $\|\mathbf{x}\| = (\mathbf{x}^T \mathbf{x})^{1/2}$ and call this the *norm of* \mathbf{x} .

In terms of coordinates $\|\mathbf{x}\| = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$.

If x and $y \in \mathbb{R}^n$ then the scalar product of x and y is $x^T y$

In terms of the coordinates, if
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 and $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$, then
 $\mathbf{x}^T \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \mathbf{y}^T \mathbf{x}.$

Definition

We write $\|\mathbf{x}\| = (\mathbf{x}^T \mathbf{x})^{1/2}$ and call this the *norm of* \mathbf{x} .

In terms of coordinates $\|\mathbf{x}\| = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$. In \mathbb{R}^2 we have $\|\mathbf{x}\| = (x_1^2 + x_2^2)^{1/2}$,

If x and $y \in \mathbb{R}^n$ then the scalar product of x and y is $x^T y$

In terms of the coordinates, if
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 and $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$, then
 $\mathbf{x}^T \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \mathbf{y}^T \mathbf{x}.$

Definition

We write $\|\mathbf{x}\| = (\mathbf{x}^T \mathbf{x})^{1/2}$ and call this the *norm of* \mathbf{x} .

In terms of coordinates $\|\mathbf{x}\| = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$. In \mathbb{R}^2 we have $\|\mathbf{x}\| = (x_1^2 + x_2^2)^{1/2}$, and in \mathbb{R}^3 we have $\|\mathbf{x}\| = (x_1^2 + x_2^2 + x_3^2)^{1/2}$.

If x and $y \in \mathbb{R}^n$ then the scalar product of x and y is $x^T y$

In terms of the coordinates, if
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 and $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$, then
 $\mathbf{x}^T \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \mathbf{y}^T \mathbf{x}.$

Definition

We write $\|\mathbf{x}\| = (\mathbf{x}^T \mathbf{x})^{1/2}$ and call this the *norm of* \mathbf{x} .

In terms of coordinates $\|\mathbf{x}\| = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$. In \mathbb{R}^2 we have $\|\mathbf{x}\| = (x_1^2 + x_2^2)^{1/2}$, and in \mathbb{R}^3 we have $\|\mathbf{x}\| = (x_1^2 + x_2^2 + x_3^2)^{1/2}$. In either case this is the length of the arrow that we use to visualize \mathbf{x} .

1. The scalar product of $\alpha \mathbf{x}$ and $\beta \mathbf{y}$ is $(\alpha \mathbf{x})^T (\beta \mathbf{y}) = \alpha \beta(\mathbf{x}^T \mathbf{y})$

- 1. The scalar product of $\alpha \mathbf{x}$ and $\beta \mathbf{y}$ is $(\alpha \mathbf{x})^T (\beta \mathbf{y}) = \alpha \beta(\mathbf{x}^T \mathbf{y})$
- 2. The norm of $\alpha \mathbf{x}$ is $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$. Note that if $\alpha = 1/\|\mathbf{x}\|$ the $\|\alpha \mathbf{x}\| = 1$.

- 1. The scalar product of $\alpha \mathbf{x}$ and $\beta \mathbf{y}$ is $(\alpha \mathbf{x})^T (\beta \mathbf{y}) = \alpha \beta(\mathbf{x}^T \mathbf{y})$
- 2. The norm of $\alpha \mathbf{x}$ is $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$. Note that if $\alpha = 1/\|\mathbf{x}\|$ the $\|\alpha \mathbf{x}\| = 1$.

In dimension 2 or 3 we have a geometric intrerpretation of the scalar product.

- 1. The scalar product of $\alpha \mathbf{x}$ and $\beta \mathbf{y}$ is $(\alpha \mathbf{x})^T (\beta \mathbf{y}) = \alpha \beta(\mathbf{x}^T \mathbf{y})$
- 2. The norm of $\alpha \mathbf{x}$ is $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$. Note that if $\alpha = 1/\|\mathbf{x}\|$ the $\|\alpha \mathbf{x}\| = 1$.

In dimension 2 or 3 we have a geometric intrerpretation of the scalar product.

Theorem

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ or \mathbb{R}^3 . Suppose $\|\mathbf{x}\| \neq 0$ and $\|\mathbf{y}\| \neq 0$. Let θ be the angle between \mathbf{x} and \mathbf{y} with $0 \leq \theta \leq 180^\circ$. Then

$$\cos \theta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

- 1. The scalar product of $\alpha \mathbf{x}$ and $\beta \mathbf{y}$ is $(\alpha \mathbf{x})^T (\beta \mathbf{y}) = \alpha \beta(\mathbf{x}^T \mathbf{y})$
- 2. The norm of $\alpha \mathbf{x}$ is $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$. Note that if $\alpha = 1/\|\mathbf{x}\|$ the $\|\alpha \mathbf{x}\| = 1$.

In dimension 2 or 3 we have a geometric intrerpretation of the scalar product.

Theorem

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ or \mathbb{R}^3 . Suppose $\|\mathbf{x}\| \neq 0$ and $\|\mathbf{y}\| \neq 0$. Let θ be the angle between \mathbf{x} and \mathbf{y} with $0 \leq \theta \leq 180^\circ$. Then

$$\cos \theta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

We're actually going to prove this in the case \mathbb{R}^2 .

- 1. The scalar product of $\alpha \mathbf{x}$ and $\beta \mathbf{y}$ is $(\alpha \mathbf{x})^T (\beta \mathbf{y}) = \alpha \beta(\mathbf{x}^T \mathbf{y})$
- 2. The norm of $\alpha \mathbf{x}$ is $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$. Note that if $\alpha = 1/\|\mathbf{x}\|$ the $\|\alpha \mathbf{x}\| = 1$.

In dimension 2 or 3 we have a geometric intrerpretation of the scalar product.

