# Linear Transformations 

D. H. Luecking

08 March 2024

Another example involving $\mathcal{P}_{3}$, but with a different basis (and a different range).

Another example involving $\mathcal{P}_{3}$, but with a different basis (and a different range). Let $\mathcal{B}=\left[(x-1)^{2}, x^{2},(x+1)^{2}\right]$ and $\mathcal{E}$ the standard basis for $\mathbb{R}^{3}$.

Another example involving $\mathcal{P}_{3}$, but with a different basis (and a different range). Let $\mathcal{B}=\left[(x-1)^{2}, x^{2},(x+1)^{2}\right]$ and $\mathcal{E}$ the standard basis for $\mathbb{R}^{3}$. Define the linear transformation $T: \mathcal{P}_{3} \rightarrow \mathcal{R}^{3}$ by

$$
T(p(x))=\left(\begin{array}{c}
p(1) \\
p(2) \\
p(3)
\end{array}\right)
$$

Another example involving $\mathcal{P}_{3}$, but with a different basis (and a different range). Let $\mathcal{B}=\left[(x-1)^{2}, x^{2},(x+1)^{2}\right]$ and $\mathcal{E}$ the standard basis for $\mathbb{R}^{3}$. Define the linear transformation $T: \mathcal{P}_{3} \rightarrow \mathcal{R}^{3}$ by

$$
T(p(x))=\left(\begin{array}{l}
p(1) \\
p(2) \\
p(3)
\end{array}\right)
$$

Find the matrix $A$ that represents $T$ relative to the bases $\mathcal{B}$ and $\mathcal{E}$.

Another example involving $\mathcal{P}_{3}$, but with a different basis (and a different range). Let $\mathcal{B}=\left[(x-1)^{2}, x^{2},(x+1)^{2}\right]$ and $\mathcal{E}$ the standard basis for $\mathbb{R}^{3}$. Define the linear transformation $T: \mathcal{P}_{3} \rightarrow \mathcal{R}^{3}$ by

$$
T(p(x))=\left(\begin{array}{l}
p(1) \\
p(2) \\
p(3)
\end{array}\right)
$$

Find the matrix $A$ that represents $T$ relative to bases $\mathcal{B}$ and $\mathcal{E}$.
We need to find
$T\left((x-1)^{2}\right)=\left(\begin{array}{l}0 \\ 1 \\ 4\end{array}\right), \quad T\left(x^{2}\right)=\left(\begin{array}{l}1 \\ 4 \\ 9\end{array}\right), \quad$ and $T\left((x+1)^{2}\right)=\left(\begin{array}{c}4 \\ 9 \\ 16\end{array}\right)$

Another example involving $\mathcal{P}_{3}$, but with a different basis (and a different range). Let $\mathcal{B}=\left[(x-1)^{2}, x^{2},(x+1)^{2}\right]$ and $\mathcal{E}$ the standard basis for $\mathbb{R}^{3}$. Define the linear transformation $T: \mathcal{P}_{3} \rightarrow \mathcal{R}^{3}$ by

$$
T(p(x))=\left(\begin{array}{l}
p(1) \\
p(2) \\
p(3)
\end{array}\right)
$$

Find the matrix $A$ that represents $T$ relative to the bases $\mathcal{B}$ and $\mathcal{E}$.
We need to find
$T\left((x-1)^{2}\right)=\left(\begin{array}{l}0 \\ 1 \\ 4\end{array}\right), \quad T\left(x^{2}\right)=\left(\begin{array}{l}1 \\ 4 \\ 9\end{array}\right), \quad$ and $T\left((x+1)^{2}\right)=\left(\begin{array}{c}4 \\ 9 \\ 16\end{array}\right)$
Column vectors in $\mathbb{R}^{n}$ are already coordinate vectors relative to the standard basis, so we only have to put these columns into a matrix:

Another example involving $\mathcal{P}_{3}$, but with a different basis (and a different range). Let $\mathcal{B}=\left[(x-1)^{2}, x^{2},(x+1)^{2}\right]$ and $\mathcal{E}$ the standard basis for $\mathbb{R}^{3}$. Define the linear transformation $T: \mathcal{P}_{3} \rightarrow \mathcal{R}^{3}$ by

$$
T(p(x))=\left(\begin{array}{c}
p(1) \\
p(2) \\
p(3)
\end{array}\right)
$$

Find the matrix $A$ that represents $T$ relative to bases $\mathcal{B}$ and $\mathcal{E}$.
We need to find
$T\left((x-1)^{2}\right)=\left(\begin{array}{l}0 \\ 1 \\ 4\end{array}\right), \quad T\left(x^{2}\right)=\left(\begin{array}{l}1 \\ 4 \\ 9\end{array}\right), \quad$ and $T\left((x+1)^{2}\right)=\left(\begin{array}{c}4 \\ 9 \\ 16\end{array}\right)$
Column vectors in $\mathbb{R}^{n}$ are already coordinate vectors relative to the standard basis, so we only have to put these columns into a matrix:

$$
A=\left(\begin{array}{rrr}
0 & 1 & 4 \\
1 & 4 & 9 \\
4 & 9 & 16
\end{array}\right)
$$

