Scalar Product

Daniel H. Luecking

15 March 2024

Definition
 If \mathbf{x} and $\mathbf{y} \in \mathbb{R}^{n}$ then the scalar product of \mathbf{x} and \mathbf{y} is $\mathbf{x}^{T} \mathbf{y}$

Definition

If \mathbf{x} and $\mathbf{y} \in \mathbb{R}^{n}$ then the scalar product of \mathbf{x} and \mathbf{y} is $\mathbf{x}^{T} \mathbf{y}$
In terms of the coordinates, if $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$ and $\mathbf{y}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right)$, then
$\mathbf{x}^{T} \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\mathbf{y}^{T} \mathbf{x}$.

Definition

If \mathbf{x} and $\mathbf{y} \in \mathbb{R}^{n}$ then the scalar product of \mathbf{x} and \mathbf{y} is $\mathbf{x}^{T} \mathbf{y}$
In terms of the coordinates, if $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$ and $\mathbf{y}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right)$, then
$\mathbf{x}^{T} \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\mathbf{y}^{T} \mathbf{x}$.

Definition

We write $\|\mathbf{x}\|=\left(\mathbf{x}^{T} \mathbf{x}\right)^{1 / 2}$ and call this the norm of \mathbf{x}.

Definition

If \mathbf{x} and $\mathbf{y} \in \mathbb{R}^{n}$ then the scalar product of \mathbf{x} and \mathbf{y} is $\mathbf{x}^{T} \mathbf{y}$
In terms of the coordinates, if $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$ and $\mathbf{y}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right)$, then
$\mathbf{x}^{T} \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\mathbf{y}^{T} \mathbf{x}$.

Definition

We write $\|\mathbf{x}\|=\left(\mathbf{x}^{T} \mathbf{x}\right)^{1 / 2}$ and call this the norm of \mathbf{x}.
In terms of coordinates $\|\mathbf{x}\|=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$.

Definition

If \mathbf{x} and $\mathbf{y} \in \mathbb{R}^{n}$ then the scalar product of \mathbf{x} and \mathbf{y} is $\mathbf{x}^{T} \mathbf{y}$
In terms of the coordinates, if $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$ and $\mathbf{y}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right)$, then
$\mathbf{x}^{T} \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\mathbf{y}^{T} \mathbf{x}$.

Definition

We write $\|\mathbf{x}\|=\left(\mathbf{x}^{T} \mathbf{x}\right)^{1 / 2}$ and call this the norm of \mathbf{x}.
In terms of coordinates $\|\mathbf{x}\|=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$.
In \mathbb{R}^{2} we have $\|\mathbf{x}\|=\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}$,

Definition

If \mathbf{x} and $\mathbf{y} \in \mathbb{R}^{n}$ then the scalar product of \mathbf{x} and \mathbf{y} is $\mathbf{x}^{T} \mathbf{y}$
In terms of the coordinates, if $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$ and $\mathbf{y}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right)$, then
$\mathbf{x}^{T} \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\mathbf{y}^{T} \mathbf{x}$.

Definition

We write $\|\mathbf{x}\|=\left(\mathbf{x}^{T} \mathbf{x}\right)^{1 / 2}$ and call this the norm of \mathbf{x}.
In terms of coordinates $\|\mathbf{x}\|=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$.
In \mathbb{R}^{2} we have $\|\mathbf{x}\|=\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}$, and in \mathbb{R}^{3} we have $\|\mathbf{x}\|=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{1 / 2}$.

Definition

If \mathbf{x} and $\mathbf{y} \in \mathbb{R}^{n}$ then the scalar product of \mathbf{x} and \mathbf{y} is $\mathbf{x}^{T} \mathbf{y}$
In terms of the coordinates, if $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$ and $\mathbf{y}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right)$, then $\mathbf{x}^{T} \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\mathbf{y}^{T} \mathbf{x}$.

Definition

We write $\|\mathbf{x}\|=\left(\mathbf{x}^{T} \mathbf{x}\right)^{1 / 2}$ and call this the norm of \mathbf{x}.
In terms of coordinates $\|\mathbf{x}\|=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$.
In \mathbb{R}^{2} we have $\|\mathbf{x}\|=\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}$, and in \mathbb{R}^{3} we have $\|\mathbf{x}\|=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{1 / 2}$. In either case this is the length of the arrow that we use to visualize \mathbf{x}.

A couple of simple properties of scalar products.

1. The scalar product of $\alpha \mathbf{x}$ and $\beta \mathbf{y}$ is $(\alpha \mathbf{x})^{T}(\beta \mathbf{y})=\alpha \beta\left(\mathbf{x}^{T} \mathbf{y}\right)$

A couple of simple properties of scalar products.

1. The scalar product of $\alpha \mathbf{x}$ and $\beta \mathbf{y}$ is $(\alpha \mathbf{x})^{T}(\beta \mathbf{y})=\alpha \beta\left(\mathbf{x}^{T} \mathbf{y}\right)$
2. The norm of $\alpha \mathbf{x}$ is $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$. Note that if $\alpha=1 /\|\mathbf{x}\|$ the $\|\alpha \mathbf{x}\|=1$.

A couple of simple properties of scalar products.

1. The scalar product of $\alpha \mathbf{x}$ and $\beta \mathbf{y}$ is $(\alpha \mathbf{x})^{T}(\beta \mathbf{y})=\alpha \beta\left(\mathbf{x}^{T} \mathbf{y}\right)$
2. The norm of $\alpha \mathbf{x}$ is $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$. Note that if $\alpha=1 /\|\mathbf{x}\|$ the $\|\alpha \mathbf{x}\|=1$.

In dimension 2 or 3 we have a geometric intrerpretation of the scalar product.

A couple of simple properties of scalar products.

1. The scalar product of $\alpha \mathbf{x}$ and $\beta \mathbf{y}$ is $(\alpha \mathbf{x})^{T}(\beta \mathbf{y})=\alpha \beta\left(\mathbf{x}^{T} \mathbf{y}\right)$
2. The norm of $\alpha \mathbf{x}$ is $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$. Note that if $\alpha=1 /\|\mathbf{x}\|$ the $\|\alpha \mathbf{x}\|=1$.

In dimension 2 or 3 we have a geometric intrerpretation of the scalar product.

Theorem

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$ or \mathbb{R}^{3}. Suppose $\|\mathbf{x}\| \neq 0$ and $\|\mathbf{y}\| \neq 0$. Let θ be the angle between \mathbf{x} and \mathbf{y} with $0 \leq \theta \leq 180^{\circ}$. Then

$$
\cos \theta=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}
$$

A couple of simple properties of scalar products.

1. The scalar product of $\alpha \mathbf{x}$ and $\beta \mathbf{y}$ is $(\alpha \mathbf{x})^{T}(\beta \mathbf{y})=\alpha \beta\left(\mathbf{x}^{T} \mathbf{y}\right)$
2. The norm of $\alpha \mathbf{x}$ is $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$. Note that if $\alpha=1 /\|\mathbf{x}\|$ the $\|\alpha \mathbf{x}\|=1$.