Theorem

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ or \mathbb{R}^3 . Suppose $\|\mathbf{x}\| \neq 0$ and $\|\mathbf{y}\| \neq 0$. Let θ be the angle between \mathbf{x} and \mathbf{y} with $0 \leq \theta \leq 180^\circ$. Then

$$\cos \theta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

We're actually going to prove this in the case \mathbb{R}^2 . But first recall the linear transformations on \mathbb{R}^2 given by rotations.

- 1. The scalar product of $\alpha \mathbf{x}$ and $\beta \mathbf{y}$ is $(\alpha \mathbf{x})^T (\beta \mathbf{y}) = \alpha \beta(\mathbf{x}^T \mathbf{y})$
- 2. The norm of $\alpha \mathbf{x}$ is $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$. Note that if $\alpha = 1/\|\mathbf{x}\|$ the $\|\alpha \mathbf{x}\| = 1$.

In dimension 2 or 3 we have a geometric intrerpretation of the scalar product.

Theorem

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ or \mathbb{R}^3 . Suppose $\|\mathbf{x}\| \neq 0$ and $\|\mathbf{y}\| \neq 0$. Let θ be the angle between \mathbf{x} and \mathbf{y} with $0 \leq \theta \leq 180^\circ$. Then

$$\cos \theta = rac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$

We're actually going to prove this in the case \mathbb{R}^2 . But first recall the linear transformations on \mathbb{R}^2 given by rotations. That is, if γ is any angle let $R_{\gamma}\mathbf{x}$ be the arrow \mathbf{x} rotated counterclockwise by the angle γ .

Since R_{γ} goes from \mathbb{R}^2 to \mathbb{R}^2 it is a matrix transformation.

$$R_{\gamma}\mathbf{e}_1 = \left(egin{array}{c} \cos\gamma\\ \sin\gamma \end{array}
ight)$$
 and $R_{\gamma}\mathbf{e}_2 = \left(egin{array}{c} -\sin\gamma\\ \cos\gamma \end{array}
ight)$

$$R_{\gamma}\mathbf{e}_{1} = \begin{pmatrix} \cos\gamma\\\sin\gamma \end{pmatrix} \text{ and } R_{\gamma}\mathbf{e}_{2} = \begin{pmatrix} -\sin\gamma\\\cos\gamma \end{pmatrix}$$

and therefore the matrix is $A = \begin{pmatrix} \cos\gamma & -\sin\gamma\\\sin\gamma & \cos\gamma \end{pmatrix}$

$$R_{\gamma}\mathbf{e}_1 = \left(egin{array}{c} \cos\gamma\\ \sin\gamma \end{array}
ight)$$
 and $R_{\gamma}\mathbf{e}_2 = \left(egin{array}{c} -\sin\gamma\\ \cos\gamma \end{array}
ight)$

and therefore the matrix is $A = \begin{pmatrix} \cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma \end{pmatrix}$

An easy computation show that $A^T A = I$, the identity matrix.

$$R_{\gamma}\mathbf{e}_1 = \left(egin{array}{c} \cos\gamma\\ \sin\gamma \end{array}
ight)$$
 and $R_{\gamma}\mathbf{e}_2 = \left(egin{array}{c} -\sin\gamma\\ \cos\gamma \end{array}
ight)$

and therefore the matrix is $A = \begin{pmatrix} \cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma \end{pmatrix}$

An easy computation show that $A^T A = I$, the identity matrix. Therefore, the scalar product of $R_{\gamma} \mathbf{x}$ and $R_{\gamma} \mathbf{y}$ is

$$(R_{\gamma}\mathbf{x})^T(R_{\gamma}\mathbf{y}) = (A\mathbf{x})^T(A\mathbf{y}) = \mathbf{x}^T A^T A \mathbf{y} = \mathbf{x}^T I \mathbf{y} = \mathbf{x}^T \mathbf{y}$$

$$R_{\gamma}\mathbf{e}_1 = \left(egin{array}{c} \cos\gamma\\ \sin\gamma \end{array}
ight)$$
 and $R_{\gamma}\mathbf{e}_2 = \left(egin{array}{c} -\sin\gamma\\ \cos\gamma \end{array}
ight)$

and therefore the matrix is $A = \begin{pmatrix} \cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma \end{pmatrix}$

An easy computation show that $A^T A = I$, the identity matrix. Therefore, the scalar product of $R_{\gamma} \mathbf{x}$ and $R_{\gamma} \mathbf{y}$ is

$$(R_{\gamma}\mathbf{x})^T(R_{\gamma}\mathbf{y}) = (A\mathbf{x})^T(A\mathbf{y}) = \mathbf{x}^T A^T A \mathbf{y} = \mathbf{x}^T I \mathbf{y} = \mathbf{x}^T \mathbf{y}$$

Similarly

$$\|R_{\gamma}\mathbf{x}\| = \left((R_{\gamma}\mathbf{x})^T(R_{\gamma}\mathbf{x})\right)^{1/2} = (\mathbf{x}^T\mathbf{x})^{1/2} = \|\mathbf{x}\|$$

• The expression $rac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$ does not change under a rotation R_γ

- The expression $\frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$ does not change under a rotation R_{γ}
- The angle between x and y does not change when both are rotated by the same angle.

- The expression $\frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$ does not change under a rotation R_{γ}
- The angle between \mathbf{x} and \mathbf{y} does not change when both are rotated by the same angle.
- The expression $\frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$ does not change if we multiply \mathbf{x} and \mathbf{y} by positive scalars.

- The expression $\frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$ does not change under a rotation R_{γ}
- The angle between x and y does not change when both are rotated by the same angle.
- The expression $\frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$ does not change if we multiply \mathbf{x} and \mathbf{y} by positive scalars.
- The angle beween x and y does not change if we multiply x and y by positive scalars.

