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Definition

If x and y € R™ then the scalar product of x and y is x'y

x1 n
. . T2 Y2

In terms of the coordinates, if x = . and y = . , then
Tn Yn

XTy = T1Y1 + X2Y2 + -+ TpYn = yTX-

Definition

We write [|x|| = (x7x)'/? and call this the norm of x.

In terms of coordinates ||x|| = (22 + x3 + --- + 22)V/2.

In R? we have HXH = (22 +23)"/2, and in R? we have
x|| = (22 + 22 + 22 1/2. In either case this is the length of the arrow that
1 2T T3
we use to visualize x.
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XTy
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1. The scalar product of ax and By is (ax)”(By) = aB(x"y)
2. The norm of ax is ||ax|| = |a|||x||. Note that if « = 1/ ||x]| the
Jox]| = 1.

In dimension 2 or 3 we have a geometric intrerpretation of the scalar
product.

Theorem

Let x,y € R? or R3. Suppose ||x|| # 0 and |ly|| # 0. Let 6 be the angle
between x andy with 0 < 6 < 180°. Then

XTy

cosf = ————.
[BSIRIN

We're actually going to prove this in the case R?. But first recall the linear
transformations on R? given by rotations. That is, if v is any angle let
R, x be the arrow x rotated counterclockwise by the angle .
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Since R, goes from R? to R? it is a matrix transformation.
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Since R, goes from R? to R? it is a matrix transformation. We get that
matrix by
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Since R, goes from R? to R? it is a matrix transformation. We get that
matrix by

R'Yel = [ CS?I?; ] and R’YeQZ [ _(il)l’;:; ]

and therefore the matrix is A = [ cosy —siny ]

siny COSs 7y
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Since R, goes from R? to R? it is a matrix transformation. We get that
matrix by

Roor= (7] and me= [ 207

cosy —sinvy ]

and therefore the matrix is A = [ .
sin ~y cosy

An easy computation show that AT A = I, the identity matrix. Therefore,
the scalar product of R,x and R,y is

(Rx)" (Ryy) = (Ax)"(4y) = x"AT Ay = x"Ty =x"y
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Since R, goes from R? to R? it is a matrix transformation. We get that
matrix by

Roor= (7] and me= [ 207

and therefore the matrix is A = [ cosy —siny ]

sin 7y cos 7y

An easy computation show that AT A = I, the identity matrix. Therefore,
the scalar product of R,x and R,y is

(Ryx)"(Ryy) = (Ax)"(Ay) =x" AT Ay =x"Iy =x"y
Similarly

IR x]| = ((Ry%)7(Ryx))"* = (x"x)"/? = |||
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We now make several observations.

T
. b .
® The expression XY does not change under a rotation I2,
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[1xI[ Iyl
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T

® The expression XY 4oes not change if we multiply x and y by

y
1= ¥
positive scalars.
® The angle beween x and y does not change if we multiply x and y by
positive scalars.

T
So, in R?, to prove that cosf = l X|| Hy , we may change x and y by
Xy
scalar multiplication so that ||x|| = ||y|| = 1 and then change both by
rotation so that x = L and y = cos
Lo Y= sin0 |-
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We now make several observations.
T

. b .
® The expression XY does not change under a rotation I2,

[1xI[ Iyl
® The angle between x and y does not change when both are rotated
by the same angle.
T

® The expression XY 4oes not change if we multiply x and y by

y
B 1= ¥
positive scalars.
® The angle beween x and y does not change if we multiply x and y by
positive scalars.

T
So, in R?, to prove that cosf = l X|| Hy , we may change x and y by
Xy
scalar multiplication so that ||x|| = ||y|| = 1 and then change both by
. 1 cos 6
rotation so that x = [ 0 ] and y = sing |- And then
xly _cost
I Iyl 1

5/1



In R? we can do something similar. Roughly speaking we can perform a
few rotations so that both vectors have the third component 0 and then
apply the R? case.
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In R? we can do something similar. Roughly speaking we can perform a
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apply the R? case.

v|| =1 and 0 is the angle

There is a useful special case: If ||ul| =1, |
between them, then cosf = u’'v.
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In R? we can do something similar. Roughly speaking we can perform a
few rotations so that both vectors have the third component 0 and then
apply the R? case.