In dimension 2 or 3 we have a geometric intrerpretation of the scalar product.

Theorem

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$ or \mathbb{R}^{3}. Suppose $\|\mathbf{x}\| \neq 0$ and $\|\mathbf{y}\| \neq 0$. Let θ be the angle between \mathbf{x} and \mathbf{y} with $0 \leq \theta \leq 180^{\circ}$. Then

$$
\cos \theta=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}
$$

We're actually going to prove this in the case \mathbb{R}^{2}.

A couple of simple properties of scalar products.

1. The scalar product of $\alpha \mathbf{x}$ and $\beta \mathbf{y}$ is $(\alpha \mathbf{x})^{T}(\beta \mathbf{y})=\alpha \beta\left(\mathbf{x}^{T} \mathbf{y}\right)$
2. The norm of $\alpha \mathbf{x}$ is $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$. Note that if $\alpha=1 /\|\mathbf{x}\|$ the $\|\alpha \mathbf{x}\|=1$.

In dimension 2 or 3 we have a geometric intrerpretation of the scalar product.

Theorem

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$ or \mathbb{R}^{3}. Suppose $\|\mathbf{x}\| \neq 0$ and $\|\mathbf{y}\| \neq 0$. Let θ be the angle between \mathbf{x} and \mathbf{y} with $0 \leq \theta \leq 180^{\circ}$. Then

$$
\cos \theta=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}
$$

We're actually going to prove this in the case \mathbb{R}^{2}. But first recall the linear transformations on \mathbb{R}^{2} given by rotations.

A couple of simple properties of scalar products.

1. The scalar product of $\alpha \mathbf{x}$ and $\beta \mathbf{y}$ is $(\alpha \mathbf{x})^{T}(\beta \mathbf{y})=\alpha \beta\left(\mathbf{x}^{T} \mathbf{y}\right)$
2. The norm of $\alpha \mathbf{x}$ is $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$. Note that if $\alpha=1 /\|\mathbf{x}\|$ the $\|\alpha \mathbf{x}\|=1$.

In dimension 2 or 3 we have a geometric intrerpretation of the scalar product.

Theorem

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$ or \mathbb{R}^{3}. Suppose $\|\mathbf{x}\| \neq 0$ and $\|\mathbf{y}\| \neq 0$. Let θ be the angle between \mathbf{x} and \mathbf{y} with $0 \leq \theta \leq 180^{\circ}$. Then

$$
\cos \theta=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}
$$

We're actually going to prove this in the case \mathbb{R}^{2}. But first recall the linear transformations on \mathbb{R}^{2} given by rotations. That is, if γ is any angle let $R_{\gamma} \mathbf{x}$ be the arrow \mathbf{x} rotated counterclockwise by the angle γ.

Since R_{γ} goes from \mathbb{R}^{2} to \mathbb{R}^{2} it is a matrix transformation.

Since R_{γ} goes from \mathbb{R}^{2} to \mathbb{R}^{2} it is a matrix transformation. We get that matrix by

$$
R_{\gamma} \mathbf{e}_{1}=\binom{\cos \gamma}{\sin \gamma} \quad \text { and } \quad R_{\gamma} \mathbf{e}_{2}=\binom{-\sin \gamma}{\cos \gamma}
$$

Since R_{γ} goes from \mathbb{R}^{2} to \mathbb{R}^{2} it is a matrix transformation. We get that matrix by

$$
R_{\gamma} \mathbf{e}_{1}=\binom{\cos \gamma}{\sin \gamma} \quad \text { and } \quad R_{\gamma} \mathbf{e}_{2}=\binom{-\sin \gamma}{\cos \gamma}
$$

and therefore the matrix is $A=\left(\begin{array}{rr}\cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma\end{array}\right)$

Since R_{γ} goes from \mathbb{R}^{2} to \mathbb{R}^{2} it is a matrix transformation. We get that matrix by

$$
R_{\gamma} \mathbf{e}_{1}=\binom{\cos \gamma}{\sin \gamma} \quad \text { and } \quad R_{\gamma} \mathbf{e}_{2}=\binom{-\sin \gamma}{\cos \gamma}
$$

and therefore the matrix is $A=\left(\begin{array}{rr}\cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma\end{array}\right)$
An easy computation show that $A^{T} A=I$, the identity matrix.

Since R_{γ} goes from \mathbb{R}^{2} to \mathbb{R}^{2} it is a matrix transformation. We get that matrix by

$$
R_{\gamma} \mathbf{e}_{1}=\binom{\cos \gamma}{\sin \gamma} \quad \text { and } \quad R_{\gamma} \mathbf{e}_{2}=\binom{-\sin \gamma}{\cos \gamma}
$$

and therefore the matrix is $A=\left(\begin{array}{rr}\cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma\end{array}\right)$
An easy computation show that $A^{T} A=I$, the identity matrix. Therefore, the scalar product of $R_{\gamma} \mathbf{x}$ and $R_{\gamma} \mathbf{y}$ is

$$
\left(R_{\gamma} \mathbf{x}\right)^{T}\left(R_{\gamma} \mathbf{y}\right)=(A \mathbf{x})^{T}(A \mathbf{y})=\mathbf{x}^{T} A^{T} A \mathbf{y}=\mathbf{x}^{T} I \mathbf{y}=\mathbf{x}^{T} \mathbf{y}
$$

Since R_{γ} goes from \mathbb{R}^{2} to \mathbb{R}^{2} it is a matrix transformation. We get that matrix by

$$
R_{\gamma} \mathbf{e}_{1}=\binom{\cos \gamma}{\sin \gamma} \quad \text { and } \quad R_{\gamma} \mathbf{e}_{2}=\binom{-\sin \gamma}{\cos \gamma}
$$

and therefore the matrix is $A=\left(\begin{array}{rr}\cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma\end{array}\right)$
An easy computation show that $A^{T} A=I$, the identity matrix. Therefore, the scalar product of $R_{\gamma} \mathbf{x}$ and $R_{\gamma} \mathbf{y}$ is

$$
\left(R_{\gamma} \mathbf{x}\right)^{T}\left(R_{\gamma} \mathbf{y}\right)=(A \mathbf{x})^{T}(A \mathbf{y})=\mathbf{x}^{T} A^{T} A \mathbf{y}=\mathbf{x}^{T} I \mathbf{y}=\mathbf{x}^{T} \mathbf{y}
$$

Similarly

$$
\left\|R_{\gamma} \mathbf{x}\right\|=\left(\left(R_{\gamma} \mathbf{x}\right)^{T}\left(R_{\gamma} \mathbf{x}\right)\right)^{1 / 2}=\left(\mathbf{x}^{T} \mathbf{x}\right)^{1 / 2}=\|\mathbf{x}\|
$$

We now make several observations.

- The expression $\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}$ does not change under a rotation R_{γ}

We now make several observations.

- The expression $\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}$ does not change under a rotation R_{γ}
- The angle between \mathbf{x} and \mathbf{y} does not change when both are rotated by the same angle.

We now make several observations.