Recall what this means: If we have a linear combination of the basis vectors (say $p(x)=-(x-1)^{2}+2 x^{2}-(x+1)^{2}$ ) we need only multiply the coordinates by $A$ to get $L(p(x))$ :

$$
\left(\begin{array}{l}
p(1) \\
p(2) \\
p(3)
\end{array}\right)=\left(\begin{array}{rrr}
0 & 1 & 4 \\
1 & 4 & 9 \\
4 & 9 & 16
\end{array}\right)\left(\begin{array}{r}
-1 \\
2 \\
-1
\end{array}\right)=\left(\begin{array}{r}
-2 \\
2 \\
-2
\end{array}\right)
$$

Recall what this means: If we have a linear combination of the basis vectors (say $p(x)=-(x-1)^{2}+2 x^{2}-(x+1)^{2}$ ) we need only multiply the coordinates by $A$ to get $L(p(x))$ :

$$
\left(\begin{array}{l}
p(1) \\
p(2) \\
p(3)
\end{array}\right)=\left(\begin{array}{rrr}
0 & 1 & 4 \\
1 & 4 & 9 \\
4 & 9 & 16
\end{array}\right)\left(\begin{array}{r}
-1 \\
2 \\
-1
\end{array}\right)=\left(\begin{array}{r}
-2 \\
2 \\
-2
\end{array}\right)
$$

While it doesn't seem this is much easier than plugging 1,2 and 3 into $p(x)$, there can be an advantage if the degrees are higher.

Recall what this means: If we have a linear combination of the basis vectors (say $p(x)=-(x-1)^{2}+2 x^{2}-(x+1)^{2}$ ) we need only multiply the coordinates by $A$ to get $L(p(x))$ :

$$
\left(\begin{array}{l}
p(1) \\
p(2) \\
p(3)
\end{array}\right)=\left(\begin{array}{rrr}
0 & 1 & 4 \\
1 & 4 & 9 \\
4 & 9 & 16
\end{array}\right)\left(\begin{array}{r}
-1 \\
2 \\
-1
\end{array}\right)=\left(\begin{array}{r}
-2 \\
2 \\
-2
\end{array}\right)
$$

While it doesn't seem this is much easier than plugging 1,2 and 3 into $p(x)$, there can be an advantage if the degrees are higher.
Matrix multiplication never involves anything except adding simple products, while evaluating a polynomial can involve rather large powers.

## Change of basis (transition) matrices revisited

The identity transformation from $V$ to $V$ has the identity matrix as its representing matrix provided that the same basis is used for both instances of $V$.

## Change of basis (transition) matrices revisited

The identity transformation from $V$ to $V$ has the identity matrix as its representing matrix provided that the same basis is used for both instances of $V$.
Suppose we have a basis $\mathcal{B}$ for $V$ (in the 'from' role) and a basis $\mathcal{C}$ for $V$ (in the 'to' role).

## Change of basis (transition) matrices revisited

The identity transformation from $V$ to $V$ has the identity matrix as its representing matrix provided that the same basis is used for both instances of $V$.
Suppose we have a basis $\mathcal{B}$ for $V$ (in the 'from' role) and a basis $\mathcal{C}$ for $V$ (in the 'to' role). Then the representing matrix must satisfy

$$
A[\mathbf{v}]_{\mathcal{B}}=[I \mathbf{v}]_{\mathcal{C}}=[\mathbf{v}]_{\mathcal{C}}
$$

## Change of basis (transition) matrices revisited

The identity transformation from $V$ to $V$ has the identity matrix as its representing matrix provided that the same basis is used for both instances of $V$.
Suppose we have a basis $\mathcal{B}$ for $V$ (in the 'from' role) and a basis $\mathcal{C}$ for $V$ (in the 'to' role). Then the representing matrix must satisfy

$$
A[\mathbf{v}]_{\mathcal{B}}=[I \mathbf{v}]_{\mathcal{C}}=[\mathbf{v}]_{\mathcal{C}}
$$

That is, the transition (change of basis) matrix from $\mathcal{B}$ to $\mathcal{C}$ is the same as the representing matrix for the identity transformation.

## Change of basis (transition) matrices revisited

The identity transformation from $V$ to $V$ has the identity matrix as its representing matrix provided that the same basis is used for both instances of $V$.
Suppose we have a basis $\mathcal{B}$ for $V$ (in the 'from' role) and a basis $\mathcal{C}$ for $V$ (in the 'to' role). Then the representing matrix must satisfy

$$
A[\mathbf{v}]_{\mathcal{B}}=[I \mathbf{v}]_{\mathcal{C}}=[\mathbf{v}]_{\mathcal{C}}
$$

That is, the transition (change of basis) matrix from $\mathcal{B}$ to $\mathcal{C}$ is the same as the representing matrix for the identity transformation.
Suppose we have 2 bases $\mathcal{B}$ and $\mathcal{E}$ in $V$ and a basis $\mathcal{C}$ in $W$.