There is a useful special case: If ||u]| =1, ||v|| =1 and @ is the angle
between them, then cos# = u’v. We can always convert to this case by

letting u = —x and v = —y.
Il Iyl

Example: if x = [ i ] and y = [ _i ] then ||x|| = 5 and ||y = V2,
x'y = 1. So, if 0 is the angle between x and y we can compute cos @ by
xTy _ 1

=yl — 5v2
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In R? we can do something similar. Roughly speaking we can perform a
few rotations so that both vectors have the third component 0 and then
apply the R? case.

There is a useful special case:
between them, then cos# = u’v. We can always convert to this case by

. 1
letting u = —x and v=-—y
Il Iyl

Examp|e; If x = [ i ] and y = [ _i ] then ||XH =5 and Hy” = ﬂ,

xT =1 So if 6 is the angle between x and y we can compute cosf by
TR = 573 O bY
[ 3/5 ]T [ —1/V/2 ] 3 4 1
cosf = =
4/5 1/v2 NN}
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The Cauchy-Schwarz Inequality

If x and 'y are vectors in R™, then |xTy| < ||x]| |ly]|-
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In R? or R? this follows from x”y = ||x|| ||y|| cos @ and the fact that
|cosf| < 1.
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The Cauchy-Schwarz Inequality

If x and 'y are vectors in R™, then |xTy| < ||x]| |ly]|-

In R? or R? this follows from x”y = ||x|| ||y|| cos @ and the fact that
|cos@| < 1. In R" for n > 3 we can rotate 2 variables at a time (without
changing the scalar product or the norms) until coordinates x; and y; are
0 for all j > 2. Then apply the R? case.
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The Cauchy-Schwarz Inequality
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If x and 'y are vectors in R™, then |xTy| < ||x]| |ly]|-

In R? or R? this follows from x”y = ||x|| ||y|| cos @ and the fact that
|cos@| < 1. In R" for n > 3 we can rotate 2 variables at a time (without
changing the scalar product or the norms) until coordinates x; and y; are
0 for all j > 2. Then apply the R? case.

Definition

If x and y are in R, we say that x is orthogonal to 'y if xTy = 0. We
denote this by writing x 1 y.
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Theorem

If x and 'y are vectors in R™, then |xTy| < ||x]| |ly]|-

In R? or R? this follows from x”y = ||x|| ||y|| cos @ and the fact that
|cos@| < 1. In R" for n > 3 we can rotate 2 variables at a time (without
changing the scalar product or the norms) until coordinates x; and y; are
0 for all j > 2. Then apply the R? case.

Definition

If x and y are in R, we say that x is orthogonal to 'y if xTy = 0. We
denote this by writing x 1 y.

Note that if x 1 y then also y L x. Also 0 is orthogonal to any vector.



The Cauchy-Schwarz Inequality

Theorem

If x and 'y are vectors in R™, then |xTy| < ||x]| |ly]|-

In R? or R? this follows from x”y = ||x|| ||y|| cos @ and the fact that
|cos@| < 1. In R" for n > 3 we can rotate 2 variables at a time (without
changing the scalar product or the norms) until coordinates x; and y; are
0 for all j > 2. Then apply the R? case.

Definition

If x and y are in R, we say that x is orthogonal to 'y if xTy = 0. We
denote this by writing x 1 y.

Note that if x L y then also y L x. Also 0 is orthogonal to any vector. In
R? or R3, if neither x nor y is 0 then x Ly means that the angle between
them is 90°.