- The expression $\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}$ does not change under a rotation R_{γ}
- The angle between \mathbf{x} and \mathbf{y} does not change when both are rotated by the same angle.
- The expression $\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}$ does not change if we multiply \mathbf{x} and \mathbf{y} by positive scalars.

We now make several observations.

- The expression $\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}$ does not change under a rotation R_{γ}
- The angle between \mathbf{x} and \mathbf{y} does not change when both are rotated by the same angle.
- The expression $\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}$ does not change if we multiply \mathbf{x} and \mathbf{y} by positive scalars.
- The angle beween \mathbf{x} and \mathbf{y} does not change if we multiply \mathbf{x} and \mathbf{y} by positive scalars.

We now make several observations.

- The expression $\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}$ does not change under a rotation R_{γ}
- The angle between \mathbf{x} and \mathbf{y} does not change when both are rotated by the same angle.
- The expression $\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}$ does not change if we multiply \mathbf{x} and \mathbf{y} by positive scalars.
- The angle beween \mathbf{x} and \mathbf{y} does not change if we multiply \mathbf{x} and \mathbf{y} by positive scalars.
So, in \mathbb{R}^{2}, to prove that $\cos \theta=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}$, we may change \mathbf{x} and \mathbf{y} by scalar multiplication so that $\|\mathbf{x}\|=\|\mathbf{y}\|=1$

We now make several observations.

- The expression $\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}$ does not change under a rotation R_{γ}
- The angle between \mathbf{x} and \mathbf{y} does not change when both are rotated by the same angle.
- The expression $\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}$ does not change if we multiply \mathbf{x} and \mathbf{y} by positive scalars.
- The angle beween \mathbf{x} and \mathbf{y} does not change if we multiply \mathbf{x} and \mathbf{y} by positive scalars.
So, in \mathbb{R}^{2}, to prove that $\cos \theta=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}$, we may change \mathbf{x} and \mathbf{y} by scalar multiplication so that $\|\mathbf{x}\|=\|\mathbf{y}\|=1$ and then change both by rotation so that $\mathbf{x}=\binom{1}{0}$ and $\mathbf{y}=\binom{\cos \theta}{\sin \theta}$.

We now make several observations.

- The expression $\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}$ does not change under a rotation R_{γ}
- The angle between \mathbf{x} and \mathbf{y} does not change when both are rotated by the same angle.
- The expression $\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}$ does not change if we multiply \mathbf{x} and \mathbf{y} by positive scalars.
- The angle beween \mathbf{x} and \mathbf{y} does not change if we multiply \mathbf{x} and \mathbf{y} by positive scalars.
So, in \mathbb{R}^{2}, to prove that $\cos \theta=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}$, we may change \mathbf{x} and \mathbf{y} by scalar multiplication so that $\|\mathbf{x}\|=\|\mathbf{y}\|=1$ and then change both by rotation so that $\mathbf{x}=\binom{1}{0}$ and $\mathbf{y}=\binom{\cos \theta}{\sin \theta}$. And then $\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}=\frac{\cos \theta}{1}$.

In \mathbb{R}^{3} we can do something similar. Roughly speaking we can perform a few rotations so that both vectors have the third component 0 and then apply the \mathbb{R}^{2} case.

In \mathbb{R}^{3} we can do something similar. Roughly speaking we can perform a few rotations so that both vectors have the third component 0 and then apply the \mathbb{R}^{2} case.
There is a useful special case: If $\|\mathbf{u}\|=1,\|\mathbf{v}\|=1$ and θ is the angle between them, then $\cos \theta=\mathbf{u}^{T} \mathbf{v}$.

In \mathbb{R}^{3} we can do something similar. Roughly speaking we can perform a few rotations so that both vectors have the third component 0 and then apply the \mathbb{R}^{2} case.
There is a useful special case: If $\|\mathbf{u}\|=1,\|\mathbf{v}\|=1$ and θ is the angle between them, then $\cos \theta=\mathbf{u}^{T} \mathbf{v}$. We can always convert to this case by letting $\mathbf{u}=\frac{1}{\|\mathbf{x}\|} \mathbf{x}$ and $\mathbf{v}=\frac{1}{\|\mathbf{y}\|} \mathbf{y}$.

In \mathbb{R}^{3} we can do something similar. Roughly speaking we can perform a few rotations so that both vectors have the third component 0 and then apply the \mathbb{R}^{2} case.
There is a useful special case: If $\|\mathbf{u}\|=1,\|\mathbf{v}\|=1$ and θ is the angle between them, then $\cos \theta=\mathbf{u}^{T} \mathbf{v}$. We can always convert to this case by letting $\mathbf{u}=\frac{1}{\|\mathbf{x}\|} \mathbf{x}$ and $\mathbf{v}=\frac{1}{\|\mathbf{y}\|} \mathbf{y}$.
Example: if $\mathbf{x}=\binom{3}{4}$ and $\mathbf{y}=\binom{-1}{1}$ then $\|\mathbf{x}\|=5$ and $\|\mathbf{y}\|=\sqrt{2}$, $\mathbf{x}^{T} \mathbf{y}=1$.

In \mathbb{R}^{3} we can do something similar. Roughly speaking we can perform a few rotations so that both vectors have the third component 0 and then apply the \mathbb{R}^{2} case.
There is a useful special case: If $\|\mathbf{u}\|=1,\|\mathbf{v}\|=1$ and θ is the angle between them, then $\cos \theta=\mathbf{u}^{T} \mathbf{v}$. We can always convert to this case by letting $\mathbf{u}=\frac{1}{\|\mathbf{x}\|} \mathbf{x}$ and $\mathbf{v}=\frac{1}{\|\mathbf{y}\|} \mathbf{y}$.
Example: if $\mathbf{x}=\binom{3}{4}$ and $\mathbf{y}=\binom{-1}{1}$ then $\|\mathbf{x}\|=5$ and $\|\mathbf{y}\|=\sqrt{2}$, $\mathbf{x}^{T} \mathbf{y}=1$. So, if θ is the angle between \mathbf{x} and \mathbf{y} we can compute $\cos \theta$ by $\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}=\frac{1}{5 \sqrt{2}}$

In \mathbb{R}^{3} we can do something similar. Roughly speaking we can perform a few rotations so that both vectors have the third component 0 and then apply the \mathbb{R}^{2} case.
There is a useful special case: If $\|\mathbf{u}\|=1,\|\mathbf{v}\|=1$ and θ is the angle between them, then $\cos \theta=\mathbf{u}^{T} \mathbf{v}$. We can always convert to this case by letting $\mathbf{u}=\frac{1}{\|\mathbf{x}\|} \mathbf{x}$ and $\mathbf{v}=\frac{1}{\|\mathbf{y}\|} \mathbf{y}$.
Example: if $\mathbf{x}=\binom{3}{4}$ and $\mathbf{y}=\binom{-1}{1}$ then $\|\mathbf{x}\|=5$ and $\|\mathbf{y}\|=\sqrt{2}$, $\mathbf{x}^{T} \mathbf{y}=1$. So, if θ is the angle between \mathbf{x} and \mathbf{y} we can compute $\cos \theta$ by $\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}=\frac{1}{5 \sqrt{2}}$ or by

$$
\cos \theta=\binom{3 / 5}{4 / 5}^{T}\binom{-1 / \sqrt{2}}{1 / \sqrt{2}}=\frac{-3}{5 \sqrt{2}}+\frac{4}{5 \sqrt{2}}=\frac{1}{5 \sqrt{2}}
$$

The Cauchy-Schwarz Inequality

Theorem
If \mathbf{x} and \mathbf{y} are vectors in \mathbb{R}^{n}, then $\left|\mathbf{x}^{T} \mathbf{y}\right| \leq\|\mathbf{x}\|\|\mathbf{y}\|$.