## Change of basis (transition) matrices revisited

The identity transformation from $V$ to $V$ has the identity matrix as its representing matrix provided that the same basis is used for both instances of $V$.
Suppose we have a basis $\mathcal{B}$ for $V$ (in the 'from' role) and a basis $\mathcal{C}$ for $V$ (in the 'to' role). Then the representing matrix must satisfy

$$
A[\mathbf{v}]_{\mathcal{B}}=[I \mathbf{v}]_{\mathcal{C}}=[\mathbf{v}]_{\mathcal{C}}
$$

That is, the transition (change of basis) matrix from $\mathcal{B}$ to $\mathcal{C}$ is the same as the representing matrix for the identity transformation.
Suppose we have 2 bases $\mathcal{B}$ and $\mathcal{E}$ in $V$ and a basis $\mathcal{C}$ in $W$. Suppose $A$ is the representing matrix for $L: V \rightarrow W$ relative to $\mathcal{E}$ and $\mathcal{C}$. What is the representing matrix for $L$ relative to $\mathcal{B}$ and $\mathcal{C}$ ?

If $U$ is the transition matrix from $\mathcal{B}$ to $\mathcal{E}$, we can just put the following definitions together

$$
U[\mathbf{v}]_{\mathcal{B}}=[\mathbf{v}]_{\mathcal{E}} \quad \text { and } A[\mathbf{v}]_{\mathcal{E}}=[L \mathbf{v}]_{\mathcal{C}}
$$

to get

$$
A U[\mathbf{v}]_{\mathcal{B}}=[L \mathbf{v}]_{\mathcal{C}}
$$

If $U$ is the transition matrix from $\mathcal{B}$ to $\mathcal{E}$, we can just put the following definitions together

$$
U[\mathbf{v}]_{\mathcal{B}}=[\mathbf{v}]_{\mathcal{E}} \quad \text { and } A[\mathbf{v}]_{\mathcal{E}}=[L \mathbf{v}]_{\mathcal{C}}
$$

to get

$$
A U[\mathbf{v}]_{\mathcal{B}}=[L \mathbf{v}]_{\mathcal{C}}
$$

So, we see that $A U$ is the representing matrix for $L$ relative to $\mathcal{B}$ and $\mathcal{C}$.

If $U$ is the transition matrix from $\mathcal{B}$ to $\mathcal{E}$, we can just put the following definitions together

$$
U[\mathbf{v}]_{\mathcal{B}}=[\mathbf{v}]_{\mathcal{E}} \quad \text { and } A[\mathbf{v}]_{\mathcal{E}}=[L \mathbf{v}]_{\mathcal{C}}
$$

to get

$$
A U[\mathbf{v}]_{\mathcal{B}}=[L \mathbf{v}]_{\mathcal{C}}
$$

So, we see that $A U$ is the representing matrix for $L$ relative to $\mathcal{B}$ and $\mathcal{C}$. Suppose $W$ has basis $\mathcal{D}$ in addition to $\mathcal{C}$, and that $S$ is the transition matrix from $\mathcal{C}$ to $\mathcal{D}$. Then we have $S[L \mathbf{v}]_{\mathcal{C}}=[L \mathbf{v}]_{\mathcal{D}}$.

If $U$ is the transition matrix from $\mathcal{B}$ to $\mathcal{E}$, we can just put the following definitions together

$$
U[\mathbf{v}]_{\mathcal{B}}=[\mathbf{v}]_{\mathcal{E}} \quad \text { and } \quad A[\mathbf{v}]_{\mathcal{E}}=[L \mathbf{v}]_{\mathcal{C}}
$$

to get

$$
A U[\mathbf{v}]_{\mathcal{B}}=[L \mathbf{v}]_{\mathcal{C}} .
$$

So, we see that $A U$ is the representing matrix for $L$ relative to $\mathcal{B}$ and $\mathcal{C}$. Suppose $W$ has basis $\mathcal{D}$ in addition to $\mathcal{C}$, and that $S$ is the transition matrix from $\mathcal{C}$ to $\mathcal{D}$. Then we have $S[L \mathbf{v}]_{\mathcal{C}}=[L \mathbf{v}]_{\mathcal{D}}$.

Multiplying $A[\mathbf{v}]_{\mathcal{E}}=[L \mathbf{v}]_{\mathcal{C}}$ by $S$ gives $S A[\mathbf{v}]_{\mathcal{E}}=S[L \mathbf{v}]_{\mathcal{C}}=[L \mathbf{v}]_{\mathcal{D}}$ we get that $S A$ is the representing matrix relative to $\mathcal{E}$ and $\mathcal{D}$.