- The expression $\frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$ does not change under a rotation R_{γ}
- The angle between x and y does not change when both are rotated by the same angle.
- The expression $\frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$ does not change if we multiply \mathbf{x} and \mathbf{y} by positive scalars.
- The angle beween x and y does not change if we multiply x and y by positive scalars.

So, in \mathbb{R}^2 , to prove that $\cos \theta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$, we may change \mathbf{x} and \mathbf{y} by scalar multiplication so that $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$

- The expression $\frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$ does not change under a rotation R_{γ}
- The angle between x and y does not change when both are rotated by the same angle.
- The expression $\frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$ does not change if we multiply \mathbf{x} and \mathbf{y} by positive scalars.
- The angle beween x and y does not change if we multiply x and y by positive scalars.

So, in \mathbb{R}^2 , to prove that $\cos \theta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$, we may change \mathbf{x} and \mathbf{y} by scalar multiplication so that $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$ and then change both by rotation so that $\mathbf{x} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\mathbf{y} = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$.

- The expression $\frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$ does not change under a rotation R_{γ}
- The angle between x and y does not change when both are rotated by the same angle.
- The expression $\frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$ does not change if we multiply \mathbf{x} and \mathbf{y} by positive scalars.
- The angle beween x and y does not change if we multiply x and y by positive scalars.

So, in \mathbb{R}^2 , to prove that $\cos \theta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$, we may change \mathbf{x} and \mathbf{y} by scalar multiplication so that $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$ and then change both by rotation so that $\mathbf{x} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\mathbf{y} = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$. And then $\frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = \frac{\cos \theta}{1}$.

There is a useful special case: If $\|\mathbf{u}\| = 1$, $\|\mathbf{v}\| = 1$ and θ is the angle between them, then $\cos \theta = \mathbf{u}^T \mathbf{v}$.

There is a useful special case: If $\|\mathbf{u}\| = 1$, $\|\mathbf{v}\| = 1$ and θ is the angle between them, then $\cos \theta = \mathbf{u}^T \mathbf{v}$. We can always convert to this case by letting $\mathbf{u} = \frac{1}{\|\mathbf{x}\|} \mathbf{x}$ and $\mathbf{v} = \frac{1}{\|\mathbf{y}\|} \mathbf{y}$.

There is a useful special case: If $\|\mathbf{u}\| = 1$, $\|\mathbf{v}\| = 1$ and θ is the angle between them, then $\cos \theta = \mathbf{u}^T \mathbf{v}$. We can always convert to this case by letting $\mathbf{u} = \frac{1}{\|\mathbf{x}\|} \mathbf{x}$ and $\mathbf{v} = \frac{1}{\|\mathbf{y}\|} \mathbf{y}$. Example: if $\mathbf{x} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ and $\mathbf{y} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ then $\|\mathbf{x}\| = 5$ and $\|\mathbf{y}\| = \sqrt{2}$, $\mathbf{x}^T \mathbf{y} = 1$.

There is a useful special case: If $\|\mathbf{u}\| = 1$, $\|\mathbf{v}\| = 1$ and θ is the angle between them, then $\cos \theta = \mathbf{u}^T \mathbf{v}$. We can always convert to this case by letting $\mathbf{u} = \frac{1}{\|\mathbf{x}\|}\mathbf{x}$ and $\mathbf{v} = \frac{1}{\|\mathbf{y}\|}\mathbf{y}$. Example: if $\mathbf{x} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ and $\mathbf{y} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ then $\|\mathbf{x}\| = 5$ and $\|\mathbf{y}\| = \sqrt{2}$, $\mathbf{x}^T \mathbf{y} = 1$. So, if θ is the angle between \mathbf{x} and \mathbf{y} we can compute $\cos \theta$ by $\frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|} = \frac{1}{5\sqrt{2}}$

There is a useful special case: If $\|\mathbf{u}\| = 1$, $\|\mathbf{v}\| = 1$ and θ is the angle between them, then $\cos \theta = \mathbf{u}^T \mathbf{v}$. We can always convert to this case by letting $\mathbf{u} = \frac{1}{\|\mathbf{x}\|} \mathbf{x}$ and $\mathbf{v} = \frac{1}{\|\mathbf{y}\|} \mathbf{y}$. Example: if $\mathbf{x} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ and $\mathbf{y} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ then $\|\mathbf{x}\| = 5$ and $\|\mathbf{y}\| = \sqrt{2}$, $\mathbf{x}^T \mathbf{y} = 1$. So, if θ is the angle between \mathbf{x} and \mathbf{y} we can compute $\cos \theta$ by $\frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = \frac{1}{5\sqrt{2}}$ or by

$$\cos \theta = \begin{pmatrix} 3/5 \\ 4/5 \end{pmatrix}^T \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \frac{-3}{5\sqrt{2}} + \frac{4}{5\sqrt{2}} = \frac{1}{5\sqrt{2}}$$

The Cauchy-Schwarz Inequality

Theorem

If \mathbf{x} and \mathbf{y} are vectors in \mathbb{R}^n , then $|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$.

The Cauchy-Schwarz Inequality

Theorem

If x and y are vectors in \mathbb{R}^n , then $|\mathbf{x}^T \mathbf{y}| \le \|\mathbf{x}\| \|\mathbf{y}\|$.

In \mathbb{R}^2 or \mathbb{R}^3 this follows from $\mathbf{x}^T \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta$ and the fact that $|\cos \theta| \leq 1$.

Theorem

If \mathbf{x} and \mathbf{y} are vectors in \mathbb{R}^n , then $|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$.

In \mathbb{R}^2 or \mathbb{R}^3 this follows from $\mathbf{x}^T \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta$ and the fact that $|\cos \theta| \leq 1$. In \mathbb{R}^n for n > 3 we can rotate 2 variables at a time (without changing the scalar product or the norms) until coordinates x_j and y_j are 0 for all j > 2. Then apply the \mathbb{R}^2 case.

