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There are an infinite variety of vector spaces. | have given you just a few:
R"™, the column vectors of height n, R™** the n x k matrices, and P,,, the
polynomials of degree less than n.

My philosophy is that we learn (or memorize) a few vector spaces and then
learn to recognize their subspaces.

You will be expected to recognize subspaces of R™ (where n is a small
number) and explain why they are. And also to recognize subsets that are
not subspaces and also explain why not.

Some examples begin on the next slide.
The two ways | expect you to be able to explain why a subset is a
subspace:

1. It is the null space of some matrix.

2. It is the span of some vectors.
The two ways | expect you to be able to explain why a subset is not a
subspace:

1. It is not closed under scalar multiplication.

2. It is not closed under addition.
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The subset

T9 T1 = X2, and x9 = 2x3
T3

is a subspace of R? because it is the null space of the matrix

1 -1 0
0 1 -2

The subset
—a+ 23
a+ B a, B €R
a+ 30
— 2
is a subspace of R? because it is the span of 1 | and 1
1 3
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The subset

X1
T2 12 Z 0
x3
1 -2
is not a subspace of R3 because 2 and -1 are in this set,
0 0
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The subset

T
T2 12 Z 0
z3
1 -2
is not a subspace of R3 because 2 and -1 are in this set, but
0 0
-1
their sum 1 is not.
0
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The subset
X1
1)
T3

is not a subspace of R? because

2
multiple | 0 is not.
2

x; —23 =0

0 is in this subset but the scalar

The set of all solutions of a homogeneous n X k system is a vector space,
a subspace of R*. This is equivalent to being the null space of the system

matrix.
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Definition
If vqi,Vvo,...,V, are vectors in a vector space V, a sum of the form

a1V1 + QaVy + - -+ apVpy

where aq, ao, ..., a, are scalars, is called a linear combination of
V1i,V2,...,V,. The set of all such linear combinations of vi,va,..., vy is
called the span of vi,vo,...,Vvy,.
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Definition

If vi,va,..., Vv, are vectors in a vector space V, a sum of the form
a1V] + vy + -+ ap vy,

where aq, ao, ..., a, are scalars, is called a linear combination of
V1i,V2,...,V,. The set of all such linear combinations of vi,va,..., vy is
called the span of vi,vo,...,Vvy,.

Definition
If B is a set of vectors in a vector space V we say that B is spanning if
Span(B) = V.

Definition
In R™, for 1 < j < n, we let e; be the vector that has a 1 in position j
and zeros in every other position.
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In R3, the set eq, ey, e3 is spanning.
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In R3, the set eq, es, e3 is spanning. If we want to know whether vectors
are spanning, we convert the question to a system of equations and
row-reduce the system matrix. If the echelon form has a row of zeros, the
vectors are not spanning.

Example 1: Do the following vectors span R?

1 1 2 0
9 -3 ) -1 )
3 2 5 1

Solution: a linear combination of these equated to any vector produces the
following system matrix:

1 1 20 112 0
9 -3 —1 5 | AERO 1o 1 1 —1
3 2 5 1 00 0

They do not span R3.
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A set of vectors vi,va,..., Vv, is said to be linearly dependent if there
exists scalars aig, ao, . .., ay, not all of which are zero, such that

V] + agvy + - - - + ap vy, = 0.
If the set is not linearly dependent, it is called linearly independent.

Determining whether a set of vectors is independent or dependent again
amounts to a system of equations. But this time, it is not whether the
system has a solution, but whether it has a nontrivial solution.

If we want to know whether a set of vectors is independent, we convert the
question to a system of equations and row-reduce the system matrix. If the
echelon form indicates any free variables, the vectors are not independent.

Example: Are these vectors independent:

1 1 1
wi= |3 [wa=]0]| w=|2
) 2 3
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The matrix is

Several EROs
—_—

ot W =
N O =
W N =
S O
O =
—
— >~
w
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The matrix is
1 11
3 0 2
5 2 3 00

Conclusion: the original set of vectors is independent.