If $U$ is the transition matrix from $\mathcal{B}$ to $\mathcal{E}$, we can just put the following definitions together

$$
U[\mathbf{v}]_{\mathcal{B}}=[\mathbf{v}]_{\mathcal{E}} \quad \text { and } \quad A[\mathbf{v}]_{\mathcal{E}}=[L \mathbf{v}]_{\mathcal{C}}
$$

to get

$$
A U[\mathbf{v}]_{\mathcal{B}}=[L \mathbf{v}]_{\mathcal{C}} .
$$

So, we see that $A U$ is the representing matrix for $L$ relative to $\mathcal{B}$ and $\mathcal{C}$. Suppose $W$ has basis $\mathcal{D}$ in addition to $\mathcal{C}$, and that $S$ is the transition matrix from $\mathcal{C}$ to $\mathcal{D}$. Then we have $S[L \mathbf{v}]_{\mathcal{C}}=[L \mathbf{v}]_{\mathcal{D}}$.

$$
\text { Multiplying } A[\mathbf{v}]_{\mathcal{E}}=[L \mathbf{v}]_{\mathcal{C}} \text { by } S \text { gives } S A[\mathbf{v}]_{\mathcal{E}}=S[L \mathbf{v}]_{\mathcal{C}}=[L \mathbf{v}]_{\mathcal{D}}
$$

we get that $S A$ is the representing matrix relative to $\mathcal{E}$ and $\mathcal{D}$. Similarly, multiplying $A U[\mathbf{v}]_{\mathcal{B}}=[L \mathbf{v}]_{\mathcal{C}}$ by $S$ shows that $S A U$ is the matrix representing $L$ relative to $\mathcal{B}$ and $\mathcal{D}$.

Lets take our example from chapter 1: $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
L\binom{x_{1}}{x_{2}}=\binom{0.7 x_{1}+0.2 x_{2}}{0.3 x_{1}+0.8 x_{2}}=
$$

Lets take our example from chapter 1: $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
L\binom{x_{1}}{x_{2}}=\binom{0.7 x_{1}+0.2 x_{2}}{0.3 x_{1}+0.8 x_{2}}=
$$

This is a matrix transformation since $L(\mathbf{x})=\left(\begin{array}{cc}0.7 & 0.2 \\ 0.3 & 0.8\end{array}\right) \mathbf{x}$.

Lets take our example from chapter 1: $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
L\binom{x_{1}}{x_{2}}=\binom{0.7 x_{1}+0.2 x_{2}}{0.3 x_{1}+0.8 x_{2}}=
$$

This is a matrix transformation since $L(\mathbf{x})=\left(\begin{array}{ll}0.7 & 0.2 \\ 0.3 & 0.8\end{array}\right) \mathbf{x}$. Since a vector in $\mathbb{R}^{n}$ is its own coordinate vector relative to the standard basis $\mathcal{E}$, we can also view this as the representing matrix relative to the bases $\mathcal{E}$ and $\mathcal{E}$.

Lets take our example from chapter 1: $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
L\binom{x_{1}}{x_{2}}=\binom{0.7 x_{1}+0.2 x_{2}}{0.3 x_{1}+0.8 x_{2}}=
$$

This is a matrix transformation since $L(\mathbf{x})=\left(\begin{array}{ll}0.7 & 0.2 \\ 0.3 & 0.8\end{array}\right) \mathbf{x}$. Since a vector in $\mathbb{R}^{n}$ is its own coordinate vector relative to the standard basis $\mathcal{E}$, we can also view this as the representing matrix relative to the bases $\mathcal{E}$ and $\mathcal{E}$.
Now consider our example basis

$$
\mathcal{B}=\left[\mathbf{v}_{1}=\binom{1}{-1}, \mathbf{v}_{2}=\binom{2}{3}\right]
$$

Since

$$
L \mathbf{v}_{1}=(1 / 2) \mathbf{v}_{1}+0 \mathbf{v}_{2} \text { and } L \mathbf{v}_{2}=0 \mathbf{v}_{1}+1 \mathbf{v}_{2}
$$

Lets take our example from chapter 1: $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
L\binom{x_{1}}{x_{2}}=\binom{0.7 x_{1}+0.2 x_{2}}{0.3 x_{1}+0.8 x_{2}}=
$$

This is a matrix transformation since $L(\mathbf{x})=\left(\begin{array}{cc}0.7 & 0.2 \\ 0.3 & 0.8\end{array}\right) \mathbf{x}$. Since a vector in $\mathbb{R}^{n}$ is its own coordinate vector relative to the standard basis $\mathcal{E}$, we can also view this as the representing matrix relative to the bases $\mathcal{E}$ and $\mathcal{E}$.
Now consider our example basis

$$
\mathcal{B}=\left[\mathbf{v}_{1}=\binom{1}{-1}, \mathbf{v}_{2}=\binom{2}{3}\right]
$$