Theorem

If \mathbf{x} and \mathbf{y} are vectors in \mathbb{R}^n , then $|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$.

In \mathbb{R}^2 or \mathbb{R}^3 this follows from $\mathbf{x}^T \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta$ and the fact that $|\cos \theta| \leq 1$. In \mathbb{R}^n for n > 3 we can rotate 2 variables at a time (without changing the scalar product or the norms) until coordinates x_j and y_j are 0 for all j > 2. Then apply the \mathbb{R}^2 case.

Definition

If x and y are in \mathbb{R}^n , we say that x is orthogonal to y if $\mathbf{x}^T \mathbf{y} = 0$. We denote this by writing $\mathbf{x} \perp \mathbf{y}$.

Theorem

If \mathbf{x} and \mathbf{y} are vectors in \mathbb{R}^n , then $|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$.

In \mathbb{R}^2 or \mathbb{R}^3 this follows from $\mathbf{x}^T \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta$ and the fact that $|\cos \theta| \leq 1$. In \mathbb{R}^n for n > 3 we can rotate 2 variables at a time (without changing the scalar product or the norms) until coordinates x_j and y_j are 0 for all j > 2. Then apply the \mathbb{R}^2 case.

Definition

If x and y are in \mathbb{R}^n , we say that x is orthogonal to y if $\mathbf{x}^T \mathbf{y} = 0$. We denote this by writing $\mathbf{x} \perp \mathbf{y}$.

Note that if $\mathbf{x} \perp \mathbf{y}$ then also $\mathbf{y} \perp \mathbf{x}$.

Theorem

If \mathbf{x} and \mathbf{y} are vectors in \mathbb{R}^n , then $|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$.

In \mathbb{R}^2 or \mathbb{R}^3 this follows from $\mathbf{x}^T \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta$ and the fact that $|\cos \theta| \leq 1$. In \mathbb{R}^n for n > 3 we can rotate 2 variables at a time (without changing the scalar product or the norms) until coordinates x_j and y_j are 0 for all j > 2. Then apply the \mathbb{R}^2 case.

Definition

If x and y are in \mathbb{R}^n , we say that x is orthogonal to y if $\mathbf{x}^T \mathbf{y} = 0$. We denote this by writing $\mathbf{x} \perp \mathbf{y}$.

Note that if $\mathbf{x} \perp \mathbf{y}$ then also $\mathbf{y} \perp \mathbf{x}$. Also 0 is orthogonal to any vector.

Theorem

If \mathbf{x} and \mathbf{y} are vectors in \mathbb{R}^n , then $|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$.

In \mathbb{R}^2 or \mathbb{R}^3 this follows from $\mathbf{x}^T \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta$ and the fact that $|\cos \theta| \leq 1$. In \mathbb{R}^n for n > 3 we can rotate 2 variables at a time (without changing the scalar product or the norms) until coordinates x_j and y_j are 0 for all j > 2. Then apply the \mathbb{R}^2 case.

Definition

If x and y are in \mathbb{R}^n , we say that x is orthogonal to y if $\mathbf{x}^T \mathbf{y} = 0$. We denote this by writing $\mathbf{x} \perp \mathbf{y}$.

Note that if $\mathbf{x} \perp \mathbf{y}$ then also $\mathbf{y} \perp \mathbf{x}$. Also $\mathbf{0}$ is orthogonal to any vector. In \mathbb{R}^2 or \mathbb{R}^3 , if neither \mathbf{x} nor \mathbf{y} is $\mathbf{0}$ then $\mathbf{x} \perp \mathbf{y}$ means that the angle between them is 90° .

1. If $\mathbf{x} \perp \mathbf{y}_1, \mathbf{x} \perp \mathbf{y}_2, \dots, \mathbf{x} \perp \mathbf{y}_n$ then \mathbf{x} is orthogonal to every vector in $\operatorname{Span}(\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n)$. Proof: $\mathbf{x}^T(c_1\mathbf{y}_1 + \dots + c_n\mathbf{y}_n) = c_1\mathbf{x}^T\mathbf{y}_1 + \dots + c_n\mathbf{x}^T\mathbf{y}_n = 0 + \dots + 0 = 0$

- If x ⊥ y₁, x ⊥ y₂,..., x ⊥ y_n then x is orthogonal to every vector in Span(y₁, y₂,..., y_n). Proof:
 x^T(c₁y₁ + ··· + c_ny_n) = c₁x^Ty₁ + ··· + c_nx^Ty_n = 0 + ··· + 0 = 0
- 2. If $\mathbf{x} \in \mathbb{R}^n$ then the set of vectors orthogonal to \mathbf{x} is a subspace of \mathbb{R}^n .

- If x ⊥ y₁, x ⊥ y₂,..., x ⊥ y_n then x is orthogonal to every vector in Span(y₁, y₂,..., y_n). Proof: x^T(c₁y₁ + ··· + c_ny_n) = c₁x^Ty₁ + ··· + c_nx^Ty_n = 0 + ··· + 0 = 0
- 2. If $\mathbf{x} \in \mathbb{R}^n$ then the set of vectors orthogonal to \mathbf{x} is a subspace of \mathbb{R}^n .
- 3. $\mathbf{x} \perp \mathbf{x}$ if and only if $\mathbf{x} = \mathbf{0}$. Proof: $0 = \mathbf{x}^T \mathbf{x} = x_1^2 + x_2^2 + \cdots + x_n^2$ can only be true if all $x_j = 0$.

