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There are an infinite variety of vector spaces. I have given you just a few:
Rn, the column vectors of height n,

Rn×k the n× k matrices, and Pn, the
polynomials of degree less than n.

My philosophy is that we learn (or memorize) a few vector spaces and then
learn to recognize their subspaces.

You will be expected to recognize subspaces of Rn (where n is a small
number) and explain why they are. And also to recognize subsets that are
not subspaces and also explain why not.

Some examples begin on the next slide.

The two ways I expect you to be able to explain why a subset is a
subspace:

1. It is the null space of some matrix.

2. It is the span of some vectors.

The two ways I expect you to be able to explain why a subset is not a
subspace:

1. It is not closed under scalar multiplication.

2. It is not closed under addition.
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The subset 


x1
x2
x3

 x1 = x2, and x2 = 2x3

 .

is a subspace of R3 because it is the null space of the matrix 1 −1 0
0 1 −2


The subset 


−α+ 2β
α+ β
α+ 3β

 α, β ∈ R


is a subspace of R3 because it is the span of


−1
1
1

 and


2
1
3


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x1
x2
x3

 x1 − x23 = 0
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is not a subspace of R3 because
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1
0
1

 is in this subset but the scalar

multiple
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2
0
2

 is not.

The set of all solutions of a homogeneous n× k system is a vector space,
a subspace of Rk. This is equivalent to being the null space of the system
matrix.
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Definition

If v1,v2, . . . ,vn are vectors in a vector space V , a sum of the form

α1v1 + α2v2 + · · ·+ αnvn

where α1, α2, . . . , αn are scalars, is called a linear combination of
v1,v2, . . . ,vn. The set of all such linear combinations of v1,v2, . . . ,vn is
called the span of v1,v2, . . . ,vn.

Definition

If B is a set of vectors in a vector space V we say that B is spanning if
Span(B) = V .

Definition

In Rn, for 1 ≤ j ≤ n, we let ej be the vector that has a 1 in position j
and zeros in every other position.
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In R3, the set e1, e2, e3 is spanning.

If we want to know whether vectors
are spanning, we convert the question to a system of equations and
row-reduce the system matrix. If the echelon form has a row of zeros, the
vectors are not spanning.

Example 1: Do the following vectors span R3
1
2
3

 ,


1

−3
2

 ,


2

−1
5

 ,


0
5
1


Solution: a linear combination of these equated to any vector produces the
following system matrix:

1 1 2 0
2 −3 −1 5
3 2 5 1

 4 EROs−−−−→


1 1 2 0
0 1 1 −1
0 0 0 0


They do not span R3.
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Definition

A set of vectors v1,v2, . . . ,vn is said to be linearly dependent if there
exists scalars α1, α2, . . . , αn, not all of which are zero, such that

α1v1 + α2v2 + · · ·+ αnvn = 0.

If the set is not linearly dependent, it is called linearly independent.

Determining whether a set of vectors is independent or dependent again
amounts to a system of equations. But this time, it is not whether the
system has a solution, but whether it has a nontrivial solution.

If we want to know whether a set of vectors is independent, we convert the
question to a system of equations and row-reduce the system matrix. If the
echelon form indicates any free variables, the vectors are not independent.

Example: Are these vectors independent:

w1 =
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The matrix is 
1 1 1
3 0 2
5 2 3

 Several EROs−−−−−−−−→


1 1 1
0 1 1/3
0 0 1



Conclusion: the original set of vectors is independent.

When the set of vectors are column vectors, our calculations allow the
following shortcut:

1. Write the column vectors as columns of a matrix.
2. Use EROs to bring that matrix to echelon form.
3. If, in that echelon form, there is a row of zeros, the set of vectors is

not spanning, otherwise they are.
4. If, in that echelon form, there is a column without a leading 1, the set

of vectors is dependent, otherwise it is independent.

Other shortcuts: (1) If the matrix is square, the set is either both
independent and spanning, or neither. (2) If there are more columns than
rows, the vectors are not independent (they may or may not be spanning).
(3) If there are more rows than columns, the vectors are not spanning
(they may or may not be independent).
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Definition

If a set of vectors in a vector space V is both spanning and independent,
we say it is a basis for V .

If a set of vectors {v1,v2, . . . ,vn} is spanning, that means any vector w
can be written as

w = α1v1 + α2v2 + · · ·+ αnvn

If the set is also independent, then there is only one choice of coefficients
that will produce w.

Standard bases

Some vector spaces have a basis so closely associated with the structure of
the vectors that they are called standard bases.
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The standard basis for Rn is the set {e1, e2, . . . , en}. For example, for R3

this basis is 
1
0
0

 ,


0
1
0

 ,


0
0
1



If we put these in a matrix, it is already in echelon form and clearly
satisfies the tests for spanning and independence.