Since

$$
L \mathbf{v}_{1}=(1 / 2) \mathbf{v}_{1}+0 \mathbf{v}_{2} \text { and } L \mathbf{v}_{2}=0 \mathbf{v}_{1}+1 \mathbf{v}_{2}
$$

we have

$$
\left[L \mathbf{v}_{1}\right]_{\mathcal{B}}=\binom{1 / 2}{0} \quad \text { and }\left[L \mathbf{v}_{2}\right]_{\mathcal{B}}=\binom{0}{1}
$$

and so the representing matrix for $L$ relative to $\mathcal{B}$ and $\mathcal{B}$ is

$$
D=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right)
$$

and so the representing matrix for $L$ relative to $\mathcal{B}$ and $\mathcal{B}$ is

$$
D=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right)
$$

To complete the example, note that the transition matrix from $\mathcal{B}$ to $\mathcal{E}$ is

$$
S=\left(\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right)
$$

while the transition matrix from $\mathcal{E}$ to $\mathcal{B}$ is

$$
S^{-1}=\left(\begin{array}{rr}
3 / 5 & -2 / 5 \\
1 / 5 & 1 / 5
\end{array}\right)
$$

and so the representing matrix for $L$ relative to $\mathcal{B}$ and $\mathcal{B}$ is

$$
D=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right)
$$

To complete the example, note that the transition matrix from $\mathcal{B}$ to $\mathcal{E}$ is

$$
S=\left(\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right)
$$

while the transition matrix from $\mathcal{E}$ to $\mathcal{B}$ is

$$
S^{-1}=\left(\begin{array}{rr}
3 / 5 & -2 / 5 \\
1 / 5 & 1 / 5
\end{array}\right)
$$

We see that

$$
D=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right)=S^{-1} A S
$$

and so the representing matrix for $L$ relative to $\mathcal{B}$ and $\mathcal{B}$ is

$$
D=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right)
$$

To complete the example, note that the transition matrix from $\mathcal{B}$ to $\mathcal{E}$ is

$$
S=\left(\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right)
$$

while the transition matrix from $\mathcal{E}$ to $\mathcal{B}$ is

$$
S^{-1}=\left(\begin{array}{rr}
3 / 5 & -2 / 5 \\
1 / 5 & 1 / 5
\end{array}\right)
$$

We see that

$$
D=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right)=S^{-1} A S
$$

Schematically, the representing matrix relative to $\mathcal{B}$ and $\mathcal{B}$ comes from

$$
\mathcal{B} \xrightarrow{\text { transition matrix } S} \mathcal{E} \xrightarrow{\text { representing matrix } A} \mathcal{E} \xrightarrow{\text { transition matrix } S^{-1}} \mathcal{B}
$$

## Properties of representing matrices

## Definition

We say that a linear transformation $L: V \rightarrow W$ is invertible if there is another linear transformation $T: W \rightarrow V$ that satisfies $T(L(\mathbf{v}))=\mathbf{v}$ and $L(T(\mathbf{w}))=\mathbf{w}$ for every $\mathbf{v} \in V$ and $\mathbf{w} \in W$. We write $T=L^{-1}$.

## Properties of representing matrices

## Definition

We say that a linear transformation $L: V \rightarrow W$ is invertible if there is another linear transformation $T: W \rightarrow V$ that satisfies $T(L(\mathbf{v}))=\mathbf{v}$ and $L(T(\mathbf{w}))=\mathbf{w}$ for every $\mathbf{v} \in V$ and $\mathbf{w} \in W$. We write $T=L^{-1}$.

By the same definition $T$ is invertible and $L=T^{-1}$.
If $L$ is invertible and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$ is an independent set, then so is $\left\{L \mathbf{v}_{1}, \ldots, L \mathbf{v}_{m}\right\}$.

## Properties of representing matrices

## Definition

We say that a linear transformation $L: V \rightarrow W$ is invertible if there is another linear transformation $T: W \rightarrow V$ that satisfies $T(L(\mathbf{v}))=\mathbf{v}$ and $L(T(\mathbf{w}))=\mathbf{w}$ for every $\mathbf{v} \in V$ and $\mathbf{w} \in W$. We write $T=L^{-1}$.

By the same definition $T$ is invertible and $L=T^{-1}$.
If $L$ is invertible and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$ is an independent set, then so is $\left\{L \mathbf{v}_{1}, \ldots, L \mathbf{v}_{m}\right\}$. Also, if $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$ is a spanning set in $V$, then $\left\{L \mathbf{v}_{1}, \ldots, L \mathbf{v}_{m}\right\}$ is a spanning set in $W$.

## Properties of representing matrices

## Definition

We say that a linear transformation $L: V \rightarrow W$ is invertible if there is another linear transformation $T: W \rightarrow V$ that satisfies $T(L(\mathbf{v}))=\mathbf{v}$ and $L(T(\mathbf{w}))=\mathbf{w}$ for every $\mathbf{v} \in V$ and $\mathbf{w} \in W$. We write $T=L^{-1}$.

By the same definition $T$ is invertible and $L=T^{-1}$.
If $L$ is invertible and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$ is an independent set, then so is $\left\{L \mathbf{v}_{1}, \ldots, L \mathbf{v}_{m}\right\}$. Also, if $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$ is a spanning set in $V$, then $\left\{L \mathbf{v}_{1}, \ldots, L \mathbf{v}_{m}\right\}$ is a spanning set in $W$.
Let $\mathcal{B}=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right]$ be a basis for $V$ and $\mathcal{C}=\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right]$ a basis for $W$. Let $A$ be the representing matrix for $L: V \rightarrow W$ relative to $\mathcal{B}$ and $\mathcal{C}$.