1 1 1
Several EROs 0 1 1/3
1

9/32



The matrix is

11 1 11 1

30 2 Several EROs 0 1 1/3
5 2 3 00 1

Conclusion: the original set of vectors is independent.

When the set of vectors are column vectors, our calculations allow the
following shortcut:
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The matrix is

1 1 1 1 1 1
30 2 Several EROs 0 1 1/3
5 2 3 00 1

Conclusion: the original set of vectors is independent.

When the set of vectors are column vectors, our calculations allow the
following shortcut:

1.
2.
3.

Write the column vectors as columns of a matrix.

Use EROs to bring that matrix to echelon form.

If, in that echelon form, there is a row of zeros, the set of vectors is
not spanning, otherwise they are.

. If, in that echelon form, there is a column without a leading 1, the set

of vectors is dependent, otherwise it is independent.
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The matrix is

1 1 1 1 1 1
30 2 Several EROs 0 1 1/3
5 2 3 00 1

Conclusion: the original set of vectors is independent.

When the set of vectors are column vectors, our calculations allow the
following shortcut:

1. Write the column vectors as columns of a matrix.

2. Use EROs to bring that matrix to echelon form.

3. If, in that echelon form, there is a row of zeros, the set of vectors is
not spanning, otherwise they are.

4. If, in that echelon form, there is a column without a leading 1, the set
of vectors is dependent, otherwise it is independent.

Other shortcuts: (1) If the matrix is square, the set is either both
independent and spanning, or neither. (2) If there are more columns than
rows, the vectors are not independent (they may or may not be spanning).
(3) If there are more rows than columns, the vectors are not spanning
(they may or may not be independent).
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If a set of vectors in a vector space V' is both spanning and independent,
we say it is a basis for V.
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Definition
If a set of vectors in a vector space V' is both spanning and independent,
we say it is a basis for V.

If a set of vectors {vy,Va,...,v,} is spanning, that means any vector w
can be written as

W = Q1V] + aavg + -+ - + apVp

If the set is also independent, then there is only one choice of coefficients
that will produce w.

Standard bases

Some vector spaces have a basis so closely associated with the structure of
the vectors that they are called standard bases.
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The standard basis for R is the set {e1,es,...,e,}. For example, for R?

this basis is
1 0 0
01, 11, 0
0 0 1
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this basis is
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The standard basis for R is the set {e1,es,...,e,}. For example, for R3
this basis is

1 0 0

of, 1], |o

0 0 1

If we put these in a matrix, it is already in echelon form and clearly
satisfies the tests for spanning and independence.

The standard basis for P,, is {1,z,...,2" "1}, In fact, the definition of a
polynomial is that it is a linear combination of powers of x.

Theorem

If a set of vectors {v1,va,..., vy} in a vector space V' is spanning, then
any set of vector with more than n elements must be dependent.

If a set of vectors {wy, W2, ..., Wy} is independent, then any set of
vectors with fewer than m elements cannot be spanning.

Theorem

Any two bases for a vector space have the same number of elements.
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Definition

The dimension of a vector space is the number of elements in any basis.

Not suprisingly, the dimension of R™ is n: {ej,es,...,e,} is a basis.
The dimension of P, is n: {1,z,22%,...,2" '} is a basis.
The dimension of R"** is nk: {E;j :1<i<n,1<j<k}is a basis.