The standard basis for Pn is {1, x, . . . , xn−1}. In fact, the definition of a
polynomial is that it is a linear combination of powers of x.

Theorem

If a set of vectors {v1,v2, . . . ,vn} in a vector space V is spanning, then
any set of vector with more than n elements must be dependent.
If a set of vectors {w1,w2, . . . ,wm} is independent, then any set of
vectors with fewer than m elements cannot be spanning.

Theorem

Any two bases for a vector space have the same number of elements.
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If a set of vectors {v1,v2, . . . ,vn} in a vector space V is spanning, then
any set of vector with more than n elements must be dependent.
If a set of vectors {w1,w2, . . . ,wm} is independent, then any set of
vectors with fewer than m elements cannot be spanning.

Theorem

Any two bases for a vector space have the same number of elements.
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Definition

The dimension of a vector space is the number of elements in any basis.

Not suprisingly, the dimension of Rn is n: {e1, e2, . . . , en} is a basis.

The dimension of Pn is n: {1, x, x2, . . . , xn−1} is a basis.

The dimension of Rn×k is nk: {Eij : 1 ≤ i ≤ n, 1 ≤ j ≤ k} is a basis.

Theorem

If the dimension of V is n then any set in V with more than n elements is
dependent, and any set with fewer than n elements is not spanning. Any
set with n elements either is both independent and spanning or is neither
independent nor spanning.
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Theorem

Suppose V is a vector space with dimension n

1. Any independent subset with fewer than n vectors can be extended
(i.e., vectors can be added to it) to form a basis.

2. Any spanning set with more than n vectors can be trimmed down to
a basis.

Example: Trim the following to an independent set with the same span

v1 =


1
1
2

 , v2 =


1
0

−1

 , v3 =


2
1
1

 , v4 =


0
1
1


Put these columns in a matrix and reduce to echelon form:

1 1 2 0
1 0 1 1
2 −1 1 1

 5 EROs−−−−→


1 1 2 0
0 1 1 −1
0 0 0 1


This tells us that the original set of vectors in spanning (no row of zeros)
but is not independent.
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But it also tells us that if we take a linear combination and equate it to 0:

α1v1 + α2v2 + α3v3 + α4v4 = 0

that the variable α3 is free and can be set equal to 1.

Thus v3 is a linear
combination of {v1,v2,v4}. If we remove it, that simply removes column
3 from the calculations, and that shows that this smaller set is
independent.

In general, if you keep the vectors corresponding to columns with leading
1s, (and discard the rest) you get an independent set with the same span.
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Coordinates

Definition

If V is a vector space and B = [v1,v2, . . . ,vn] is an ordered basis

then
every vector v in V can be written in the form

v = c1v1 + c2v2 + · · ·+ cnvn

where the cj are scalars uniquely associated to v. We call the column
vector

c =


c1
c2
...
cn


the coordinate vector relative to B. We denote it by [v]B.
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Finding the coordinates [v]B usually requires solving some system of
equations: equate v to the linear combination and solve for the cj .

Going the other way is easy: if we know the coordinates cj we just use

v = c1v1 + c2v2 + · · ·+ cnvn

to get v.

There are several problems associated with bases and coordinates:

Given a vector v and an ordered basis B, what is [v]B?
Given a second basis C, what is the relationship between [v]C and [v]B?
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The simplest cases are when B is one of the standard bases.

If E = [e1, e2, . . . , en] in Rn (interpreted as the space of column vectors)
then [v]E = v.

Suppose, in Rn we have another ordered basis B = [v1,v2, . . . ,vn]. Then
finding [v]B amounts to solving

c1v1 + c2v2 + · · ·+ cnvn = v =⇒ [v]B =


c1
c2
...
cn


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The left side of this is the same as

 v1 v2 · · · vn




c1
c2
...
cn

 = v

By the properties of a basis, this system has a solution for every choice of
v, which means this matrix

S =
 v1 v2 · · · vn

 is invertible.

So if we find the inverse S−1 we can multiply it times S[v]B = v to get
[v]B = S−1v.

We call S−1 the transition matrix from E to B.
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Definition

If B and C are ordered bases for a vector space V with dimension n, and if
U is an n× n matrix that satisfies

U [v]B = [v]C

then we call U the transition matrix from B to C.

The standard basis E in Rn satisfies v = [v]E . From the equations we
obtained earlier: S[v]B = [v]E and [v]B = S−1[v]E we see that S is the
transition matrix from B to E while S−1 is the transition matrix from E to
B.
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Example: Consider the basis B = [v1,v2] where v1 =

 1
−1

 and

v2 =

 2
3

 Then the transition matrix from B to E = [e1, e2] is

S =

 1 2
−1 3



and the transition matrix from E to B is

S−1 =

 3/5 −2/5
1/5 1/5

.