- 1. If $\mathbf{x} \perp \mathbf{y}_1, \mathbf{x} \perp \mathbf{y}_2, \dots, \mathbf{x} \perp \mathbf{y}_n$ then \mathbf{x} is orthogonal to every vector in $\operatorname{Span}(\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n)$. Proof: $\mathbf{x}^T(c_1\mathbf{y}_1 + \dots + c_n\mathbf{y}_n) = c_1\mathbf{x}^T\mathbf{y}_1 + \dots + c_n\mathbf{x}^T\mathbf{y}_n = 0 + \dots + 0 = 0$
- 2. If $\mathbf{x} \in \mathbb{R}^n$ then the set of vectors orthogonal to \mathbf{x} is a subspace of \mathbb{R}^n .
- 3. $\mathbf{x} \perp \mathbf{x}$ if and only if $\mathbf{x} = \mathbf{0}$. Proof: $0 = \mathbf{x}^T \mathbf{x} = x_1^2 + x_2^2 + \cdots + x_n^2$ can only be true if all $x_j = 0$.

Example: find a vector orthogonal to $\mathbf{a} = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$.

- 1. If $\mathbf{x} \perp \mathbf{y}_1, \mathbf{x} \perp \mathbf{y}_2, \dots, \mathbf{x} \perp \mathbf{y}_n$ then \mathbf{x} is orthogonal to every vector in $\operatorname{Span}(\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n)$. Proof: $\mathbf{x}^T(c_1\mathbf{y}_1 + \dots + c_n\mathbf{y}_n) = c_1\mathbf{x}^T\mathbf{y}_1 + \dots + c_n\mathbf{x}^T\mathbf{y}_n = 0 + \dots + 0 = 0$
- 2. If $\mathbf{x} \in \mathbb{R}^n$ then the set of vectors orthogonal to \mathbf{x} is a subspace of \mathbb{R}^n .
- 3. $\mathbf{x} \perp \mathbf{x}$ if and only if $\mathbf{x} = \mathbf{0}$. Proof: $0 = \mathbf{x}^T \mathbf{x} = x_1^2 + x_2^2 + \cdots + x_n^2$ can only be true if all $x_j = 0$.

Example: find a vector orthogonal to $\mathbf{a} = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$. Solution: solve

$$\mathbf{a}^T \mathbf{x} = 0$$
: $x_1 - 2x_2 + 3x_3 = 0$ or $x_1 = 2x_2 - 3x_3$

- 1. If $\mathbf{x} \perp \mathbf{y}_1, \mathbf{x} \perp \mathbf{y}_2, \dots, \mathbf{x} \perp \mathbf{y}_n$ then \mathbf{x} is orthogonal to every vector in $\operatorname{Span}(\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n)$. Proof: $\mathbf{x}^T(c_1\mathbf{y}_1 + \dots + c_n\mathbf{y}_n) = c_1\mathbf{x}^T\mathbf{y}_1 + \dots + c_n\mathbf{x}^T\mathbf{y}_n = 0 + \dots + 0 = 0$
- 2. If $\mathbf{x} \in \mathbb{R}^n$ then the set of vectors orthogonal to \mathbf{x} is a subspace of \mathbb{R}^n .
- 3. $\mathbf{x} \perp \mathbf{x}$ if and only if $\mathbf{x} = \mathbf{0}$. Proof: $0 = \mathbf{x}^T \mathbf{x} = x_1^2 + x_2^2 + \cdots + x_n^2$ can only be true if all $x_j = 0$.

Example: find a vector orthogonal to $\mathbf{a} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$. Solution: solve

$$\mathbf{a}^T \mathbf{x} = 0$$
: $x_1 - 2x_2 + 3x_3 = 0$ or $x_1 = 2x_2 - 3x_3$

Here x_1 is leading, x_2 and x_3 are free. The basic solutions

$$\left(\begin{array}{c}2\\1\\0\end{array}\right) \quad \text{and} \quad \left(\begin{array}{c}-3\\0\\1\end{array}\right)$$

are orthogonal to \mathbf{a} , as is every vector in their span.

Example: find a vector orthogonal to both
$$\mathbf{a}_1 = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$$
 and

$$\mathbf{a}_2 = \left(\begin{array}{c} -1\\ 2\\ -1 \end{array}\right).$$

Example: find a vector orthogonal to both $\mathbf{a}_1 = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ and $\mathbf{a}_2 = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$. Solution: solve the system $\mathbf{a}_1^T \mathbf{x} = 0$, $\mathbf{a}_2^T \mathbf{x} = 0$:

Example: find a vector orthogonal to both $\mathbf{a}_1 = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ and

 $\mathbf{a}_2 = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$. Solution: solve the system $\mathbf{a}_1^T \mathbf{x} = 0$, $\mathbf{a}_2^T \mathbf{x} = 0$: This

system is equivalent to $A\mathbf{x} = \mathbf{0}$ where $A = \begin{pmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \end{pmatrix}$. We solve that by row-reducing A:

$$\left(\begin{array}{rrrr} 1 & -1 & 3 \\ -1 & 2 & -1 \end{array}\right) \xrightarrow{R_2+R_1} \left(\begin{array}{rrrr} 1 & -1 & 3 \\ 0 & 1 & 2 \end{array}\right) \xrightarrow{R_1+R_2} \left(\begin{array}{rrrr} 1 & 0 & 5 \\ 0 & 1 & 2 \end{array}\right)$$

Example: find a vector orthogonal to both $\mathbf{a}_1 = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ and

 $\mathbf{a}_2 = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$. Solution: solve the system $\mathbf{a}_1^T \mathbf{x} = 0$, $\mathbf{a}_2^T \mathbf{x} = 0$: This

system is equivalent to $A\mathbf{x} = \mathbf{0}$ where $A = \begin{pmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \end{pmatrix}$. We solve that by row-reducing A:

$$\left(\begin{array}{rrrr} 1 & -1 & 3 \\ -1 & 2 & -1 \end{array}\right) \xrightarrow{R_2+R_1} \left(\begin{array}{rrrr} 1 & -1 & 3 \\ 0 & 1 & 2 \end{array}\right) \xrightarrow{R_1+R_2} \left(\begin{array}{rrrr} 1 & 0 & 5 \\ 0 & 1 & 2 \end{array}\right)$$

This has leading variables x_1 and x_2 with free variable x_3 , also $x_1 = -5x_3$ and $x_2 = -2x_3$ and so the vectors $\begin{pmatrix} -5\alpha \\ -2\alpha \\ \alpha \end{pmatrix}$ are orthogonal to \mathbf{a}_1 and \mathbf{a}_2 , for any choice of α .