The Cauchy-Schwarz Inequality

Theorem

If \mathbf{x} and \mathbf{y} are vectors in \mathbb{R}^{n}, then $\left|\mathbf{x}^{T} \mathbf{y}\right| \leq\|\mathbf{x}\|\|\mathbf{y}\|$.
In \mathbb{R}^{2} or \mathbb{R}^{3} this follows from $\mathbf{x}^{T} \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta$ and the fact that $|\cos \theta| \leq 1$.

The Cauchy-Schwarz Inequality

Theorem

If \mathbf{x} and \mathbf{y} are vectors in \mathbb{R}^{n}, then $\left|\mathbf{x}^{T} \mathbf{y}\right| \leq\|\mathbf{x}\|\|\mathbf{y}\|$.
In \mathbb{R}^{2} or \mathbb{R}^{3} this follows from $\mathbf{x}^{T} \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta$ and the fact that $|\cos \theta| \leq 1$. In \mathbb{R}^{n} for $n>3$ we can rotate 2 variables at a time (without changing the scalar product or the norms) until coordinates x_{j} and y_{j} are 0 for all $j>2$. Then apply the \mathbb{R}^{2} case.

The Cauchy-Schwarz Inequality

Theorem

If \mathbf{x} and \mathbf{y} are vectors in \mathbb{R}^{n}, then $\left|\mathbf{x}^{T} \mathbf{y}\right| \leq\|\mathbf{x}\|\|\mathbf{y}\|$.
In \mathbb{R}^{2} or \mathbb{R}^{3} this follows from $\mathbf{x}^{T} \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta$ and the fact that $|\cos \theta| \leq 1$. In \mathbb{R}^{n} for $n>3$ we can rotate 2 variables at a time (without changing the scalar product or the norms) until coordinates x_{j} and y_{j} are 0 for all $j>2$. Then apply the \mathbb{R}^{2} case.

Definition

If \mathbf{x} and \mathbf{y} are in \mathbb{R}^{n}, we say that \mathbf{x} is orthogonal to \mathbf{y} if $\mathbf{x}^{T} \mathbf{y}=0$. We denote this by writing $\mathbf{x} \perp \mathbf{y}$.

The Cauchy-Schwarz Inequality

Theorem

If \mathbf{x} and \mathbf{y} are vectors in \mathbb{R}^{n}, then $\left|\mathbf{x}^{T} \mathbf{y}\right| \leq\|\mathbf{x}\|\|\mathbf{y}\|$.
In \mathbb{R}^{2} or \mathbb{R}^{3} this follows from $\mathbf{x}^{T} \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta$ and the fact that $|\cos \theta| \leq 1$. In \mathbb{R}^{n} for $n>3$ we can rotate 2 variables at a time (without changing the scalar product or the norms) until coordinates x_{j} and y_{j} are 0 for all $j>2$. Then apply the \mathbb{R}^{2} case.

Definition

If \mathbf{x} and \mathbf{y} are in \mathbb{R}^{n}, we say that \mathbf{x} is orthogonal to \mathbf{y} if $\mathbf{x}^{T} \mathbf{y}=0$. We denote this by writing $\mathbf{x} \perp \mathbf{y}$.

Note that if $\mathbf{x} \perp \mathbf{y}$ then also $\mathbf{y} \perp \mathbf{x}$.

The Cauchy-Schwarz Inequality

Theorem

If \mathbf{x} and \mathbf{y} are vectors in \mathbb{R}^{n}, then $\left|\mathbf{x}^{T} \mathbf{y}\right| \leq\|\mathbf{x}\|\|\mathbf{y}\|$.
In \mathbb{R}^{2} or \mathbb{R}^{3} this follows from $\mathbf{x}^{T} \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta$ and the fact that $|\cos \theta| \leq 1$. In \mathbb{R}^{n} for $n>3$ we can rotate 2 variables at a time (without changing the scalar product or the norms) until coordinates x_{j} and y_{j} are 0 for all $j>2$. Then apply the \mathbb{R}^{2} case.

Definition

If \mathbf{x} and \mathbf{y} are in \mathbb{R}^{n}, we say that \mathbf{x} is orthogonal to \mathbf{y} if $\mathbf{x}^{T} \mathbf{y}=0$. We denote this by writing $\mathbf{x} \perp \mathbf{y}$.

Note that if $\mathbf{x} \perp \mathbf{y}$ then also $\mathbf{y} \perp \mathbf{x}$. Also $\mathbf{0}$ is orthogonal to any vector.

The Cauchy-Schwarz Inequality

Theorem

If \mathbf{x} and \mathbf{y} are vectors in \mathbb{R}^{n}, then $\left|\mathbf{x}^{T} \mathbf{y}\right| \leq\|\mathbf{x}\|\|\mathbf{y}\|$.
In \mathbb{R}^{2} or \mathbb{R}^{3} this follows from $\mathbf{x}^{T} \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta$ and the fact that $|\cos \theta| \leq 1$. In \mathbb{R}^{n} for $n>3$ we can rotate 2 variables at a time (without changing the scalar product or the norms) until coordinates x_{j} and y_{j} are 0 for all $j>2$. Then apply the \mathbb{R}^{2} case.

Definition

If \mathbf{x} and \mathbf{y} are in \mathbb{R}^{n}, we say that \mathbf{x} is orthogonal to \mathbf{y} if $\mathbf{x}^{T} \mathbf{y}=0$. We denote this by writing $\mathbf{x} \perp \mathbf{y}$.

Note that if $\mathbf{x} \perp \mathbf{y}$ then also $\mathbf{y} \perp \mathbf{x}$. Also $\mathbf{0}$ is orthogonal to any vector. In \mathbb{R}^{2} or \mathbb{R}^{3}, if neither \mathbf{x} nor \mathbf{y} is $\mathbf{0}$ then $\mathbf{x} \perp \mathbf{y}$ means that the angle between them is 90°.