Another example:

Let B = [v1,v2,v3] where

v1 =


1
1
0

 , v2 =


1
0
2

 , and v3 =


1
0
1


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We let S =
 v1 v2 v3

 and compute its inverse:
1 1 1 1 0 0
1 0 0 0 1 0
0 2 1 0 0 1

 6 or 7 EROs−−−−−−−→


1 0 0 0 1 0
0 1 0 −1 1 1
0 0 1 2 −2 −1


Thus

S−1 =


0 1 0

−1 1 1
2 −2 −1



is the transition matrix from E to B.
Finding the transition matrix when neither basis is E .
Suppose B = [v1,v2,v3] and C = [w1,w2,w3] are ordered bases for R3.
We can get the transition matrix from B to C by finding the transition

matrix S =
 v1 v2 v3

 from B to E (this is easy) and the

transition matrix T =
 w1 w2 w3

 from C to E (also easy). Then

the transition matrix from B to C is T−1S (not as easy).
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To remember which order to multiply, remember that S[v]B = [v]E so S
transitions from B to E . To transition that from E to C we multiply it by
T−1.

Here is a shortcut that removes one matrix multiplication: If we row

reduce
 T S

 until the left side is the identity I, then the right side

will be T−1S.

Example: to find the transition matrix from

B =


1
0
0

 ,


1
1
0

 ,


1
1
1


 to C =


1
1
0

 ,


0
1
1

 ,


1
2
0




Row-reduce


1 0 1 1 1 1
1 1 2 0 1 1
0 1 0 0 0 1

 to


1 0 0 2 1 2
0 1 0 0 0 1
0 0 1 −1 0 −1


And the transition matrix from B to C is


2 1 2
0 0 1

−1 0 −1


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Theorem

Let B = [v1,v2, . . . ,vn] and C = [u1,u2, . . . ,un] be bases for a vector
space V . The transition matrix from B to C is

U =
 [v1]C [v2]C · · · [vn]C



and the transition matrix from C to

B is U−1 =
 [u1]B [u2]B · · · [un]B

. If E is another basis and if S

is the transition matrix from B to E while T is the transition matrix fron C
to E , then the transition matrix from B to C is T−1S and the transition
matrix from C to B is S−1T
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Three vector spaces associated with a matrix

Definition

If A is an n× k matrix then

1. The null space of A is the set of vectors x that satisfy Ax = 0. This
is a subspace of Rk and consists of column vectors. We denote this
N (A).

2. The column space of A is the span of the columns of A. This is a
subspace of Rn and consists of column vectors. (Later we will denote
this by R(A), but it would be confusing to do that now.)

3. The row space of A is the span of the rows of A. It is a subspace of
Rk (interpreted as all 1× k row matrices). We don’t have any special
notation for this.
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Finding a basis of each of these spaces

Finding a basis of N (A). Solve the system of equations Ax = 0. For each
free variable, find the solution when that variable is 1 and the other free
variables are 0. This gives one vector per free variable and that set of
solutions is the basis.

Finding a basis for the column space of A. Row-reduce the matrix to
echelon form. List the columns of A that correspond to leading 1s in the
echelon form.

Finding a basis for the row space of A. List the nonzero rows of the
echelon form.
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Consider this matrix A and its reduced echelon form B:

A =


0 2 −2 4
1 3 −1 2

−1 −1 −1 2

 and B =


1 0 2 −4
0 1 −1 2
0 0 0 0



A basis for the column space is
0
1

−1

 and


2
3

−1


A basis for the row space is 1 0 2 −4

 and
 0 1 −1 2


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A basis for the null space: from

x1 = −2x3 + 4x4

x2 = x3 − 2x4

we get the basis 
−2
1
1
0

 and


4

−2
0
1


Definition

Let A be an n× k matrix. The rank of A is the dimension of the column
space of A.

The nullity of A is the dimension of the null space of A.

Theorem

If L : Rk → Rn is a linear transformation, then there is a unique n× k
matrix A such that L(x) = Ax for every x in Rk.
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That is, every linear transformation from Rk to Rn is a matrix
transformation.

To find the matrix (when it is not obvious) you apply L to the standard
basis vectors and put the resulting column vectors in a matrix.

Example

Define L from R3 to R2 as follows

L


x1
x2
x3

 =

 x1 − 2x2 + x3
x2 − 3x3


Then

Le1 =

 1
0

 , Le2 =

 −2
1

 , Le3 =

 1
−3


And so the matrix that produces L is A =

 1 −2 1
0 1 −3



28 / 32



That is, every linear transformation from Rk to Rn is a matrix
transformation.

