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Definition

If x and y ∈ Rn then the scalar product of x and y is xTy

In terms of the coordinates, if x =


x1
x2
...
xn

 and y =


y1
y2
...
yn

, then

xTy = x1y1 + x2y2 + · · ·+ xnyn = yTx.

Definition

We write ∥x∥ = (xTx)1/2 and call this the norm of x.

In terms of coordinates ∥x∥ = (x21 + x22 + · · ·+ x2n)
1/2.

In R2 we have ∥x∥ = (x21 + x22)
1/2, and in R3 we have

∥x∥ = (x21 + x22 + x23)
1/2. In either case this is the length of the arrow that

we use to visualize x.
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A couple of simple properties of scalar products.

1. The scalar product of αx and βy is (αx)T (βy) = αβ(xTy)

2. The norm of αx is ∥αx∥ = |α| ∥x∥. Note that if α = 1/ ∥x∥ the
∥αx∥ = 1.

In dimension 2 or 3 we have a geometric intrerpretation of the scalar
product.

Theorem

Let x,y ∈ R2 or R3. Suppose ∥x∥ ≠ 0 and ∥y∥ ≠ 0. Let θ be the angle
between x and y with 0 ≤ θ ≤ 180◦. Then

cos θ =
xTy

∥x∥ ∥y∥
.

We’re actually going to prove this in the case R2. But first recall the linear
transformations on R2 given by rotations. That is, if γ is any angle let
Rγx be the arrow x rotated counterclockwise by the angle γ.
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between x and y with 0 ≤ θ ≤ 180◦. Then

cos θ =
xTy

∥x∥ ∥y∥
.

We’re actually going to prove this in the case R2.

But first recall the linear
transformations on R2 given by rotations. That is, if γ is any angle let
Rγx be the arrow x rotated counterclockwise by the angle γ.

3 / 1



A couple of simple properties of scalar products.

1. The scalar product of αx and βy is (αx)T (βy) = αβ(xTy)

2. The norm of αx is ∥αx∥ = |α| ∥x∥. Note that if α = 1/ ∥x∥ the
∥αx∥ = 1.

In dimension 2 or 3 we have a geometric intrerpretation of the scalar
product.

Theorem

Let x,y ∈ R2 or R3. Suppose ∥x∥ ≠ 0 and ∥y∥ ≠ 0. Let θ be the angle
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Since Rγ goes from R2 to R2 it is a matrix transformation.

We get that
matrix by

Rγe1 =

 cos γ
sin γ

 and Rγe2 =

 − sin γ
cos γ


and therefore the matrix is A =

 cos γ − sin γ
sin γ cos γ


An easy computation show that ATA = I, the identity matrix. Therefore,
the scalar product of Rγx and Rγy is

(Rγx)
T (Rγy) = (Ax)T (Ay) = xTATAy = xT Iy = xTy

Similarly

∥Rγx∥ =
(
(Rγx)

T (Rγx)
)1/2

= (xTx)1/2 = ∥x∥
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We now make several observations.

• The expression
xTy

∥x∥ ∥y∥
does not change under a rotation Rγ

• The angle between x and y does not change when both are rotated
by the same angle.

• The expression
xTy

∥x∥ ∥y∥
does not change if we multiply x and y by

positive scalars.

• The angle beween x and y does not change if we multiply x and y by
positive scalars.

So, in R2, to prove that cos θ =
xTy

∥x∥ ∥y∥
, we may change x and y by

scalar multiplication so that ∥x∥ = ∥y∥ = 1 and then change both by

rotation so that x =

 1
0

 and y =

 cos θ
sin θ

. And then

xTy

∥x∥ ∥y∥
=

cos θ

1
.
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positive scalars.

• The angle beween x and y does not change if we multiply x and y by
positive scalars.

So, in R2, to prove that cos θ =
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In R3 we can do something similar. Roughly speaking we can perform a
few rotations so that both vectors have the third component 0 and then
apply the R2 case.

There is a useful special case: If ∥u∥ = 1, ∥v∥ = 1 and θ is the angle
between them, then cos θ = uTv. We can always convert to this case by

letting u =
1

∥x∥
x and v =

1

∥y∥
y.