Some properties of orthogonality:

1. If $\mathbf{x} \perp \mathbf{y}_{1}, \mathbf{x} \perp \mathbf{y}_{2}, \ldots, \mathbf{x} \perp \mathbf{y}_{n}$ then \mathbf{x} is orthogonal to every vector in $\operatorname{Span}\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{n}\right)$. Proof:

$$
\mathbf{x}^{T}\left(c_{1} \mathbf{y}_{1}+\cdots+c_{n} \mathbf{y}_{n}\right)=c_{1} \mathbf{x}^{T} \mathbf{y}_{1}+\cdots+c_{n} \mathbf{x}^{T} \mathbf{y}_{n}=0+\cdots+0=0
$$

Some properties of orthogonality:

1. If $\mathbf{x} \perp \mathbf{y}_{1}, \mathbf{x} \perp \mathbf{y}_{2}, \ldots, \mathbf{x} \perp \mathbf{y}_{n}$ then \mathbf{x} is orthogonal to every vector in $\operatorname{Span}\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{n}\right)$. Proof:

$$
\mathbf{x}^{T}\left(c_{1} \mathbf{y}_{1}+\cdots+c_{n} \mathbf{y}_{n}\right)=c_{1} \mathbf{x}^{T} \mathbf{y}_{1}+\cdots+c_{n} \mathbf{x}^{T} \mathbf{y}_{n}=0+\cdots+0=0
$$

2. If $\mathbf{x} \in \mathbb{R}^{n}$ then the set of vectors orthogonal to \mathbf{x} is a subspace of \mathbb{R}^{n}.

Some properties of orthogonality:

1. If $\mathbf{x} \perp \mathbf{y}_{1}, \mathbf{x} \perp \mathbf{y}_{2}, \ldots, \mathbf{x} \perp \mathbf{y}_{n}$ then \mathbf{x} is orthogonal to every vector in $\operatorname{Span}\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{n}\right)$. Proof:

$$
\mathbf{x}^{T}\left(c_{1} \mathbf{y}_{1}+\cdots+c_{n} \mathbf{y}_{n}\right)=c_{1} \mathbf{x}^{T} \mathbf{y}_{1}+\cdots+c_{n} \mathbf{x}^{T} \mathbf{y}_{n}=0+\cdots+0=0
$$

2. If $\mathbf{x} \in \mathbb{R}^{n}$ then the set of vectors orthogonal to \mathbf{x} is a subspace of \mathbb{R}^{n}.
3. $\mathbf{x} \perp \mathbf{x}$ if and only if $\mathbf{x}=\mathbf{0}$. Proof: $0=\mathbf{x}^{T} \mathbf{x}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$ can only be true if all $x_{j}=0$.

Some properties of orthogonality:

1. If $\mathbf{x} \perp \mathbf{y}_{1}, \mathbf{x} \perp \mathbf{y}_{2}, \ldots, \mathbf{x} \perp \mathbf{y}_{n}$ then \mathbf{x} is orthogonal to every vector in $\operatorname{Span}\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{n}\right)$. Proof:

$$
\mathbf{x}^{T}\left(c_{1} \mathbf{y}_{1}+\cdots+c_{n} \mathbf{y}_{n}\right)=c_{1} \mathbf{x}^{T} \mathbf{y}_{1}+\cdots+c_{n} \mathbf{x}^{T} \mathbf{y}_{n}=0+\cdots+0=0
$$

2. If $\mathbf{x} \in \mathbb{R}^{n}$ then the set of vectors orthogonal to \mathbf{x} is a subspace of \mathbb{R}^{n}.
3. $\mathbf{x} \perp \mathbf{x}$ if and only if $\mathbf{x}=\mathbf{0}$. Proof: $0=\mathbf{x}^{T} \mathbf{x}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$ can only be true if all $x_{j}=0$.
Example: find a vector orthogonal to $\mathbf{a}=\left(\begin{array}{r}1 \\ -2 \\ 3\end{array}\right)$.

Some properties of orthogonality:

1. If $\mathbf{x} \perp \mathbf{y}_{1}, \mathbf{x} \perp \mathbf{y}_{2}, \ldots, \mathbf{x} \perp \mathbf{y}_{n}$ then \mathbf{x} is orthogonal to every vector in $\operatorname{Span}\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{n}\right)$. Proof:

$$
\mathbf{x}^{T}\left(c_{1} \mathbf{y}_{1}+\cdots+c_{n} \mathbf{y}_{n}\right)=c_{1} \mathbf{x}^{T} \mathbf{y}_{1}+\cdots+c_{n} \mathbf{x}^{T} \mathbf{y}_{n}=0+\cdots+0=0
$$

2. If $\mathbf{x} \in \mathbb{R}^{n}$ then the set of vectors orthogonal to \mathbf{x} is a subspace of \mathbb{R}^{n}.
3. $\mathbf{x} \perp \mathbf{x}$ if and only if $\mathbf{x}=\mathbf{0}$. Proof: $0=\mathbf{x}^{T} \mathbf{x}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$ can only be true if all $x_{j}=0$.
Example: find a vector orthogonal to $\mathbf{a}=\left(\begin{array}{r}1 \\ -2 \\ 3\end{array}\right)$. Solution: solve

$$
\mathbf{a}^{T} \mathbf{x}=0: \quad x_{1}-2 x_{2}+3 x_{3}=0 \quad \text { or } \quad x_{1}=2 x_{2}-3 x_{3}
$$

Some properties of orthogonality:

1. If $\mathbf{x} \perp \mathbf{y}_{1}, \mathbf{x} \perp \mathbf{y}_{2}, \ldots, \mathbf{x} \perp \mathbf{y}_{n}$ then \mathbf{x} is orthogonal to every vector in $\operatorname{Span}\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{n}\right)$. Proof:

$$
\mathbf{x}^{T}\left(c_{1} \mathbf{y}_{1}+\cdots+c_{n} \mathbf{y}_{n}\right)=c_{1} \mathbf{x}^{T} \mathbf{y}_{1}+\cdots+c_{n} \mathbf{x}^{T} \mathbf{y}_{n}=0+\cdots+0=0
$$

2. If $\mathbf{x} \in \mathbb{R}^{n}$ then the set of vectors orthogonal to \mathbf{x} is a subspace of \mathbb{R}^{n}.
3. $\mathbf{x} \perp \mathbf{x}$ if and only if $\mathbf{x}=\mathbf{0}$. Proof: $0=\mathbf{x}^{T} \mathbf{x}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$ can only be true if all $x_{j}=0$.
Example: find a vector orthogonal to $\mathbf{a}=\left(\begin{array}{r}1 \\ -2 \\ 3\end{array}\right)$. Solution: solve

$$
\mathbf{a}^{T} \mathbf{x}=0: \quad x_{1}-2 x_{2}+3 x_{3}=0 \quad \text { or } \quad x_{1}=2 x_{2}-3 x_{3}
$$

Here x_{1} is leading, x_{2} and x_{3} are free. The basic solutions

$$
\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{r}
-3 \\
0 \\
1
\end{array}\right)
$$

are orthogonal to a, as is every vector in their span.

