Similar Matrices

D. H. Luecking

08 March 2024

Theorem

Let S be an invertible $n \times n$ matrix. Suppose A and B are two $n \times n$ matrices. Then $S^{-1} A B S=\left(S^{-1} A S\right)\left(S^{-1} B S\right)$. In particular, if S is a transition matrix from a basis \mathcal{B} of \mathbb{R}^{n} to another basis \mathcal{E}, then the matrix representing $A B$ with respect to \mathcal{B} is the product of the representing matrices for A and B

Theorem

Let S be an invertible $n \times n$ matrix. Suppose A and B are two $n \times n$ matrices. Then $S^{-1} A B S=\left(S^{-1} A S\right)\left(S^{-1} B S\right)$. In particular, if S is a transition matrix from a basis \mathcal{B} of \mathbb{R}^{n} to another basis \mathcal{E}, then the matrix representing $A B$ with respect to \mathcal{B} is the product of the representing matrices for A and B

Example: Let $A=\left(\begin{array}{rrr}1 & 2 & 4 \\ 3 & -1 & -2 \\ 0 & 2 & 1\end{array}\right)$

Theorem

Let S be an invertible $n \times n$ matrix. Suppose A and B are two $n \times n$ matrices. Then $S^{-1} A B S=\left(S^{-1} A S\right)\left(S^{-1} B S\right)$. In particular, if S is a transition matrix from a basis \mathcal{B} of \mathbb{R}^{n} to another basis \mathcal{E}, then the matrix representing $A B$ with respect to \mathcal{B} is the product of the representing matrices for A and B

Example: Let $A=\left(\begin{array}{rrr}1 & 2 & 4 \\ 3 & -1 & -2 \\ 0 & 2 & 1\end{array}\right)$
If $L(\mathbf{x})=A \mathbf{x}$, find the representing matrix for A relative to the basis

$$
\mathcal{B}=\left[\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right]
$$

Theorem

Let S be an invertible $n \times n$ matrix. Suppose A and B are two $n \times n$ matrices. Then $S^{-1} A B S=\left(S^{-1} A S\right)\left(S^{-1} B S\right)$. In particular, if S is a transition matrix from a basis \mathcal{B} of \mathbb{R}^{n} to another basis \mathcal{E}, then the matrix representing $A B$ with respect to \mathcal{B} is the product of the representing matrices for A and B

Example: Let $A=\left(\begin{array}{rrr}1 & 2 & 4 \\ 3 & -1 & -2 \\ 0 & 2 & 1\end{array}\right)$
If $L(\mathbf{x})=A \mathbf{x}$, find the representing matrix for A relative to the basis

$$
\mathcal{B}=\left[\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right]
$$

If we find the transition matrix S from \mathcal{B} to \mathcal{E} (the standard basis) we need to find $S^{-1} A S$.

So we need to find S and S^{-1}. S is the left side of the first matrix below and S^{-1} is the right side of the second:

So we need to find S and S^{-1}. S is the left side of the first matrix below and S^{-1} is the right side of the second:

$$
\left(\begin{array}{lll|lll}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow{3 \mathrm{EROs}}\left(\begin{array}{lll|lrr}
1 & 0 & 0 & 1 & -1 & 0 \\
0 & 1 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

So we need to find S and S^{-1}. S is the left side of the first matrix below and S^{-1} is the right side of the second:

$$
\left(\begin{array}{lll|lll}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow{3 \mathrm{EROs}}\left(\begin{array}{lll|lrr}
1 & 0 & 0 & 1 & -1 & 0 \\
0 & 1 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Therefore, The required representing matrix for L relative to \mathcal{B} is

$$
S^{-1} A S=\left(\begin{array}{r}
-217 \\
30-3 \\
022
\end{array}\right)
$$

So we need to find S and S^{-1}. S is the left side of the first matrix below and S^{-1} is the right side of the second:

$$
\left(\begin{array}{lll|lll}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow{3 \mathrm{EROs}}\left(\begin{array}{lll|lrr}
1 & 0 & 0 & 1 & -1 & 0 \\
0 & 1 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Therefore, The required representing matrix for L relative to \mathcal{B} is

$$
S^{-1} A S=\left(\begin{array}{r}
-217 \\
30-3 \\
022
\end{array}\right)
$$

If we do the same for the transformation $T \mathbf{x}=B \mathbf{x}$ where
$B=\left(\begin{array}{rrr}1 & -1 & 0 \\ 2 & -2 & 1 \\ 0 & 0 & 1\end{array}\right)$
we get a representing matrix for T relative to \mathcal{B} :

$$
S^{-1} B S=\left(\begin{array}{rrr}
-1 & 0 & -1 \\
2 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Without computing $T(L(\mathbf{x}))=B A \mathbf{x}$, we can get the represention matrix for $T(L \mathbf{x})$ relative to \mathcal{B} by multiplying these two representing matrices:

$$
\left(\begin{array}{rrr}
-1 & 0 & -1 \\
2 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
-2 & 1 & 7 \\
3 & 0 & -3 \\
0 & 2 & 2
\end{array}\right)=\left(\begin{array}{rrr}
2 & -3 & -9 \\
-4 & 2 & 14 \\
0 & 2 & 2
\end{array}\right)
$$