Example: if x =

 3
4

 and y =

 −1
1

 then ∥x∥ = 5 and ∥y∥ =
√
2 ,

xTy = 1. So, if θ is the angle between x and y we can compute cos θ by
xTy

∥x∥∥y∥ = 1
5
√
2
or by

cos θ =

 3/5
4/5

T  −1/
√
2

1/
√
2

 =
−3

5
√
2
+

4

5
√
2

=
1

5
√
2
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The Cauchy-Schwarz Inequality

Theorem

If x and y are vectors in Rn, then |xTy| ≤ ∥x∥ ∥y∥.

In R2 or R3 this follows from xTy = ∥x∥ ∥y∥ cos θ and the fact that
| cos θ| ≤ 1. In Rn for n > 3 we can rotate 2 variables at a time (without
changing the scalar product or the norms) until coordinates xj and yj are
0 for all j > 2. Then apply the R2 case.

Definition

If x and y are in Rn, we say that x is orthogonal to y if xTy = 0. We
denote this by writing x ⊥ y.

Note that if x ⊥ y then also y ⊥ x. Also 0 is orthogonal to any vector. In
R2 or R3, if neither x nor y is 0 then x ⊥ y means that the angle between
them is 90◦.
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Some properties of orthogonality:

1. If x ⊥ y1,x ⊥ y2, . . . ,x ⊥ yn then x is orthogonal to every vector in
Span(y1,y2, . . . ,yn). Proof:

xT (c1y1 + · · ·+ cnyn) = c1x
Ty1 + · · ·+ cnx

Tyn = 0 + · · ·+ 0 = 0

2. If x ∈ Rn then the set of vectors orthogonal to x is a subspace of Rn.

3. x ⊥ x if and only if x = 0. Proof: 0 = xTx = x21 + x22 + · · ·+ x2n can
only be true if all xj = 0.

Example: find a vector orthogonal to a =


1

−2
3

. Solution: solve

aTx = 0: x1 − 2x2 + 3x3 = 0 or x1 = 2x2 − 3x3

Here x1 is leading, x2 and x3 are free. The basic solutions
2
1
0

 and


−3
0
1


are orthogonal to a, as is every vector in their span.

8 / 1



Some properties of orthogonality:

1. If x ⊥ y1,x ⊥ y2, . . . ,x ⊥ yn then x is orthogonal to every vector in
Span(y1,y2, . . . ,yn). Proof:

xT (c1y1 + · · ·+ cnyn) = c1x
Ty1 + · · ·+ cnx

Tyn = 0 + · · ·+ 0 = 0

2. If x ∈ Rn then the set of vectors orthogonal to x is a subspace of Rn.

3. x ⊥ x if and only if x = 0. Proof: 0 = xTx = x21 + x22 + · · ·+ x2n can
only be true if all xj = 0.

Example: find a vector orthogonal to a =


1

−2
3

. Solution: solve

aTx = 0: x1 − 2x2 + 3x3 = 0 or x1 = 2x2 − 3x3

Here x1 is leading, x2 and x3 are free. The basic solutions
2
1
0

 and


−3
0
1


are orthogonal to a, as is every vector in their span.

8 / 1



Some properties of orthogonality:

1. If x ⊥ y1,x ⊥ y2, . . . ,x ⊥ yn then x is orthogonal to every vector in
Span(y1,y2, . . . ,yn). Proof:

xT (c1y1 + · · ·+ cnyn) = c1x
Ty1 + · · ·+ cnx

Tyn = 0 + · · ·+ 0 = 0

2. If x ∈ Rn then the set of vectors orthogonal to x is a subspace of Rn.

3. x ⊥ x if and only if x = 0. Proof: 0 = xTx = x21 + x22 + · · ·+ x2n can
only be true if all xj = 0.

Example: find a vector orthogonal to a =


1

−2
3

. Solution: solve

aTx = 0: x1 − 2x2 + 3x3 = 0 or x1 = 2x2 − 3x3

Here x1 is leading, x2 and x3 are free. The basic solutions
2
1
0

 and


−3
0
1


are orthogonal to a, as is every vector in their span.