## Then

1. The transformation $S \mathbf{x}=\sum_{j=1}^{k} x_{j} \mathbf{v}_{j}$ (from $\mathbb{R}^{k}$ to $V$ ), is invertible with $S(\mathcal{N}(A))=\operatorname{ker}(L)$ and $S^{-1}(\operatorname{ker}(L))=\mathcal{N}(A)$. Thus, the dimension of $\operatorname{ker}(L)$ is the nullity of $A$.

## Then

1. The transformation $S \mathbf{x}=\sum_{j=1}^{k} x_{j} \mathbf{v}_{j}$ (from $\mathbb{R}^{k}$ to $V$ ), is invertible with $S(\mathcal{N}(A))=\operatorname{ker}(L)$ and $S^{-1}(\operatorname{ker}(L))=\mathcal{N}(A)$. Thus, the dimension of $\operatorname{ker}(L)$ is the nullity of $A$.
2. The transformation $T \mathbf{w}=[\mathbf{w}]_{\mathcal{C}}$ (from $W$ to $\mathbb{R}^{n}$ ) is invertible. $T(L(V))$ is the column space of $A$ and the image of the column space by $T^{-1}$ is $L(V)$. Thus, the dimension of $L(V)$ is the rank of $A$.

## Then

1. The transformation $S \mathbf{x}=\sum_{j=1}^{k} x_{j} \mathbf{v}_{j}$ (from $\mathbb{R}^{k}$ to $V$ ), is invertible with $S(\mathcal{N}(A))=\operatorname{ker}(L)$ and $S^{-1}(\operatorname{ker}(L))=\mathcal{N}(A)$. Thus, the dimension of $\operatorname{ker}(L)$ is the nullity of $A$.
2. The transformation $T \mathbf{w}=[\mathbf{w}]_{\mathcal{C}}$ (from $W$ to $\mathbb{R}^{n}$ ) is invertible. $T(L(V))$ is the column space of $A$ and the image of the column space by $T^{-1}$ is $L(V)$. Thus, the dimension of $L(V)$ is the rank of $A$.
3. The linear transformation $L$ is invertible if and only if $V$ and $W$ have the same dimension and the representing matrix of $L$ is invertible.

## Then

1. The transformation $S \mathbf{x}=\sum_{j=1}^{k} x_{j} \mathbf{v}_{j}$ (from $\mathbb{R}^{k}$ to $V$ ), is invertible with $S(\mathcal{N}(A))=\operatorname{ker}(L)$ and $S^{-1}(\operatorname{ker}(L))=\mathcal{N}(A)$. Thus, the dimension of $\operatorname{ker}(L)$ is the nullity of $A$.
2. The transformation $T \mathbf{w}=[\mathbf{w}]_{\mathcal{C}}$ (from $W$ to $\mathbb{R}^{n}$ ) is invertible. $T(L(V))$ is the column space of $A$ and the image of the column space by $T^{-1}$ is $L(V)$. Thus, the dimension of $L(V)$ is the rank of $A$.
3. The linear transformation $L$ is invertible if and only if $V$ and $W$ have the same dimension and the representing matrix of $L$ is invertible.

Let $L$ and $T$ be linear transformations from $V$ to $W$ and let $A$ and $B$ be their representing matrices relative to the same bases $\mathcal{B}$ and $\mathcal{C}$. Then the representing matrix for $L+T$ is $A+B$.

## Then

1. The transformation $S \mathbf{x}=\sum_{j=1}^{k} x_{j} \mathbf{v}_{j}$ (from $\mathbb{R}^{k}$ to $V$ ), is invertible with $S(\mathcal{N}(A))=\operatorname{ker}(L)$ and $S^{-1}(\operatorname{ker}(L))=\mathcal{N}(A)$. Thus, the dimension of $\operatorname{ker}(L)$ is the nullity of $A$.
2. The transformation $T \mathbf{w}=[\mathbf{w}]_{\mathcal{C}}$ (from $W$ to $\mathbb{R}^{n}$ ) is invertible. $T(L(V))$ is the column space of $A$ and the image of the column space by $T^{-1}$ is $L(V)$. Thus, the dimension of $L(V)$ is the rank of $A$.
3. The linear transformation $L$ is invertible if and only if $V$ and $W$ have the same dimension and the representing matrix of $L$ is invertible.

Let $L$ and $T$ be linear transformations from $V$ to $W$ and let $A$ and $B$ be their representing matrices relative to the same bases $\mathcal{B}$ and $\mathcal{C}$. Then the representing matrix for $L+T$ is $A+B$.
Let $L: V \rightarrow W$ and $T: W \rightarrow X$ be linear transformations and Let $\mathcal{B}, \mathcal{C}$ and $\mathcal{D}$ be bases for $V, W$, and $X$.