Some properties of orthogonality:
1. fx Lyy,x Lys,...,x 1Ly, then x is orthogonal to every vector in
Span(y1,¥y2,...,¥n). Proof:

x(ey1+ -+ enyn) =ax'y1+- -+ X yp =0+---+0=0
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Some properties of orthogonality:
1. fx Lyy,x Lys,...,x 1Ly, then x is orthogonal to every vector in
Span(y1,¥y2,...,¥n). Proof:
x(ey1+ -+ enyn) =ax'y1+- -+ X yp =0+---+0=0
2. If x € R™ then the set of vectors orthogonal to x is a subspace of R".
3. x L xif and only if x = 0. Proof: 0 = x'x = 2?2 + 22 +--- + 22 can
only be true if all ; = 0.
1

Example: find a vector orthogonal toa= | —2
3
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Some properties of orthogonality:
1. fx Lyy,x Lys,...,x 1Ly, then x is orthogonal to every vector in
Span(y1,¥y2,...,¥n). Proof:
x(ey1+ -+ enyn) =ax'y1+- -+ X yp =0+---+0=0
2. If x € R™ then the set of vectors orthogonal to x is a subspace of R".
3. x L xif and only if x = 0. Proof: 0 = x'x = 2?2 + 22 +--- + 22 can
only be true if all ; = 0.
1

Example: find a vector orthogonal toa= | —2 |. Solution: solve
3

alx =0: T1 —2x9+3x3=0 or x| =2x9— 3x3

Here z1 is leading, xo and x3 are free. The basic solutions

2 -3
1 and 0
0 1

are orthogonal to a, as is every vector in their span.
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Example: find a vector orthogonal to both a; =

-1
ag = 2
-1

1
-1
3

and
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Example: find a vector orthogonal to both a; = -1 and
3
-1
ag = 2 | . Solution: solve the system alx =0, alx = 0:
-1

1
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1

Example: find a vector orthogonal to both a; = -1 and
3
-1
ag = 2 | . Solution: solve the system alx =0, alx = 0: This
-1
al ] W.
T |- We solve that by

system is equivalent to Ax = 0 where A = [ a
2

row-reducing A:

1 -1 3 Ro+Rq 1 -1 3 Ri+R> 1 0 5
[ ) = J e 000 )
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1
Example: find a vector orthogonal to both a; = -1 and
3
-1
ag = 2 | . Solution: solve the system alx =0, alx = 0: This
-1
al ] W.
T |- We solve that by

system is equivalent to Ax = 0 where A = [ a
2

row-reducing A:

1 -1 3 Ro+Rq 1 -1 3 Ri+R> 1 0 5
[—1 2—1] 3[0 12] 3[012]

This has leading variables x1 and o with free variable z3, also x1 = —5z3
—da
and z9 = —2x3 and so the vectors —2a are orthogonal to a; and
«

ao, for any choice of a.
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Orthogonal Projection

If x = [ il ] then |x|| = (22 + x%)l/Q is the distance from the point
2

(0, O) to (:El, 1?2).
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Orthogonal Projection

If x = [ il ] then |x|| = (22 + x%)l/Q is the distance from the point
2

(0,0) to (x1,22). If y = [ il ] , then ||x — y|| is the distance between
2

(x1,22) and (y1,y2). Because of this, and our formula for angles between

vectors, we can do geometry via linear algebra.

Suppose we want to find the point on a line that is closest to the point
(z1,x2). Suppose we can express a line as all points that are tips of the
vectors ay for all o € R.

10/1



The following is a picture of this setup:

(0,0)
We seek to find the tip of p.
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The following is a picture of this setup:

(0,0)
We seek to find the tip of p.
We can find the length of p via trigonometry: ||p|| = ||x|| cos§. With our
formula for cos 6, we have
_ xy _x'y
1= iy = T
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The following is a picture of this setup:

(0,0)
We seek to find the tip of p.
We can find the length of p via trigonometry: ||p|| = ||x|| cos§. With our
formula for cos 6, we have
_ xy _x'y
1= iy = T

To get p itself we observe that u = (1/||y||)y has the same direction as
both y and p, but has length 1.
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Thus p = [lp|| u.
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Thus p = ||p|| u. Putting these together:
x'y 1 xly xly

= = 2Y = T
¥l y'y

p= y y-
Iy Iyl
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Thus p = ||p|| u. Putting these together:

x'y 1 xly xly
b= y= y = y.
Iy Iyl iy *™ y'y

Definition
If x and y belong to R? or R? then:

X'y . .
The number o = L is called the scalar projection of x onto'y.