Theorem
If the dimension of V' is n then any set in V' with more than n elements is
dependent, and any set with fewer than n elements is not spanning. Any
set with n elements either is both independent and spanning or is neither
independent nor spanning.
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Theorem

Suppose V' is a vector space with dimension n

1. Any independent subset with fewer than n vectors can be extended
(i.e., vectors can be added to it) to form a basis.

2. Any spanning set with more than n vectors can be trimmed down to
a basis.

Example: Trim the following to an independent set with the same span

1 1 2 0
V] = 1 , Vo = 0 , V3 = 1 , V4 = 1
2 -1 1 1

Put these columns in a matrix and reduce to echelon form:

12 0 112 0
10115ER05011—1
11 1 000 1

This tells us that the original set of vectors in spanning (no row of zeros)

but is not independent.
13/32



But it also tells us that if we take a linear combination and equate it to O:
a1V] + agvy + azvy + auvy =0

that the variable ag is free and can be set equal to 1.
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But it also tells us that if we take a linear combination and equate it to O:
a1V] + agvy + azvy + auvy =0

that the variable ag is free and can be set equal to 1. Thus vg3 is a linear
combination of {vy,va,v4}. If we remove it, that simply removes column
3 from the calculations, and that shows that this smaller set is
independent.

In general, if you keep the vectors corresponding to columns with leading
1s, (and discard the rest) you get an independent set with the same span.

14 /32
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15/32



Coordinates

Definition
If V' is a vector space and B = [v1,Va,...,Vy] is an ordered basis then
every vector v in V' can be written in the form

V =1C1V]+ V2 + -+ CpVp

where the ¢; are scalars uniquely associated to v.
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Coordinates

Definition
If V' is a vector space and B = [v1,Va,...,Vy] is an ordered basis then
every vector v in V' can be written in the form

V =1C1V]+ V2 + -+ CpVp

where the c¢; are scalars uniquely associated to v. We call the column

vector
C1

C2

Cn,

the coordinate vector relative to B. We denote it by [v]z.
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Finding the coordinates [v]|g usually requires solving some system of
equations: equate v to the linear combination and solve for the c;.
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Finding the coordinates [v]|g usually requires solving some system of
equations: equate v to the linear combination and solve for the c;.

Going the other way is easy: if we know the coordinates c; we just use
V=cCVy+cove+---+cpvy

to get v.
There are several problems associated with bases and coordinates:

Given a vector v and an ordered basis B, what is [v]|g?
Given a second basis C, what is the relationship between [v]c and [v]g?

16 /32



The simplest cases are when B is one of the standard bases.
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The simplest cases are when B is one of the standard bases.

If £ =le1,ea,...,e,] in R" (interpreted as the space of column vectors)
then [v]g = v.

Suppose, in R™ we have another ordered basis B = [vy, va,...,vy]. Then
finding [v]z amounts to solving

avit+ceve+ -t cepvy, =v = [V]g =
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The left side of this is the same as

(Vl V2

“)

1
C2

Cn
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The left side of this is the same as
C2
(Vl AR Vn) . =V

By the properties of a basis, this system has a solution for every choice of
v, which means this matrix

S = [ Vi Vg .- vn] is invertible.
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By the properties of a basis, this system has a solution for every choice of
v, which means this matrix

S = [ Vi Vg .- vn] is invertible.

So if we find the inverse S~! we can multiply it times S[v]z = v to get
[vlg = S~y
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The left side of this is the same as
C1
C2
Cn

By the properties of a basis, this system has a solution for every choice of
v, which means this matrix

S = [ Vi Vg -V, ] is invertible.
So if we find the inverse S~! we can multiply it times S[v]z = v to get

[U]B =Sy,

We call S—! the transition matrix from & to B.
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Definition
If B and C are ordered bases for a vector space V' with dimension n, and if
U is an n X n matrix that satisfies

Ulvls = [vle

then we call U the transition matrix from B to C.
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Definition
If B and C are ordered bases for a vector space V' with dimension n, and if
U is an n X n matrix that satisfies

then we call U the transition matrix from B to C.
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Definition
If B and C are ordered bases for a vector space V' with dimension n, and if
U is an n X n matrix that satisfies

then we call U the transition matrix from B to C.