Example: find a vector orthogonal to both $\mathbf{a}_{1}=\left(\begin{array}{r}1 \\ -1 \\ 3\end{array}\right)$ and

$$
\mathbf{a}_{2}=\left(\begin{array}{r}
-1 \\
2 \\
-1
\end{array}\right) .
$$

Example: find a vector orthogonal to both $\mathbf{a}_{1}=\left(\begin{array}{r}1 \\ -1 \\ 3\end{array}\right)$ and
$\mathbf{a}_{2}=\left(\begin{array}{r}-1 \\ 2 \\ -1\end{array}\right)$. Solution: solve the system $\mathbf{a}_{1}^{T} \mathbf{x}=0, \mathbf{a}_{2}^{T} \mathbf{x}=0$:

Example: find a vector orthogonal to both $\mathbf{a}_{1}=\left(\begin{array}{r}1 \\ -1 \\ 3\end{array}\right)$ and
$\mathbf{a}_{2}=\left(\begin{array}{r}-1 \\ 2 \\ -1\end{array}\right)$. Solution: solve the system $\mathbf{a}_{1}^{T} \mathbf{x}=0, \mathbf{a}_{2}^{T} \mathbf{x}=0$: This system is equivalent to $A \mathbf{x}=\mathbf{0}$ where $A=\binom{\mathbf{a}_{1}^{T}}{\mathbf{a}_{2}^{T}}$. We solve that by row-reducing A :

$$
\left(\begin{array}{rrr}
1 & -1 & 3 \\
-1 & 2 & -1
\end{array}\right) \xrightarrow{R_{2}+R_{1}}\left(\begin{array}{rrr}
1 & -1 & 3 \\
0 & 1 & 2
\end{array}\right) \xrightarrow{R_{1}+R_{2}}\left(\begin{array}{lll}
1 & 0 & 5 \\
0 & 1 & 2
\end{array}\right)
$$

Example: find a vector orthogonal to both $\mathbf{a}_{1}=\left(\begin{array}{r}1 \\ -1 \\ 3\end{array}\right)$ and
$\mathbf{a}_{2}=\left(\begin{array}{r}-1 \\ 2 \\ -1\end{array}\right)$. Solution: solve the system $\mathbf{a}_{1}^{T} \mathbf{x}=0, \mathbf{a}_{2}^{T} \mathbf{x}=0$: This
system is equivalent to $A \mathbf{x}=\mathbf{0}$ where $A=\binom{\mathbf{a}_{1}^{T}}{\mathbf{a}_{2}^{T}}$. We solve that by row-reducing A :

$$
\left(\begin{array}{rrr}
1 & -1 & 3 \\
-1 & 2 & -1
\end{array}\right) \xrightarrow{R_{2}+R_{1}}\left(\begin{array}{rrr}
1 & -1 & 3 \\
0 & 1 & 2
\end{array}\right) \xrightarrow{R_{1}+R_{2}}\left(\begin{array}{lll}
1 & 0 & 5 \\
0 & 1 & 2
\end{array}\right)
$$

This has leading variables x_{1} and x_{2} with free variable x_{3}, also $x_{1}=-5 x_{3}$
and $x_{2}=-2 x_{3}$ and so the vectors $\left(\begin{array}{c}-5 \alpha \\ -2 \alpha \\ \alpha\end{array}\right)$ are orthogonal to \mathbf{a}_{1} and \mathbf{a}_{2}, for any choice of α.

Orthogonal Projection

If $\mathbf{x}=\binom{x_{1}}{x_{2}}$ then $\|\mathbf{x}\|=\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}$ is the distance from the point
$(0,0)$ to $\left(x_{1}, x_{2}\right)$.

Orthogonal Projection

If $\mathbf{x}=\binom{x_{1}}{x_{2}}$ then $\|\mathbf{x}\|=\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}$ is the distance from the point $(0,0)$ to $\left(x_{1}, x_{2}\right)$. If $\mathbf{y}=\binom{y_{1}}{y_{2}}$, then $\|\mathbf{x}-\mathbf{y}\|$ is the distance between $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$.

Orthogonal Projection

If $\mathbf{x}=\binom{x_{1}}{x_{2}}$ then $\|\mathbf{x}\|=\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}$ is the distance from the point $(0,0)$ to $\left(x_{1}, x_{2}\right)$. If $\mathbf{y}=\binom{y_{1}}{y_{2}}$, then $\|\mathbf{x}-\mathbf{y}\|$ is the distance between $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$. Because of this, and our formula for angles between vectors, we can do geometry via linear algebra.

Orthogonal Projection

If $\mathbf{x}=\binom{x_{1}}{x_{2}}$ then $\|\mathbf{x}\|=\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}$ is the distance from the point $(0,0)$ to $\left(x_{1}, x_{2}\right)$. If $\mathbf{y}=\binom{y_{1}}{y_{2}}$, then $\|\mathbf{x}-\mathbf{y}\|$ is the distance between $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$. Because of this, and our formula for angles between vectors, we can do geometry via linear algebra.
Suppose we want to find the point on a line that is closest to the point $\left(x_{1}, x_{2}\right)$.

Orthogonal Projection

If $\mathbf{x}=\binom{x_{1}}{x_{2}}$ then $\|\mathbf{x}\|=\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}$ is the distance from the point $(0,0)$ to $\left(x_{1}, x_{2}\right)$. If $\mathbf{y}=\binom{y_{1}}{y_{2}}$, then $\|\mathbf{x}-\mathbf{y}\|$ is the distance between $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$. Because of this, and our formula for angles between vectors, we can do geometry via linear algebra.
Suppose we want to find the point on a line that is closest to the point $\left(x_{1}, x_{2}\right)$. Suppose we can express a line as all points that are tips of the vectors $\alpha \mathbf{y}$ for all $\alpha \in \mathbb{R}$.

The following is a picture of this setup:

We seek to find the tip of \mathbf{p}.

The following is a picture of this setup:

We seek to find the tip of \mathbf{p}.
We can find the length of \mathbf{p} via trigonometry: $\|\mathbf{p}\|=\|\mathbf{x}\| \cos \theta$.

The following is a picture of this setup:

We seek to find the tip of \mathbf{p}.
We can find the length of \mathbf{p} via trigonometry: $\|\mathbf{p}\|=\|\mathbf{x}\| \cos \theta$. With our formula for $\cos \theta$, we have

$$
\|\mathbf{p}\|=\|\mathbf{x}\| \frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{y}\|}
$$

The following is a picture of this setup:

We seek to find the tip of \mathbf{p}.
We can find the length of \mathbf{p} via trigonometry: $\|\mathbf{p}\|=\|\mathbf{x}\| \cos \theta$. With our formula for $\cos \theta$, we have

$$
\|\mathbf{p}\|=\|\mathbf{x}\| \frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{y}\|}
$$

To get \mathbf{p} itself we observe that $\mathbf{u}=(1 /\|\mathbf{y}\|) \mathbf{y}$ has the same direction as both \mathbf{y} and \mathbf{p}, but has length 1 .

Thus $\mathbf{p}=\|\mathbf{p}\| \mathbf{u}$.