[yl
T

X
The vector p = Tyy is called the vector projection of x onto'y
y'y
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Thus p = ||p|| u. Putting these together:

x'y 1 xly xly
b= y= y = y.
Iy Iyl iy *™ y'y

Definition

If x and y belong to R? or R? then:

X'y . .
The number o = L is called the scalar projection of x onto'y.

[yl
T

X
The vector p = Tyy is called the vector projection of x onto'y
y'y

Note that the scalar projection « times the vector u = (1/||y||)y is the
vector projection.

12/1



The calculation of & and p was based on a figure where 6 < 90°.
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following figure ilustrates what happens when 6 > 90°.

X
Z=X—P
Yy
0
(0,0)
p
In this case cos @ is negative and so is «. Then o = — ||p||, but au is still

P because p points in the direction opposite to u and y.
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The calculation of & and p was based on a figure where 8 < 90°. The
following figure ilustrates what happens when 6 > 90°.

X
Z=X—P
Yy
0
(0,0)
p
In this case cos @ is negative and so is «. Then o = — ||p||, but au is still

p because p points in the direction opposite to u and y. The formulas for
a and p from the definition still hold in this case.
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The distance between (z1,x2) and the line specified by y is the length of
the vector x — p: ||x — p|.
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The distance between (z1,x2) and the line specified by y is the length of
the vector x — p: ||x — p|.

Here is an example: Let L be the line passing through (0,0) and (3,1).

We can take y = [ i’ ] . Consider the point (1,4), whose vector form is

()
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The distance between (z1,x2) and the line specified by y is the length of
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Here is an example: Let L be the line passing through (0,0) and (3,1).

We can take y = [ i’ ] . Consider the point (1,4), whose vector form is

X = [ i ] To get the closest point to (1,4) on this line we compute

p= = 0.7

xly 7 2.1
T Y =
y'y 10

So the closest point of L to (1,4) is (2.1,0.7) and the distance is
(1—21)% 4 (4—0.7)2)"* = V12.1 ~ 3.4785.

If we try this with a line L that does not pass through (0,0) we simply
have to pick two points Py and P; on the line. The displacement vector
from P, to P; will be denoted ]ﬁ. All the calculations to get the point
on L closest to a point P then take place with x = ]@5 and y = ByP,.
When we find p, the closest point will be the point @ such that Py = p.
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Example: Consider the Line with slope 1/3 that passes through (0, 1)
(y=(@1/3)z+1).
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vmr- (7).
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Example: Consider the Line with slope 1/3 that passes through (0, 1)
(y=(1/3)x 4+ 1). Then take Py = (0,1) and P, = (3,2) so

Yy = Po? = [ ? ] .
Say we want the closest point from P = (1,4) to this line. Then

X = ﬁ = [ ?1) ] . Then we get the projection of x onto y

o x'y 6 (3)_ (18
P=3ryY =10 1) 7 | 06
To get that closest point, we add the components of p to P to get

@ = (1.8,1.6) and the distance
(1-1.8)2+(4—-1.6)%)2=6.4 ~2.53.
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Planes in R?

A plane can be specified in terms of orthogonality.

16/1



Planes in R?

A plane can be specified in terms of orthogonality. If a is any vector, then
the set of vectors orthogonal to a is a plane passing through (0,0, 0).

16/1



Planes in R?

A plane can be specified in terms of orthogonality. If a is any vector, then
the set of vectors orthogonal to a is a plane passing through (0,0,0). The
expression of orthogonality gives us an equation for the plane:

alx =0 gives aijxy + azxe + asrs =0
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alx =0 gives aijxy + azxe + asrs =0

In the usual format (i.e., using variables z,y, z) this says that
a

az + by + cz = 0 is the plane through (0,0, 0) perpendicular to b
c

If we want a plane that doesn’t pass through (0,0,0) we need to have a
point Py = (0, %0, 20) that is on the plane, and then the plane is the set

of points P = (x,y, z) such that ]ﬁ’ 1 a for some vector a.That is, the
a

equation of the plane through (xg,yo0, 20) and perpendicular to | b is
c
a(r —x0) +b(y — yo) + (2 — 20) =0
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