If
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 then $\|\mathbf{x}\| = (x_1^2 + x_2^2)^{1/2}$ is the distance from the point $(0,0)$ to (x_1, x_2) .

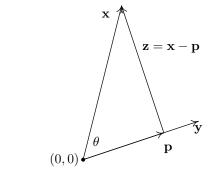
If
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 then $\|\mathbf{x}\| = (x_1^2 + x_2^2)^{1/2}$ is the distance from the point $(0,0)$ to (x_1, x_2) . If $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, then $\|\mathbf{x} - \mathbf{y}\|$ is the distance between (x_1, x_2) and (y_1, y_2) .

If $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ then $\|\mathbf{x}\| = (x_1^2 + x_2^2)^{1/2}$ is the distance from the point (0,0) to (x_1,x_2) . If $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, then $\|\mathbf{x} - \mathbf{y}\|$ is the distance between (x_1,x_2) and (y_1,y_2) . Because of this, and our formula for angles between vectors, we can do geometry via linear algebra.

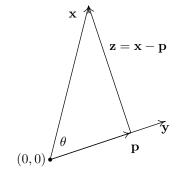
If $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ then $\|\mathbf{x}\| = (x_1^2 + x_2^2)^{1/2}$ is the distance from the point (0,0) to (x_1,x_2) . If $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, then $\|\mathbf{x} - \mathbf{y}\|$ is the distance between (x_1,x_2) and (y_1,y_2) . Because of this, and our formula for angles between vectors, we can do geometry via linear algebra. Suppose we want to find the point on a line that is closest to the point (x_1,x_2) .

If $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ then $\|\mathbf{x}\| = (x_1^2 + x_2^2)^{1/2}$ is the distance from the point (0,0) to (x_1,x_2) . If $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, then $\|\mathbf{x} - \mathbf{y}\|$ is the distance between (x_1,x_2) and (y_1,y_2) . Because of this, and our formula for angles between vectors, we can do geometry via linear algebra. Suppose we want to find the point on a line that is closest to the point (x_1,x_2) .

 (x_1, x_2) . Suppose we can express a line as all points that are tips of the vectors αy for all $\alpha \in \mathbb{R}$.

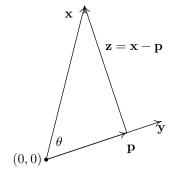


We seek to find the tip of \mathbf{p} .



We seek to find the tip of \mathbf{p} .

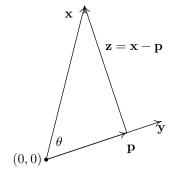
We can find the length of \mathbf{p} via trigonometry: $\|\mathbf{p}\| = \|\mathbf{x}\| \cos \theta$.



We seek to find the tip of \mathbf{p} .

We can find the length of \mathbf{p} via trigonometry: $\|\mathbf{p}\| = \|\mathbf{x}\| \cos \theta$. With our formula for $\cos \theta$, we have

$$\|\mathbf{p}\| = \|\mathbf{x}\| \, rac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \, \|\mathbf{y}\|} = rac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{y}\|}$$



We seek to find the tip of \mathbf{p} .

We can find the length of \mathbf{p} via trigonometry: $\|\mathbf{p}\| = \|\mathbf{x}\| \cos \theta$. With our formula for $\cos \theta$, we have

$$\|\mathbf{p}\| = \|\mathbf{x}\| \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{y}\|}$$

To get \mathbf{p} itself we observe that $\mathbf{u} = (1/ \|\mathbf{y}\|)\mathbf{y}$ has the same direction as both \mathbf{y} and \mathbf{p} , but has length 1.

Thus $\mathbf{p} = \|\mathbf{p}\| \, \mathbf{u}.$

Thus $\mathbf{p} = \|\mathbf{p}\| \, \mathbf{u}.$ Putting these together:

$$\mathbf{p} = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{y}\|} \frac{1}{\|\mathbf{y}\|} \mathbf{y} = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{y}\|^2} \mathbf{y} = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{y}^T \mathbf{y}} \mathbf{y}.$$

Thus $\mathbf{p} = \|\mathbf{p}\| \mathbf{u}$. Putting these together:

$$\mathbf{p} = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{y}\|} \frac{1}{\|\mathbf{y}\|} \mathbf{y} = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{y}\|^2} \mathbf{y} = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{y}^T \mathbf{y}} \mathbf{y}.$$

Definition

If x and y belong to \mathbb{R}^2 or \mathbb{R}^3 then: The number $\alpha = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{y}\|}$ is called the *scalar projection of* x *onto* y. The vector $\mathbf{p} = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{y}^T \mathbf{y}}$ is called the *vector projection of* x *onto* y Thus $\mathbf{p} = \|\mathbf{p}\| \mathbf{u}$. Putting these together:

$$\mathbf{p} = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{y}\|} \frac{1}{\|\mathbf{y}\|} \mathbf{y} = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{y}\|^2} \mathbf{y} = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{y}^T \mathbf{y}} \mathbf{y}.$$

Definition

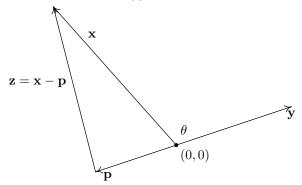
If x and y belong to
$$\mathbb{R}^2$$
 or \mathbb{R}^3 then:
The number $\alpha = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{y}\|}$ is called the *scalar projection of* x *onto* y.
The vector $\mathbf{p} = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{y}^T \mathbf{y}} \mathbf{y}$ is called the *vector projection of* x *onto* y

Note that the scalar projection α times the vector $\mathbf{u} = (1/ \|\mathbf{y}\|)\mathbf{y}$ is the vector projection.