Then

1. The transformation $S \mathbf{x}=\sum_{j=1}^{k} x_{j} \mathbf{v}_{j}$ (from $\mathbb{R}^{k}$ to $V$ ), is invertible with $S(\mathcal{N}(A))=\operatorname{ker}(L)$ and $S^{-1}(\operatorname{ker}(L))=\mathcal{N}(A)$. Thus, the dimension of $\operatorname{ker}(L)$ is the nullity of $A$.
2. The transformation $T \mathbf{w}=[\mathbf{w}]_{\mathcal{C}}$ (from $W$ to $\mathbb{R}^{n}$ ) is invertible. $T(L(V))$ is the column space of $A$ and the image of the column space by $T^{-1}$ is $L(V)$. Thus, the dimension of $L(V)$ is the rank of $A$.
3. The linear transformation $L$ is invertible if and only if $V$ and $W$ have the same dimension and the representing matrix of $L$ is invertible.

Let $L$ and $T$ be linear transformations from $V$ to $W$ and let $A$ and $B$ be their representing matrices relative to the same bases $\mathcal{B}$ and $\mathcal{C}$. Then the representing matrix for $L+T$ is $A+B$.
Let $L: V \rightarrow W$ and $T: W \rightarrow X$ be linear transformations and Let $\mathcal{B}, \mathcal{C}$ and $\mathcal{D}$ be bases for $V, W$, and $X$. If $A$ is the representing matrix for $L$ with respect to $\mathcal{B}$ and $\mathcal{C}$, and $B$ is the representing matrix for $T$ with respect to $\mathcal{C}$ and $\mathcal{D}$, then $B A$ is the representing matrix for $T L$ with respect to $\mathcal{B}$ and $\mathcal{D}$.

Then

1. The transformation $S \mathbf{x}=\sum_{j=1}^{k} x_{j} \mathbf{v}_{j}$ (from $\mathbb{R}^{k}$ to $V$ ), is invertible with $S(\mathcal{N}(A))=\operatorname{ker}(L)$ and $S^{-1}(\operatorname{ker}(L))=\mathcal{N}(A)$. Thus, the dimension of $\operatorname{ker}(L)$ is the nullity of $A$.
2. The transformation $T \mathbf{w}=[\mathbf{w}]_{\mathcal{C}}$ (from $W$ to $\mathbb{R}^{n}$ ) is invertible. $T(L(V))$ is the column space of $A$ and the image of the column space by $T^{-1}$ is $L(V)$. Thus, the dimension of $L(V)$ is the rank of $A$.
3. The linear transformation $L$ is invertible if and only if $V$ and $W$ have the same dimension and the representing matrix of $L$ is invertible.

Let $L$ and $T$ be linear transformations from $V$ to $W$ and let $A$ and $B$ be their representing matrices relative to the same bases $\mathcal{B}$ and $\mathcal{C}$. Then the representing matrix for $L+T$ is $A+B$.
Let $L: V \rightarrow W$ and $T: W \rightarrow X$ be linear transformations and Let $\mathcal{B}, \mathcal{C}$ and $\mathcal{D}$ be bases for $V, W$, and $X$. If $A$ is the representing matrix for $L$ with respect to $\mathcal{B}$ and $\mathcal{C}$, and $B$ is the representing matrix for $T$ with respect to $\mathcal{C}$ and $\mathcal{D}$, then $B A$ is the representing matrix for $T L$ with respect to $\mathcal{B}$ and $\mathcal{D}$.

## Similarity

We have just seen an example where two representing matrices $A$ and $D$ satisfy $D=S^{-1} A S$.

## Similarity

We have just seen an example where two representing matrices $A$ and $D$ satisfy $D=S^{-1} A S . S$ is the transition matrix from $\mathcal{B}$ to $\mathcal{E}$ and its inverse is the transition matrix from $\mathcal{E}$ to $\mathcal{B}$.

## Similarity

We have just seen an example where two representing matrices $A$ and $D$ satisfy $D=S^{-1} A S . S$ is the transition matrix from $\mathcal{B}$ to $\mathcal{E}$ and its inverse is the transition matrix from $\mathcal{E}$ to $\mathcal{B}$.
This sort of thing happens all the time so there is a name for it:

## Definition

If $A$ and $B$ are square matrices, we say the $B$ similar to $A$ if there is an invertible matrix $S$ such that $B=S^{-1} A S$.

## Similarity

We have just seen an example where two representing matrices $A$ and $D$ satisfy $D=S^{-1} A S . S$ is the transition matrix from $\mathcal{B}$ to $\mathcal{E}$ and its inverse is the transition matrix from $\mathcal{E}$ to $\mathcal{B}$.
This sort of thing happens all the time so there is a name for it:

## Definition

If $A$ and $B$ are square matrices, we say the $B$ similar to $A$ if there is an invertible matrix $S$ such that $B=S^{-1} A S$.

Note that if $T=S^{-1}$ then $T$ is invertible with $T^{-1}=S$.

## Similarity

We have just seen an example where two representing matrices $A$ and $D$ satisfy $D=S^{-1} A S . S$ is the transition matrix from $\mathcal{B}$ to $\mathcal{E}$ and its inverse is the transition matrix from $\mathcal{E}$ to $\mathcal{B}$.
This sort of thing happens all the time so there is a name for it:

## Definition

If $A$ and $B$ are square matrices, we say the $B$ similar to $A$ if there is an invertible matrix $S$ such that $B=S^{-1} A S$.