To find the matrix (when it is not obvious) you apply L to the standard
basis vectors and put the resulting column vectors in a matrix.

Example

Define L from R3 to R2 as follows

L


x1
x2
x3

 =

 x1 − 2x2 + x3
x2 − 3x3


Then

Le1 =

 1
0

 , Le2 =

 −2
1

 , Le3 =

 1
−3


And so the matrix that produces L is A =

 1 −2 1
0 1 −3



28 / 32



That is, every linear transformation from Rk to Rn is a matrix
transformation.

To find the matrix (when it is not obvious) you apply L to the standard
basis vectors and put the resulting column vectors in a matrix.

Example

Define L from R3 to R2 as follows

L


x1
x2
x3

 =

 x1 − 2x2 + x3
x2 − 3x3



Then

Le1 =

 1
0

 , Le2 =

 −2
1

 , Le3 =

 1
−3


And so the matrix that produces L is A =

 1 −2 1
0 1 −3



28 / 32



That is, every linear transformation from Rk to Rn is a matrix
transformation.

To find the matrix (when it is not obvious) you apply L to the standard
basis vectors and put the resulting column vectors in a matrix.

Example

Define L from R3 to R2 as follows

L


x1
x2
x3

 =

 x1 − 2x2 + x3
x2 − 3x3


Then

Le1 =

 1
0

 , Le2 =

 −2
1

 , Le3 =

 1
−3



And so the matrix that produces L is A =

 1 −2 1
0 1 −3



28 / 32



That is, every linear transformation from Rk to Rn is a matrix
transformation.

To find the matrix (when it is not obvious) you apply L to the standard
basis vectors and put the resulting column vectors in a matrix.

Example

Define L from R3 to R2 as follows

L


x1
x2
x3

 =

 x1 − 2x2 + x3
x2 − 3x3


Then

Le1 =

 1
0

 , Le2 =

 −2
1

 , Le3 =

 1
−3


And so the matrix that produces L is A =

 1 −2 1
0 1 −3


28 / 32



Theorem

Let V be a vector space with basis B. Let W be a vector space with basis
C. Let L : V → W be a linear transformation. Then there exists a unique
matrix A that satisfies A[v]B = [Lv]C .

The method of obtaining A we saw earlier carries forward to this case:

A =
 [Lv1]C [Lv2]C · · · [Lvk]C

. That is, the columns of A are

the coordinate vectors of Lvj , where vj are the basis vectors in V

Example when L : Rk → Rn

If the bases of Rk and Rn are the standard bases, the representing matrix
is just the matrix we saw earlier:

A =
 Le1 Le2 · · · Lek


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If the basis in Rn is the standard one, then we get

A =
 Lv1 Lv2 · · · Lvk


where vj are the vectors in B.

If the basis in Rn is C = [w1,w2, . . . ,wn] then we have to convert each
Lvj into a new column vector using the transition matrix T−1 where

T =
 w1 w2 · · · wn

 One quick way to find T−1Lvj

simultaneously is to line up the the vectors as follows w1 w2 · · · wn Lv1 Lv2 · · · Lvk


and then row reduce until the left half is the identity matrix.
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Example

Let L be the transformation from R3 to R2 defined by

Lx =

 x1 − 2x2 + 3x3
2x1 + 3x2 − 4x3



Find the represnting matrix for L relative to the ordered bases

B = [v1,v2,v3] =


1
1
1

 ,


1
1
0

 ,


1
0
0


 for R3 and

C = [w1,w2] =

[ 1
2

 ,

 1
3

]
for R2.

We need to apply L to the three basis vectors to get

Lv1 =

 2
1

 , Lv2 =

 −1
5

 , Lv3 =

 1
2


To get the coordinates of these relative to C we solve three equations.
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Lx =

 x1 − 2x2 + 3x3
2x1 + 3x2 − 4x3


Find the represnting matrix for L relative to the ordered bases

B = [v1,v2,v3] =


1
1
1

 ,


1
1
0

 ,


1
0
0


 for R3 and

C = [w1,w2] =

[ 1
2

 ,

 1
3

]
for R2.

We need to apply L to the three basis vectors to get

Lv1 =

 2
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One of those equations is:

x1w1 + x2w2 = Lv1 or

 1 1
2 3

 x1
x2

 =

 2
1



The other two apply the same proces to the vectors Lv2 and Lv3: 1 1
2 3

 x1
x2

 =

 −1
5

 and

 1 1
2 3

 x1
x2

 =

 1
2


We can solve all three at once by row reducing 1 1 2 −1 1

2 3 1 5 2

 to

 1 0 4 −8 1
0 1 −2 7 0


The representing matrix is just the second part: A =

 4 −8 1
−2 7 0


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