The standard basis £ in R” satisfies v = [v]¢. From the equations we
obtained earlier: S[v]s = [v]¢ and [v]g = S~![v]e we see that S is the
transition matrix from B to £ while S is the transition matrix from & to

B.
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Example: Consider the basis B = [v1, vo] where v; = [ _1 ] and

3

s=(13)

vy = [ 2 ] Then the transition matrix from B to £ = [e}, 9] is
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3
1 2 " . .
S = 13 ] and the transition matrix from & to B is
g-1_ 3/5 —2/5
1/5 1/5 )
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Example: Consider the basis B = [v1, vo] where v; = [ _1 ] and

vy = [ 2 ] Then the transition matrix from B to £ = [e1, €3] is

3
1 2 " . .
S = 13 ] and the transition matrix from & to B is
g-1_ 3/5 —2/5
1/5 1/5 )

Another example:

Let B = [v1, v, V3] where

1 1 1
V] = 1 , Vo = 0 s and V3 = 0
0 2 1
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We let S = ( Vi Vo V3 ] and compute its inverse:

111100 100 0 1 0
100|010 S7EROS 1 o101 1 1
021001 00 1| 2 —2 -1

Thus

0 1 0
St=1| -1 1 1
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We let S = ( Vi Vo V3 ] and compute its inverse:

111100 100 0 1 0
100|010 S7EROS 1 o101 1 1
021001 00 1| 2 —2 -1

Thus

0 1 0
S1=1| -1 1

is the transition matrix from & to B.
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WeIetS:(

1 11
1 00
0 21

Thus

Vi Vg V3 ] and compute its inverse:

100 1Lo0o0] 0 1 0

01 0| &o7EROS g1 0 -1 1 1

00 1 001] 2 -2 -1
0 1 0
STt=1]1-1 1 1
2 —2 —1

is the transition matrix from & to B.

Finding the transition matrix when neither basis is £.
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100 1Lo0o0] 0 1 0
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00 1 001] 2 -2 -1
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is the transition matrix from & to B.

Finding the transition matrix when neither basis is £.

Suppose B = [v1, Vs, Vv3] and C = [w1, Wa, W3] are ordered bases for R3.
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100 1Lo0o0] 0 1 0

01 0| &o7EROS g1 0 -1 1 1

00 1 001] 2 -2 -1
0 1 0
STt=1]1-1 1 1
2 —2 —1

is the transition matrix from & to B.

Finding the transition matrix when neither basis is £.

Suppose B = [v1, Vs, Vv3] and C = [w1, Wa, W3] are ordered bases for R3.
We can get the transition matrix from B to C by finding the transition

matrix S = [ Vi Vg V3 ] from B to & (this is easy)
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0 21

Thus

Vi Vg V3 ] and compute its inverse:

100 1Lo0o0] 0 1 0

01 0| &o7EROS g1 0 -1 1 1

00 1 001] 2 -2 -1
0 1 0
STt=1]1-1 1 1
2 —2 —1

is the transition matrix from & to B.

Finding the transition matrix when neither basis is £.

Suppose B = [v1, Vs, Vv3] and C = [w1, Wa, W3] are ordered bases for R3.
We can get the transition matrix from B to C by finding the transition

matrix S = [ Vi Vg V3 ] from B to & (this is easy) and the

transition matrix T' = ( Wi Wy W3 ) from C to & (also easy).
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WeIetS:(

1 11
1 00
0 21

Thus

Vi Vg V3 ] and compute its inverse:

100 1Lo0o0] 0 1 0

01 0| &o7EROS g1 0 -1 1 1

00 1 001] 2 -2 -1
0 1 0
STt=1]1-1 1 1
2 —2 —1

is the transition matrix from & to B.

Finding the transition matrix when neither basis is £.