Thus $\mathbf{p}=\|\mathbf{p}\| \mathbf{u}$. Putting these together:

$$
\mathbf{p}=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{y}\|} \frac{1}{\|\mathbf{y}\|} \mathbf{y}=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{y}\|^{2}} \mathbf{y}=\frac{\mathbf{x}^{T} \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} \mathbf{y}
$$

Thus $\mathbf{p}=\|\mathbf{p}\| \mathbf{u}$. Putting these together:

$$
\mathbf{p}=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{y}\|} \frac{1}{\|\mathbf{y}\|} \mathbf{y}=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{y}\|^{2}} \mathbf{y}=\frac{\mathbf{x}^{T} \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} \mathbf{y} .
$$

Definition

If \mathbf{x} and \mathbf{y} belong to \mathbb{R}^{2} or \mathbb{R}^{3} then:
The number $\alpha=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{y}\|}$ is called the scalar projection of \mathbf{x} onto \mathbf{y}.
The vector $\mathbf{p}=\frac{\mathbf{x}^{T} \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} \mathbf{y}$ is called the vector projection of \mathbf{x} onto \mathbf{y}

Thus $\mathbf{p}=\|\mathbf{p}\| \mathbf{u}$. Putting these together:

$$
\mathbf{p}=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{y}\|} \frac{1}{\|\mathbf{y}\|} \mathbf{y}=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{y}\|^{2}} \mathbf{y}=\frac{\mathbf{x}^{T} \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} \mathbf{y}
$$

Definition

If \mathbf{x} and \mathbf{y} belong to \mathbb{R}^{2} or \mathbb{R}^{3} then:
The number $\alpha=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{y}\|}$ is called the scalar projection of \mathbf{x} onto \mathbf{y}.
The vector $\mathbf{p}=\frac{\mathbf{x}^{T} \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} \mathbf{y}$ is called the vector projection of \mathbf{x} onto \mathbf{y}
Note that the scalar projection α times the vector $\mathbf{u}=(1 /\|\mathbf{y}\|) \mathbf{y}$ is the vector projection.

The calculation of α and \mathbf{p} was based on a figure where $\theta<90^{\circ}$.

The calculation of α and \mathbf{p} was based on a figure where $\theta<90^{\circ}$. The following figure ilustrates what happens when $\theta>90^{\circ}$.

The calculation of α and \mathbf{p} was based on a figure where $\theta<90^{\circ}$. The following figure ilustrates what happens when $\theta>90^{\circ}$.

The calculation of α and \mathbf{p} was based on a figure where $\theta<90^{\circ}$. The following figure ilustrates what happens when $\theta>90^{\circ}$.

In this case $\cos \theta$ is negative and so is α.

The calculation of α and \mathbf{p} was based on a figure where $\theta<90^{\circ}$. The following figure ilustrates what happens when $\theta>90^{\circ}$.

In this case $\cos \theta$ is negative and so is α. Then $\alpha=-\|\mathbf{p}\|$, but $\alpha \mathbf{u}$ is still \mathbf{p} because \mathbf{p} points in the direction opposite to \mathbf{u} and \mathbf{y}.

The calculation of α and \mathbf{p} was based on a figure where $\theta<90^{\circ}$. The following figure ilustrates what happens when $\theta>90^{\circ}$.

In this case $\cos \theta$ is negative and so is α. Then $\alpha=-\|\mathbf{p}\|$, but $\alpha \mathbf{u}$ is still \mathbf{p} because \mathbf{p} points in the direction opposite to \mathbf{u} and \mathbf{y}. The formulas for α and \mathbf{p} from the definition still hold in this case.

The distance between $\left(x_{1}, x_{2}\right)$ and the line specified by \mathbf{y} is the length of the vector $\mathbf{x}-\mathbf{p}:\|\mathbf{x}-\mathbf{p}\|$.

The distance between $\left(x_{1}, x_{2}\right)$ and the line specified by \mathbf{y} is the length of the vector $\mathbf{x}-\mathbf{p}:\|\mathbf{x}-\mathbf{p}\|$.
Here is an example: Let L be the line passing through $(0,0)$ and $(3,1)$.
We can take $\mathbf{y}=\binom{3}{1}$. Consider the point $(1,4)$, whose vector form is $\mathbf{x}=\binom{1}{4}$

The distance between $\left(x_{1}, x_{2}\right)$ and the line specified by \mathbf{y} is the length of the vector $\mathbf{x}-\mathbf{p}:\|\mathbf{x}-\mathbf{p}\|$.
Here is an example: Let L be the line passing through $(0,0)$ and $(3,1)$.
We can take $\mathbf{y}=\binom{3}{1}$. Consider the point $(1,4)$, whose vector form is $\mathbf{x}=\binom{1}{4}$ To get the closest point to $(1,4)$ on this line we compute

$$
\mathbf{p}=\frac{\mathbf{x}^{T} \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} \mathbf{y}=\frac{7}{10} \mathbf{y}=\binom{2.1}{0.7}
$$

The distance between $\left(x_{1}, x_{2}\right)$ and the line specified by \mathbf{y} is the length of the vector $\mathbf{x}-\mathbf{p}:\|\mathbf{x}-\mathbf{p}\|$.
Here is an example: Let L be the line passing through $(0,0)$ and $(3,1)$.
We can take $\mathbf{y}=\binom{3}{1}$. Consider the point $(1,4)$, whose vector form is
$\mathbf{x}=\binom{1}{4}$ To get the closest point to $(1,4)$ on this line we compute

$$
\mathbf{p}=\frac{\mathbf{x}^{T} \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} \mathbf{y}=\frac{7}{10} \mathbf{y}=\binom{2.1}{0.7}
$$

So the closest point of L to $(1,4)$ is $(2.1,0.7)$ and the distance is $\left((1-2.1)^{2}+(4-0.7)^{2}\right)^{1 / 2}=\sqrt{12.1} \approx 3.4785$.

The distance between $\left(x_{1}, x_{2}\right)$ and the line specified by \mathbf{y} is the length of the vector $\mathbf{x}-\mathbf{p}:\|\mathbf{x}-\mathbf{p}\|$.
Here is an example: Let L be the line passing through $(0,0)$ and $(3,1)$.
We can take $\mathbf{y}=\binom{3}{1}$. Consider the point $(1,4)$, whose vector form is
$\mathbf{x}=\binom{1}{4}$ To get the closest point to $(1,4)$ on this line we compute

$$
\mathbf{p}=\frac{\mathbf{x}^{T} \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} \mathbf{y}=\frac{7}{10} \mathbf{y}=\binom{2.1}{0.7}
$$

So the closest point of L to $(1,4)$ is $(2.1,0.7)$ and the distance is $\left((1-2.1)^{2}+(4-0.7)^{2}\right)^{1 / 2}=\sqrt{12.1} \approx 3.4785$.
If we try this with a line L that does not pass through $(0,0)$ we simply have to pick two points P_{0} and P_{1} on the line.