8 / 1



Some properties of orthogonality:

1. If x ⊥ y1,x ⊥ y2, . . . ,x ⊥ yn then x is orthogonal to every vector in
Span(y1,y2, . . . ,yn). Proof:

xT (c1y1 + · · ·+ cnyn) = c1x
Ty1 + · · ·+ cnx

Tyn = 0 + · · ·+ 0 = 0

2. If x ∈ Rn then the set of vectors orthogonal to x is a subspace of Rn.

3. x ⊥ x if and only if x = 0. Proof: 0 = xTx = x21 + x22 + · · ·+ x2n can
only be true if all xj = 0.

Example: find a vector orthogonal to a =


1

−2
3

.

Solution: solve

aTx = 0: x1 − 2x2 + 3x3 = 0 or x1 = 2x2 − 3x3

Here x1 is leading, x2 and x3 are free. The basic solutions
2
1
0

 and


−3
0
1


are orthogonal to a, as is every vector in their span.

8 / 1



Some properties of orthogonality:

1. If x ⊥ y1,x ⊥ y2, . . . ,x ⊥ yn then x is orthogonal to every vector in
Span(y1,y2, . . . ,yn). Proof:

xT (c1y1 + · · ·+ cnyn) = c1x
Ty1 + · · ·+ cnx

Tyn = 0 + · · ·+ 0 = 0

2. If x ∈ Rn then the set of vectors orthogonal to x is a subspace of Rn.

3. x ⊥ x if and only if x = 0. Proof: 0 = xTx = x21 + x22 + · · ·+ x2n can
only be true if all xj = 0.

Example: find a vector orthogonal to a =


1

−2
3

. Solution: solve

aTx = 0: x1 − 2x2 + 3x3 = 0 or x1 = 2x2 − 3x3

Here x1 is leading, x2 and x3 are free. The basic solutions
2
1
0

 and


−3
0
1


are orthogonal to a, as is every vector in their span.

8 / 1



Some properties of orthogonality:

1. If x ⊥ y1,x ⊥ y2, . . . ,x ⊥ yn then x is orthogonal to every vector in
Span(y1,y2, . . . ,yn). Proof:

xT (c1y1 + · · ·+ cnyn) = c1x
Ty1 + · · ·+ cnx

Tyn = 0 + · · ·+ 0 = 0

2. If x ∈ Rn then the set of vectors orthogonal to x is a subspace of Rn.

3. x ⊥ x if and only if x = 0. Proof: 0 = xTx = x21 + x22 + · · ·+ x2n can
only be true if all xj = 0.

Example: find a vector orthogonal to a =


1

−2
3

. Solution: solve

aTx = 0: x1 − 2x2 + 3x3 = 0 or x1 = 2x2 − 3x3

Here x1 is leading, x2 and x3 are free. The basic solutions
2
1
0

 and


−3
0
1


are orthogonal to a, as is every vector in their span.

8 / 1



Example: find a vector orthogonal to both a1 =


1

−1
3

 and

a2 =


−1
2

−1

.

Solution: solve the system aT1 x = 0, aT2 x = 0: This

system is equivalent to Ax = 0 where A =

 aT1
aT2

. We solve that by

row-reducing A: 1 −1 3
−1 2 −1

 R2+R1−−−−→
 1 −1 3

0 1 2

 R1+R2−−−−→
 1 0 5

0 1 2


This has leading variables x1 and x2 with free variable x3, also x1 = −5x3

and x2 = −2x3 and so the vectors


−5α
−2α
α

 are orthogonal to a1 and

a2, for any choice of α.
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. Solution: solve the system aT1 x = 0, aT2 x = 0: This

system is equivalent to Ax = 0 where A =

 aT1
aT2

. We solve that by

row-reducing A: 1 −1 3
−1 2 −1

 R2+R1−−−−→
 1 −1 3

0 1 2

 R1+R2−−−−→
 1 0 5

0 1 2



This has leading variables x1 and x2 with free variable x3, also x1 = −5x3

and x2 = −2x3 and so the vectors


−5α
−2α
α

 are orthogonal to a1 and
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Orthogonal Projection

If x =

 x1
x2

 then ∥x∥ = (x21 + x22)
1/2 is the distance from the point

(0, 0) to (x1, x2).

If y =

 y1
y2

, then ∥x− y∥ is the distance between

(x1, x2) and (y1, y2). Because of this, and our formula for angles between
vectors, we can do geometry via linear algebra.