Suppose B = [v1, Vs, Vv3] and C = [w1, Wa, W3] are ordered bases for R3.
We can get the transition matrix from B to C by finding the transition

matrix S = [ Vi Vg V3 ] from B to & (this is easy) and the

transition matrix T = ( W{ W2 W3 ) from C to & (also easy). Then

the transition matrix from B to C is T~1S (not as easy).
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To remember which order to multiply, remember that S[v|g = [v]¢ so S
transitions from B to £. To transition that from £ to C we multiply it by
Tt
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Here is a shortcut that removes one matrix multiplication:
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To remember which order to multiply, remember that S[v|g = [v]¢ so S
transitions from B to £. To transition that from £ to C we multiply it by

-1

Here is a shortcut that removes one matrix multiplication: If we row
reduce ( T ‘ S ) until the left side is the identity I, then the right side
will be T718.
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To remember which order to multiply, remember that S[v|g = [v]¢ so S
transitions from B to £. To transition that from £ to C we multiply it by
Tt

Here is a shortcut that removes one matrix multiplication: If we row
reduce ( T ‘ S ) until the left side is the identity I, then the right side
will be T718.

Example: to find the transition matrix from

1 1 1 1 0 1
B = o1, 11},]1 to C= 11,1 11],] 2
0 0 1 0 1 0
1 017111 1 00 2 1 2
Row-reduce 11 21011 to 010 0 0 1
01 0|0 01 0 01| -10 -1
2 1 2
And the transition matrix from B to C is 00 1
-1 0 -1

22/32



Theorem

Let B =[v1,va,...,v,] and C = [uy,uy,...,u,] be bases for a vector
space V. The transition matrix from B to C is

U= vile bl - lvie )
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Theorem

Let B =[v1,va,...,v,] and C = [uy,uy,...,u,] be bases for a vector
space V. The transition matrix from B to C is
U= [ Vile [v2le - [vale ] and the transition matrix from C to

BisU™! = ( wls [wls - [uls ]
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Theorem

Let B =[v1,va,...,v,] and C = [uy,uy,...,u,] be bases for a vector
space V. The transition matrix from B to C is

U= [ Vile [v2le - [vale ] and the transition matrix from C to

BisU™! = ( [wlg [wls -+ [w]s ] . If € is another basis and if S
is the transition matrix from B to £ while T is the transition matrix fron C
to &, then the transition matrix from B to C is T~1S and the transition
matrix from C to B is S~'T

23/32



Three vector spaces associated with a matrix

Definition

If Aisan n x k matrix then

1. The null space of A is the set of vectors x that satisfy Ax = 0. This
is a subspace of R¥ and consists of column vectors. We denote this

N(A).
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1. The null space of A is the set of vectors x that satisfy Ax = 0. This
is a subspace of R¥ and consists of column vectors. We denote this
N(A).

2. The column space of A is the span of the columns of A. This is a
subspace of R™ and consists of column vectors. (Later we will denote
this by R(A), but it would be confusing to do that now.)
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Three vector spaces associated with a matrix

If Aisan n x k matrix then

1. The null space of A is the set of vectors x that satisfy Ax = 0. This
is a subspace of R¥ and consists of column vectors. We denote this
N(A).

2. The column space of A is the span of the columns of A. This is a
subspace of R™ and consists of column vectors. (Later we will denote
this by R(A), but it would be confusing to do that now.)

3. The row space of A is the span of the rows of A. It is a subspace of
R” (interpreted as all 1 x k row matrices). We don't have any special
notation for this.
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Finding a basis of each of these spaces
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Finding a basis of each of these spaces

Finding a basis of N/(A). Solve the system of equations Ax = 0. For each
free variable, find the solution when that variable is 1 and the other free
variables are 0. This gives one vector per free variable and that set of

solutions is the basis.
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Finding a basis of N/(A). Solve the system of equations Ax = 0. For each
free variable, find the solution when that variable is 1 and the other free
variables are 0. This gives one vector per free variable and that set of
solutions is the basis.

Finding a basis for the column space of A. Row-reduce the matrix to
echelon form. List the columns of A that correspond to leading 1s in the
echelon form.

25/32



Finding a basis of each of these spaces

Finding a basis of N/(A). Solve the system of equations Ax = 0. For each
free variable, find the solution when that variable is 1 and the other free
variables are 0. This gives one vector per free variable and that set of
solutions is the basis.