The distance between $\left(x_{1}, x_{2}\right)$ and the line specified by \mathbf{y} is the length of the vector $\mathbf{x}-\mathbf{p}:\|\mathbf{x}-\mathbf{p}\|$.
Here is an example: Let L be the line passing through $(0,0)$ and $(3,1)$.
We can take $\mathbf{y}=\binom{3}{1}$. Consider the point $(1,4)$, whose vector form is
$\mathbf{x}=\binom{1}{4}$ To get the closest point to $(1,4)$ on this line we compute

$$
\mathbf{p}=\frac{\mathbf{x}^{T} \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} \mathbf{y}=\frac{7}{10} \mathbf{y}=\binom{2.1}{0.7}
$$

So the closest point of L to $(1,4)$ is $(2.1,0.7)$ and the distance is $\left((1-2.1)^{2}+(4-0.7)^{2}\right)^{1 / 2}=\sqrt{12.1} \approx 3.4785$.
If we try this with a line L that does not pass through $(0,0)$ we simply have to pick two points P_{0} and P_{1} on the line. The displacement vector from P_{0} to P_{1} will be denoted ${\overrightarrow{P_{0} P_{1}}}^{\text {. }}$

The distance between $\left(x_{1}, x_{2}\right)$ and the line specified by \mathbf{y} is the length of the vector $\mathbf{x}-\mathbf{p}:\|\mathbf{x}-\mathbf{p}\|$.
Here is an example: Let L be the line passing through $(0,0)$ and $(3,1)$.
We can take $\mathbf{y}=\binom{3}{1}$. Consider the point $(1,4)$, whose vector form is $\mathbf{x}=\binom{1}{4}$ To get the closest point to $(1,4)$ on this line we compute

$$
\mathbf{p}=\frac{\mathbf{x}^{T} \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} \mathbf{y}=\frac{7}{10} \mathbf{y}=\binom{2.1}{0.7}
$$

So the closest point of L to $(1,4)$ is $(2.1,0.7)$ and the distance is $\left((1-2.1)^{2}+(4-0.7)^{2}\right)^{1 / 2}=\sqrt{12.1} \approx 3.4785$.
If we try this with a line L that does not pass through $(0,0)$ we simply have to pick two points P_{0} and P_{1} on the line. The displacement vector from P_{0} to P_{1} will be denoted $\vec{P}_{0} P_{1}$. All the calculations to get the point on L closest to a point P then take place with $\mathbf{x}=\overrightarrow{P_{0} P}$ and $\mathbf{y}={\overrightarrow{P_{0} P_{1}}}_{1}$. When we find \mathbf{p}, the closest point will be the point Q such that $\overrightarrow{P_{0} Q}=\mathbf{p}$.

Example: Consider the Line with slope $1 / 3$ that passes through $(0,1)$ $(y=(1 / 3) x+1)$.

Example: Consider the Line with slope $1 / 3$ that passes through $(0,1)$ $(y=(1 / 3) x+1)$. Then take $P_{0}=(0,1)$ and $P_{1}=(3,2)$ so $\mathbf{y}=\vec{P}_{0} P_{1}=\binom{3}{1}$.

Example: Consider the Line with slope $1 / 3$ that passes through $(0,1)$ $(y=(1 / 3) x+1)$. Then take $P_{0}=(0,1)$ and $P_{1}=(3,2)$ so
$\mathbf{y}=\vec{P}_{0} P_{1}=\binom{3}{1}$.
Say we want the closest point from $P=(1,4)$ to this line. Then
$\mathbf{x}=\overrightarrow{P_{0} P}=\binom{1}{3}$.

Example: Consider the Line with slope $1 / 3$ that passes through $(0,1)$ $(y=(1 / 3) x+1)$. Then take $P_{0}=(0,1)$ and $P_{1}=(3,2)$ so $\mathbf{y}=\vec{P}_{0} P_{1}=\binom{3}{1}$.
Say we want the closest point from $P=(1,4)$ to this line. Then
$\mathbf{x}=\overrightarrow{P_{0} P}=\binom{1}{3}$. Then we get the projection of \mathbf{x} onto \mathbf{y}

$$
\mathbf{p}=\frac{\mathbf{x}^{T} \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} \mathbf{y}=\frac{6}{10}\binom{3}{1}=\binom{1.8}{0.6}
$$

To get that closest point, we add the components of \mathbf{p} to P_{0} to get $Q=(1.8,1.6)$ and the distance $\left((1-1.8)^{2}+(4-1.6)^{2}\right)^{1 / 2}=\sqrt{6.4} \approx 2.53$.

Planes in \mathbb{R}^{3}
A plane can be specified in terms of orthogonality.

Planes in \mathbb{R}^{3}

A plane can be specified in terms of orthogonality. If \mathbf{a} is any vector, then the set of vectors orthogonal to \mathbf{a} is a plane passing through $(0,0,0)$.

Planes in \mathbb{R}^{3}

A plane can be specified in terms of orthogonality. If \mathbf{a} is any vector, then the set of vectors orthogonal to \mathbf{a} is a plane passing through $(0,0,0)$. The expression of orthogonality gives us an equation for the plane:

$$
\mathbf{a}^{T} \mathbf{x}=0 \text { gives } a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=0
$$

Planes in \mathbb{R}^{3}

A plane can be specified in terms of orthogonality. If \mathbf{a} is any vector, then the set of vectors orthogonal to \mathbf{a} is a plane passing through $(0,0,0)$. The expression of orthogonality gives us an equation for the plane:

$$
\mathbf{a}^{T} \mathbf{x}=0 \text { gives } a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=0
$$

In the usual format (i.e., using variables x, y, z) this says that
$a x+b y+c z=0$ is the plane through $(0,0,0)$ perpendicular to $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$.

Planes in \mathbb{R}^{3}

A plane can be specified in terms of orthogonality. If \mathbf{a} is any vector, then the set of vectors orthogonal to \mathbf{a} is a plane passing through $(0,0,0)$. The expression of orthogonality gives us an equation for the plane:

$$
\mathbf{a}^{T} \mathbf{x}=0 \text { gives } a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=0
$$

In the usual format (i.e., using variables x, y, z) this says that
$a x+b y+c z=0$ is the plane through $(0,0,0)$ perpendicular to $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$
If we want a plane that doesn't pass through $(0,0,0)$ we need to have a point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ that is on the plane, and then the plane is the set of points $P=(x, y, z)$ such that $\overrightarrow{P_{0} P} \perp \mathbf{a}$ for some vector \mathbf{a}.

Planes in \mathbb{R}^{3}

A plane can be specified in terms of orthogonality. If \mathbf{a} is any vector, then the set of vectors orthogonal to \mathbf{a} is a plane passing through $(0,0,0)$. The expression of orthogonality gives us an equation for the plane:

$$
\mathbf{a}^{T} \mathbf{x}=0 \text { gives } a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=0
$$

In the usual format (i.e., using variables x, y, z) this says that
$a x+b y+c z=0$ is the plane through $(0,0,0)$ perpendicular to $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$
If we want a plane that doesn't pass through $(0,0,0)$ we need to have a point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ that is on the plane, and then the plane is the set of points $P=(x, y, z)$ such that $\overrightarrow{P_{0} P} \perp \mathbf{a}$ for some vector \mathbf{a}. That is, the equation of the plane through $\left(x_{0}, y_{0}, z_{0}\right)$ and perpendicular to $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ is

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