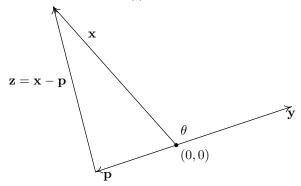
The calculation of α and **p** was based on a figure where $\theta < 90^{\circ}$.

The calculation of α and \mathbf{p} was based on a figure where $\theta < 90^{\circ}$. The following figure ilustrates what happens when $\theta > 90^{\circ}$.

The calculation of α and \mathbf{p} was based on a figure where $\theta < 90^{\circ}$. The following figure illustrates what happens when $\theta > 90^{\circ}$.

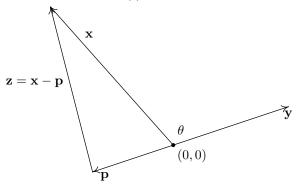


The calculation of α and \mathbf{p} was based on a figure where $\theta < 90^{\circ}$. The following figure illustrates what happens when $\theta > 90^{\circ}$.



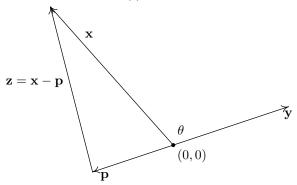
In this case $\cos \theta$ is negative and so is α .

The calculation of α and \mathbf{p} was based on a figure where $\theta < 90^{\circ}$. The following figure illustrates what happens when $\theta > 90^{\circ}$.



In this case $\cos \theta$ is negative and so is α . Then $\alpha = - \|\mathbf{p}\|$, but $\alpha \mathbf{u}$ is still \mathbf{p} because \mathbf{p} points in the direction opposite to \mathbf{u} and \mathbf{y} .

The calculation of α and \mathbf{p} was based on a figure where $\theta < 90^{\circ}$. The following figure ilustrates what happens when $\theta > 90^{\circ}$.



In this case $\cos \theta$ is negative and so is α . Then $\alpha = - \|\mathbf{p}\|$, but $\alpha \mathbf{u}$ is still \mathbf{p} because \mathbf{p} points in the direction opposite to \mathbf{u} and \mathbf{y} . The formulas for α and \mathbf{p} from the definition still hold in this case.

The distance between (x_1, x_2) and the line specified by y is the length of the vector $\mathbf{x} - \mathbf{p}$: $\|\mathbf{x} - \mathbf{p}\|$.

The distance between (x_1, x_2) and the line specified by y is the length of the vector $\mathbf{x} - \mathbf{p}$: $\|\mathbf{x} - \mathbf{p}\|$.

Here is an example: Let L be the line passing through (0,0) and (3,1). We can take $\mathbf{y} = \begin{pmatrix} 3\\1 \end{pmatrix}$. Consider the point (1,4), whose vector form is $\mathbf{x} = \begin{pmatrix} 1\\4 \end{pmatrix}$

Here is an example: Let L be the line passing through (0,0) and (3,1). We can take $\mathbf{y} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$. Consider the point (1,4), whose vector form is $\mathbf{x} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ To get the closest point to (1,4) on this line we compute

$$\mathbf{p} = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{y}^T \mathbf{y}} \mathbf{y} = \frac{7}{10} \mathbf{y} = \begin{pmatrix} 2.1 \\ 0.7 \end{pmatrix}$$

Here is an example: Let L be the line passing through (0,0) and (3,1). We can take $\mathbf{y} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$. Consider the point (1,4), whose vector form is $\mathbf{x} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ To get the closest point to (1,4) on this line we compute

$$\mathbf{p} = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{y}^T \mathbf{y}} \mathbf{y} = \frac{7}{10} \mathbf{y} = \begin{pmatrix} 2.1 \\ 0.7 \end{pmatrix}$$

So the closest point of L to (1,4) is (2.1,0.7) and the distance is $((1-2.1)^2 + (4-0.7)^2)^{1/2} = \sqrt{12.1} \approx 3.4785.$

Here is an example: Let L be the line passing through (0,0) and (3,1). We can take $\mathbf{y} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$. Consider the point (1,4), whose vector form is $\mathbf{x} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ To get the closest point to (1,4) on this line we compute

$$\mathbf{p} = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{y}^T \mathbf{y}} \mathbf{y} = \frac{7}{10} \mathbf{y} = \begin{pmatrix} 2.1 \\ 0.7 \end{pmatrix}$$

So the closest point of L to (1,4) is (2.1,0.7) and the distance is $((1-2.1)^2 + (4-0.7)^2)^{1/2} = \sqrt{12.1} \approx 3.4785.$

If we try this with a line L that does not pass through (0,0) we simply have to pick two points P_0 and P_1 on the line.

Here is an example: Let L be the line passing through (0,0) and (3,1). We can take $\mathbf{y} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$. Consider the point (1,4), whose vector form is $\mathbf{x} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ To get the closest point to (1,4) on this line we compute

$$\mathbf{p} = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{y}^T \mathbf{y}} \mathbf{y} = \frac{7}{10} \mathbf{y} = \begin{pmatrix} 2.1 \\ 0.7 \end{pmatrix}$$

So the closest point of L to (1,4) is (2.1,0.7) and the distance is $((1-2.1)^2 + (4-0.7)^2)^{1/2} = \sqrt{12.1} \approx 3.4785.$

If we try this with a line L that does not pass through (0,0) we simply have to pick two points P_0 and P_1 on the line. The displacement vector from P_0 to P_1 will be denoted $\overrightarrow{P_0P_1}$.