Finding a basis for the column space of A. Row-reduce the matrix to
echelon form. List the columns of A that correspond to leading 1s in the
echelon form.

Finding a basis for the row space of A. List the nonzero rows of the
echelon form.
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Consider this matrix A and its reduced echelon form B:

0 2 -2 4 10 2 -4
A= 1 3 -1 2 and B=| 0 1 -1 2
00 0 O

-1 -1 -1 2
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Consider this matrix A and its reduced echelon form B:

0 2 -2 4 10 2 -4
A= 1 3 -1 2 and B=| 0 1 -1 2
-1 -1 -1 2 00 0 O

A basis for the column space is

0 2
and 3
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Consider this matrix A and its reduced echelon form B:

0 2 -2 4 10 2 -4
A= 1 3 -1 2 and B=| 0 1 -1 2
-1 -1 -1 2 00 0 O

A basis for the column space is

0 2
and 3

A basis for the row space is

(102—4]and[01—12]
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A basis for the null space: from

T1 = —2x3+ 4xy4

Iro = X3 — 2%4

we get the basis

-2 4
1 -2
1 and 0
0 1

Definition
Let A be an n x k matrix. The rank of A is the dimension of the column
space of A.

27/32



A basis for the null space: from

T1 = —2x3+ 4xy4

Iro = X3 — 2%4

we get the basis

-2 4
1 -2
1 and 0
0 1

Definition
Let A be an n x k matrix. The rank of A is the dimension of the column
space of A. The nullity of A is the dimension of the null space of A.
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A basis for the null space: from

T1 = —2x3+ 4xy4

Iro = X3 — 2%4

we get the basis

-2 4
1 -2
1 and 0
0 1

Definition
Let A be an n x k matrix. The rank of A is the dimension of the column
space of A. The nullity of A is the dimension of the null space of A.

Theorem

If L : R¥ — R™ is a linear transformation, then there is a unique n X k
matrix A such that L(x) = Ax for every x in RF.
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That is, every linear transformation from R* to R™ is a matrix
transformation.
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That is, every linear transformation from R* to R™ is a matrix
transformation.

To find the matrix (when it is not obvious) you apply L to the standard
basis vectors and put the resulting column vectors in a matrix.
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That is, every linear transformation from R* to R™ is a matrix
transformation.

To find the matrix (when it is not obvious) you apply L to the standard
basis vectors and put the resulting column vectors in a matrix.

Example
Define L from R? to R? as follows

I il . T1 — 229 + 73
2 - Tro — 31‘3
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That is, every linear transformation from R* to R™ is a matrix
transformation.

To find the matrix (when it is not obvious) you apply L to the standard
basis vectors and put the resulting column vectors in a matrix.
Example

Define L from R? to R? as follows

I il T1 — 229 + 73
2 - Tro — 31‘3
z3

Then
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That is, every linear transformation from R* to R™ is a matrix
transformation.

To find the matrix (when it is not obvious) you apply L to the standard
basis vectors and put the resulting column vectors in a matrix.

Example
Define L from R? to R? as follows

Then
1 -2 1
L61 = [ 0 ] y Leg = [ 1 ] y Leg = [ _3 ]

And so the matrix that produces L is A = [ 1 =2 _zl)) ]
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Theorem

Let V' be a vector space with basis B. Let W be a vector space with basis
C. Let L : V — W be a linear transformation. Then there exists a unique
matrix A that satisfies A[v]|g = [Lv]c.
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Theorem

Let V' be a vector space with basis B. Let W be a vector space with basis
C. Let L : V — W be a linear transformation. Then there exists a unique
matrix A that satisfies A[v]|g = [Lv]c.

The method of obtaining A we saw earlier carries forward to this case:
A= [ [Lvile [Lvole -~ [Lvile ] .
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Theorem

Let V' be a vector space with basis B. Let W be a vector space with basis
C. Let L : V — W be a linear transformation. Then there exists a unique
matrix A that satisfies A[v]|g = [Lv]c.