Suppose we want to find the point on a line that is closest to the point
(x1, x2). Suppose we can express a line as all points that are tips of the
vectors αy for all α ∈ R.
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The following is a picture of this setup:

y

x

z = x− p

pθ

(0, 0)

We seek to find the tip of p.

We can find the length of p via trigonometry: ∥p∥ = ∥x∥ cos θ. With our
formula for cos θ, we have

∥p∥ = ∥x∥ xTy

∥x∥ ∥y∥
=

xTy

∥y∥

To get p itself we observe that u = (1/ ∥y∥)y has the same direction as
both y and p, but has length 1.
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Thus p = ∥p∥u.

Putting these together:

p =
xTy

∥y∥
1

∥y∥
y =

xTy

∥y∥2
y =

xTy

yTy
y.

Definition

If x and y belong to R2 or R3 then:

The number α =
xTy

∥y∥
is called the scalar projection of x onto y.

The vector p =
xTy

yTy
y is called the vector projection of x onto y

Note that the scalar projection α times the vector u = (1/ ∥y∥)y is the
vector projection.
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The calculation of α and p was based on a figure where θ < 90◦.

The
following figure ilustrates what happens when θ > 90◦.

y

x

z = x− p

p

θ

(0, 0)

In this case cos θ is negative and so is α. Then α = −∥p∥, but αu is still
p because p points in the direction opposite to u and y. The formulas for
α and p from the definition still hold in this case.
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The distance between (x1, x2) and the line specified by y is the length of
the vector x− p: ∥x− p∥.

Here is an example: Let L be the line passing through (0, 0) and (3, 1).

We can take y =

 3
1

. Consider the point (1, 4), whose vector form is

x =

 1
4

 To get the closest point to (1, 4) on this line we compute

p =
xTy

yTy
y =

7

10
y =

 2.1
0.7


So the closest point of L to (1, 4) is (2.1, 0.7) and the distance is(
(1− 2.1)2 + (4− 0.7)2

)1/2
=

√
12.1 ≈ 3.4785.

If we try this with a line L that does not pass through (0, 0) we simply
have to pick two points P0 and P1 on the line. The displacement vector

from P0 to P1 will be denoted
−−→
P0P1. All the calculations to get the point

on L closest to a point P then take place with x =
−−→
P0P and y =

−−→
P0P1.

When we find p, the closest point will be the point Q such that
−−→
P0Q = p.
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Example: Consider the Line with slope 1/3 that passes through (0, 1)
(y = (1/3)x+ 1).

Then take P0 = (0, 1) and P1 = (3, 2) so

y =
−−→
P0P1 =

 3
1

.

Say we want the closest point from P = (1, 4) to this line. Then

x =
−−→
P0P =

 1
3

. Then we get the projection of x onto y

p =
xTy

yTy
y =

6

10

 3
1

 =

 1.8
0.6


To get that closest point, we add the components of p to P0 to get
Q = (1.8, 1.6) and the distance
((1− 1.8)2 + (4− 1.6)2)1/2 =

√
6.4 ≈ 2.53.
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p =
xTy

yTy
y =

6

10

 3
1

 =

 1.8
0.6


To get that closest point, we add the components of p to P0 to get
Q = (1.8, 1.6) and the distance
((1− 1.8)2 + (4− 1.6)2)1/2 =

√
6.4 ≈ 2.53.
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Planes in R3

A plane can be specified in terms of orthogonality.

If a is any vector, then
the set of vectors orthogonal to a is a plane passing through (0, 0, 0). The
expression of orthogonality gives us an equation for the plane:

aTx = 0 gives a1x1 + a2x2 + a3x3 = 0

In the usual format (i.e., using variables x, y, z) this says that

ax+ by + cz = 0 is the plane through (0, 0, 0) perpendicular to


a
b
c

 .

If we want a plane that doesn’t pass through (0, 0, 0) we need to have a
point P0 = (x0, y0, z0) that is on the plane, and then the plane is the set

of points P = (x, y, z) such that
−−→
P0P ⊥ a for some vector a.That is, the

equation of the plane through (x0, y0, z0) and perpendicular to


a
b
c

 is

a(x− x0) + b(y − y0) + c(z − z0) = 0
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