Here is an example: Let L be the line passing through (0,0) and (3,1). We can take $\mathbf{y} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$. Consider the point (1,4), whose vector form is $\mathbf{x} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ To get the closest point to (1,4) on this line we compute

$$\mathbf{p} = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{y}^T \mathbf{y}} \mathbf{y} = \frac{7}{10} \mathbf{y} = \begin{pmatrix} 2.1 \\ 0.7 \end{pmatrix}$$

So the closest point of L to (1,4) is (2.1,0.7) and the distance is $((1-2.1)^2 + (4-0.7)^2)^{1/2} = \sqrt{12.1} \approx 3.4785.$

If we try this with a line L that does not pass through (0,0) we simply have to pick two points P_0 and P_1 on the line. The displacement vector from P_0 to P_1 will be denoted $\overrightarrow{P_0P_1}$. All the calculations to get the point on L closest to a point P then take place with $\mathbf{x} = \overrightarrow{P_0P}$ and $\mathbf{y} = \overrightarrow{P_0P_1}$. When we find \mathbf{p} , the closest point will be the point Q such that $\overrightarrow{P_0Q} = \mathbf{p}$. Example: Consider the Line with slope 1/3 that passes through (0,1) (y = (1/3)x + 1).

Example: Consider the Line with slope 1/3 that passes through (0,1) (y = (1/3)x + 1). Then take $P_0 = (0,1)$ and $P_1 = (3,2)$ so $\mathbf{y} = \overrightarrow{P_0P_1} = \begin{pmatrix} 3\\1 \end{pmatrix}$.

Example: Consider the Line with slope 1/3 that passes through (0,1) (y = (1/3)x + 1). Then take $P_0 = (0,1)$ and $P_1 = (3,2)$ so $\mathbf{y} = \overrightarrow{P_0P_1} = \begin{pmatrix} 3\\1 \end{pmatrix}$.

Say we want the closest point from P = (1, 4) to this line. Then $\mathbf{x} = \overrightarrow{P_0P} = \begin{pmatrix} 1\\ 3 \end{pmatrix}$.

Example: Consider the Line with slope 1/3 that passes through (0,1) (y = (1/3)x + 1). Then take $P_0 = (0,1)$ and $P_1 = (3,2)$ so $\mathbf{y} = \overrightarrow{P_0P_1} = \begin{pmatrix} 3\\1 \end{pmatrix}$.

Say we want the closest point from P = (1, 4) to this line. Then $\mathbf{x} = \overrightarrow{P_0P} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$. Then we get the projection of \mathbf{x} onto \mathbf{y}

$$\mathbf{p} = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{y}^T \mathbf{y}} \mathbf{y} = \frac{6}{10} \begin{pmatrix} 3\\1 \end{pmatrix} = \begin{pmatrix} 1.8\\0.6 \end{pmatrix}$$

To get that closest point, we add the components of \mathbf{p} to P_0 to get Q = (1.8, 1.6) and the distance $((1-1.8)^2 + (4-1.6)^2)^{1/2} = \sqrt{6.4} \approx 2.53.$

A plane can be specified in terms of orthogonality.

A plane can be specified in terms of orthogonality. If \mathbf{a} is any vector, then the set of vectors orthogonal to \mathbf{a} is a plane passing through (0,0,0).

A plane can be specified in terms of orthogonality. If \mathbf{a} is any vector, then the set of vectors orthogonal to \mathbf{a} is a plane passing through (0,0,0). The expression of orthogonality gives us an equation for the plane:

$$\mathbf{a}^T \mathbf{x} = 0$$
 gives $a_1 x_1 + a_2 x_2 + a_3 x_3 = 0$

A plane can be specified in terms of orthogonality. If a is any vector, then the set of vectors orthogonal to a is a plane passing through (0, 0, 0). The expression of orthogonality gives us an equation for the plane:

$$\mathbf{a}^T \mathbf{x} = 0$$
 gives $a_1 x_1 + a_2 x_2 + a_3 x_3 = 0$

In the usual format (i.e., using variables x, y, z) this says that

ax + by + cz = 0 is the plane through (0, 0, 0) perpendicular to $\begin{bmatrix} a \\ b \\ \vdots \end{bmatrix}$.

A plane can be specified in terms of orthogonality. If a is any vector, then the set of vectors orthogonal to a is a plane passing through (0,0,0). The expression of orthogonality gives us an equation for the plane:

$$\mathbf{a}^T \mathbf{x} = 0$$
 gives $a_1 x_1 + a_2 x_2 + a_3 x_3 = 0$

In the usual format (i.e., using variables x, y, z) this says that

$$ax + by + cz = 0$$
 is the plane through $(0, 0, 0)$ perpendicular to $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$

If we want a plane that doesn't pass through (0,0,0) we need to have a point $P_0 = (x_0, y_0, z_0)$ that is on the plane, and then the plane is the set of points P = (x, y, z) such that $\overrightarrow{P_0P} \perp \mathbf{a}$ for some vector \mathbf{a} .

A plane can be specified in terms of orthogonality. If a is any vector, then the set of vectors orthogonal to a is a plane passing through (0,0,0). The expression of orthogonality gives us an equation for the plane:

$$\mathbf{a}^T \mathbf{x} = 0$$
 gives $a_1 x_1 + a_2 x_2 + a_3 x_3 = 0$

In the usual format (i.e., using variables x, y, z) this says that

$$ax + by + cz = 0$$
 is the plane through $(0, 0, 0)$ perpendicular to $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$

If we want a plane that doesn't pass through (0,0,0) we need to have a point $P_0 = (x_0, y_0, z_0)$ that is on the plane, and then the plane is the set of points P = (x, y, z) such that $\overrightarrow{P_0P} \perp \mathbf{a}$ for some vector \mathbf{a} . That is, the equation of the plane through (x_0, y_0, z_0) and perpendicular to $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ is

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$