Similar Matrices

D. H. Luecking

08 March 2024

	æ
D. H. Lucckin	ъ.

Image: A mathematical states of the state

э

1/4

Let S be an invertible $n \times n$ matrix. Suppose A and B are two $n \times n$ matrices. Then $S^{-1}ABS = (S^{-1}AS)(S^{-1}BS)$. In particular, if S is a transition matrix from a basis \mathcal{B} of \mathbb{R}^n to another basis \mathcal{E} , then the matrix representing AB with respect to \mathcal{B} is the product of the representing matrices for A and B

< ロ > < 同 > < 回 > < 回 > < 回 > <

Let S be an invertible $n \times n$ matrix. Suppose A and B are two $n \times n$ matrices. Then $S^{-1}ABS = (S^{-1}AS)(S^{-1}BS)$. In particular, if S is a transition matrix from a basis \mathcal{B} of \mathbb{R}^n to another basis \mathcal{E} , then the matrix representing AB with respect to \mathcal{B} is the product of the representing matrices for A and B

Example: Let
$$A = \begin{pmatrix} 1 & 2 & 4 \\ 3 & -1 & -2 \\ 0 & 2 & 1 \end{pmatrix}$$

イロト イヨト イヨト ・

Let S be an invertible $n \times n$ matrix. Suppose A and B are two $n \times n$ matrices. Then $S^{-1}ABS = (S^{-1}AS)(S^{-1}BS)$. In particular, if S is a transition matrix from a basis \mathcal{B} of \mathbb{R}^n to another basis \mathcal{E} , then the matrix representing AB with respect to \mathcal{B} is the product of the representing matrices for A and B

Example: Let
$$A = \left(\begin{array}{ccc} 1 & 2 & 4 \\ 3 & -1 & -2 \\ 0 & 2 & 1 \end{array} \right)$$

If $L(\mathbf{x}) = A\mathbf{x}$, find the representing matrix for A relative to the basis

$$\mathcal{B} = \left[\left(\begin{array}{c} 1\\0\\0 \end{array} \right), \left(\begin{array}{c} 1\\1\\0 \end{array} \right), \left(\begin{array}{c} 1\\1\\1 \end{array} \right) \right]$$

2/4

Let S be an invertible $n \times n$ matrix. Suppose A and B are two $n \times n$ matrices. Then $S^{-1}ABS = (S^{-1}AS)(S^{-1}BS)$. In particular, if S is a transition matrix from a basis \mathcal{B} of \mathbb{R}^n to another basis \mathcal{E} , then the matrix representing AB with respect to \mathcal{B} is the product of the representing matrices for A and B

Example: Let
$$A = \left(\begin{array}{ccc} 1 & 2 & 4 \\ 3 & -1 & -2 \\ 0 & 2 & 1 \end{array} \right)$$

If $L(\mathbf{x}) = A\mathbf{x}$, find the representing matrix for A relative to the basis

$$\mathcal{B} = \left[\left(\begin{array}{c} 1\\0\\0 \end{array} \right), \left(\begin{array}{c} 1\\1\\0 \end{array} \right), \left(\begin{array}{c} 1\\1\\1 \end{array} \right) \right]$$

If we find the transition matrix S from \mathcal{B} to \mathcal{E} (the standard basis) we need to find $S^{-1}AS$.

э

(日)

э

• • • • • • • • • •

Therefore, The required representing matrix for L relative to $\mathcal B$ is

$$S^{-1}AS = \left(\begin{array}{c} -217\\ 30-3\\ 022 \end{array} \right)$$

Therefore, The required representing matrix for L relative to $\mathcal B$ is

$$S^{-1}AS = \left(\begin{array}{c} -217\\ 30-3\\ 022 \end{array}\right)$$

If we do the same for the transformation $T\mathbf{x} = B\mathbf{x}$ where $B = \begin{pmatrix} 1 & -1 & 0 \\ 2 & -2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

we get a representing matrix for T relative to \mathcal{B} :

$$S^{-1}BS = \left(\begin{array}{rrr} -1 & 0 & -1 \\ 2 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

Without computing $T(L(\mathbf{x})) = BA\mathbf{x}$, we can get the represention matrix for $T(L\mathbf{x})$ relative to \mathcal{B} by multiplying these two representing matrices:

$$\left(\begin{array}{rrrr} -1 & 0 & -1 \\ 2 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right) \left(\begin{array}{rrrr} -2 & 1 & 7 \\ 3 & 0 & -3 \\ 0 & 2 & 2 \end{array}\right) = \left(\begin{array}{rrrr} 2 & -3 & -9 \\ -4 & 2 & 14 \\ 0 & 2 & 2 \end{array}\right)$$

Image: A match a ma