Note that if $T=S^{-1}$ then $T$ is invertible with $T^{-1}=S$. Moreover, $A=T^{-1} B T$. Thus, if $B$ is similar to $A$ then $A$ is similar to $B$.

## Similarity

We have just seen an example where two representing matrices $A$ and $D$ satisfy $D=S^{-1} A S . S$ is the transition matrix from $\mathcal{B}$ to $\mathcal{E}$ and its inverse is the transition matrix from $\mathcal{E}$ to $\mathcal{B}$.
This sort of thing happens all the time so there is a name for it:

## Definition

If $A$ and $B$ are square matrices, we say the $B$ similar to $A$ if there is an invertible matrix $S$ such that $B=S^{-1} A S$.

Note that if $T=S^{-1}$ then $T$ is invertible with $T^{-1}=S$. Moreover, $A=T^{-1} B T$. Thus, if $B$ is similar to $A$ then $A$ is similar to $B$.
If $S$ is an $n \times n$ invertible matrix then its columns form a basis $\mathcal{B}$ for $\mathbb{R}^{n}$. $S$ is the transition matrix from $\mathcal{B}$ to $\mathcal{E}$.

## Similarity

We have just seen an example where two representing matrices $A$ and $D$ satisfy $D=S^{-1} A S . S$ is the transition matrix from $\mathcal{B}$ to $\mathcal{E}$ and its inverse is the transition matrix from $\mathcal{E}$ to $\mathcal{B}$.
This sort of thing happens all the time so there is a name for it:

## Definition

If $A$ and $B$ are square matrices, we say the $B$ similar to $A$ if there is an invertible matrix $S$ such that $B=S^{-1} A S$.

Note that if $T=S^{-1}$ then $T$ is invertible with $T^{-1}=S$. Moreover, $A=T^{-1} B T$. Thus, if $B$ is similar to $A$ then $A$ is similar to $B$.
If $S$ is an $n \times n$ invertible matrix then its columns form a basis $\mathcal{B}$ for $\mathbb{R}^{n}$. $S$ is the transition matrix from $\mathcal{B}$ to $\mathcal{E}$. If $A$ is any $n \times n$ matrix, then it is the representing matrix relative to $\mathcal{E}$ and $\mathcal{E}$ for the linear transformation $L(\mathbf{x})=A \mathbf{x}$.

## Similarity

We have just seen an example where two representing matrices $A$ and $D$ satisfy $D=S^{-1} A S . S$ is the transition matrix from $\mathcal{B}$ to $\mathcal{E}$ and its inverse is the transition matrix from $\mathcal{E}$ to $\mathcal{B}$.
This sort of thing happens all the time so there is a name for it:

## Definition

If $A$ and $B$ are square matrices, we say the $B$ similar to $A$ if there is an invertible matrix $S$ such that $B=S^{-1} A S$.

Note that if $T=S^{-1}$ then $T$ is invertible with $T^{-1}=S$. Moreover, $A=T^{-1} B T$. Thus, if $B$ is similar to $A$ then $A$ is similar to $B$.
If $S$ is an $n \times n$ invertible matrix then its columns form a basis $\mathcal{B}$ for $\mathbb{R}^{n}$. $S$ is the transition matrix from $\mathcal{B}$ to $\mathcal{E}$. If $A$ is any $n \times n$ matrix, then it is the representing matrix relative to $\mathcal{E}$ and $\mathcal{E}$ for the linear transformation $L(\mathbf{x})=A \mathbf{x}$. Thus, if $B$ is similar to $A: B=S^{-1} A S$, then $B$ is the representing matrix for the same $L$, but relative to $\mathcal{B}$.

## Similarity

We have just seen an example where two representing matrices $A$ and $D$ satisfy $D=S^{-1} A S . S$ is the transition matrix from $\mathcal{B}$ to $\mathcal{E}$ and its inverse is the transition matrix from $\mathcal{E}$ to $\mathcal{B}$.
This sort of thing happens all the time so there is a name for it:

## Definition

If $A$ and $B$ are square matrices, we say the $B$ similar to $A$ if there is an invertible matrix $S$ such that $B=S^{-1} A S$.

Note that if $T=S^{-1}$ then $T$ is invertible with $T^{-1}=S$. Moreover, $A=T^{-1} B T$. Thus, if $B$ is similar to $A$ then $A$ is similar to $B$.
If $S$ is an $n \times n$ invertible matrix then its columns form a basis $\mathcal{B}$ for $\mathbb{R}^{n}$. $S$ is the transition matrix from $\mathcal{B}$ to $\mathcal{E}$. If $A$ is any $n \times n$ matrix, then it is the representing matrix relative to $\mathcal{E}$ and $\mathcal{E}$ for the linear transformation $L(\mathbf{x})=A \mathbf{x}$. Thus, if $B$ is similar to $A: B=S^{-1} A S$, then $B$ is the representing matrix for the same $L$, but relative to $\mathcal{B}$.
So, two matrices are similar if and ony if they are representing matrices for the same linear tansformation, but different bases..