The method of obtaining A we saw earlier carries forward to this case:
A= ( [Lvilc [Lvale -+ [Lvile ] . That is, the columns of A are
the coordinate vectors of Lv;, where v; are the basis vectors in V'
Example when L : R* — R”

If the bases of R¥ and R™ are the standard bases, the representing matrix
is just the matrix we saw earlier:

AZ[LGl LGQ Lek]
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If the basis in R™ is the standard one, then we get
A= ( LV1 LV2 LVk ]

where v; are the vectors in 5.
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If the basis in R™ is the standard one, then we get
A= ( LV1 LV2 LVk ]

where v; are the vectors in 5.

If the basis in R™ is C = [wy, Wa,..., W] then we have to convert each
Lv; into a new column vector using the transition matrix T~ where

T = [ Wi Wo - W ] One quick way to find T‘lij
simultaneously is to line up the the vectors as follows

[Wl Wy 0 Wp ‘ Lvy Lvy --- ka]
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If the basis in R™ is the standard one, then we get
A= ( LV1 LV2 LVk ]

where v; are the vectors in 5.

If the basis in R™ is C = [wy, Wa,..., W] then we have to convert each
Lv; into a new column vector using the transition matrix T~ where

T = [ Wi Wo - W ] One quick way to find T‘lij

simultaneously is to line up the the vectors as follows
[ Wi Wo - Wp ‘ Lvy Lvy --- Lvg ]

and then row reduce until the left half is the identity matrix.
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Example
Let L be the transformation from R? to R? defined by

Ix — T, — 229 + 3x3
= 221 + 3xo — 43
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Example
Let L be the transformation from R? to R? defined by

Ix — T, — 229 + 3x3
o 2x1 + 3562 — 41‘3

Find the represnting matrix for L relative to the ordered bases

1 1 1
B =[vi,vy,v3] = 11,1 11,]0 for R3 and
1 0 0
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Example
Let L be the transformation from R? to R? defined by

Ix — T, — 229 + 3x3
o 2x1 + 3562 — 41‘3

Find the represnting matrix for L relative to the ordered bases

1 1 1

B =[vi,vy,v3] = 11,111, 0 for R3 and
1 0

c_[wl,wz}:“ ] [ ”forRz
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Example
Let L be the transformation from R? to R? defined by

Ix — T, — 229 + 3x3
= 221 + 3xo — 43

Find the represnting matrix for L relative to the ordered bases
1 1

B =[vi,vy,v3] = 11|, ,1 0 for R3 and
1

<o (3] (3] e

We need to apply L to the three basis vectors to get

() am [ ame (2]
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Example
Let L be the transformation from R? to R? defined by

Ix — T, — 229 + 3x3
- 2x1 + 3562 — 41‘3

Find the represnting matrix for L relative to the ordered bases
1 1

B =[vi,vy,v3] = 11|, ,1 0 for R3 and
1

<o (3] (3] e

We need to apply L to the three basis vectors to get

() am [ ame (2]

To get the coordinates of these relative to C we solve three equations.
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One of those equations is:

N =
W =
N—
—
55
N—
I
——
il \V)
N—

T1W1 + xowo = Lvy or [
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One of those equations is:

T1W1 + xowe = Lvy or 11 1 = 2
1W1 QW2 = 1 9 3 - = 1

The other two apply the same proces to the vectors Lvy and Lvs:

L) (2] 05 ) = aa) (2] (2)

We can solve all three at once by row reducing

L2 -1, 10| 4 -8 1
23|11 5 2  lo1]-2 70
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One of those equations is:

T1W1 + xowe = Lvy or 11 1 = 2
1W1 QW2 = 1 9 3 - = 1

The other two apply the same proces to the vectors Lvy and Lvs:

L) (2] 05 ) = aa) (2] (2)

We can solve all three at once by row reducing
1 1712 -1 1 ¢ 10 4 -8
2 3|1 52) ° |lo1|-2 7

The representing matrix is just the second part: A = [ 4 _i (1) ]
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