Linear Transformations

D. H. Luecking

08 March 2024

Another example involving \mathcal{P}_3 , but with a different basis (and a different range).

Another example involving \mathcal{P}_3 , but with a different basis (and a different range). Let $\mathcal{B} = [(x-1)^2, x^2, (x+1)^2]$ and \mathcal{E} the standard basis for \mathbb{R}^3 .

$$T(p(x)) = \left(\begin{array}{c} p(1)\\ p(2)\\ p(3) \end{array}\right)$$

$$T(p(x)) = \left(\begin{array}{c} p(1)\\ p(2)\\ p(3) \end{array}\right)$$

Find the matrix A that represents T relative to the bases \mathcal{B} and \mathcal{E} .

$$T(p(x)) = \left(\begin{array}{c} p(1)\\ p(2)\\ p(3) \end{array}\right)$$

Find the matrix A that represents T relative to the bases \mathcal{B} and \mathcal{E} . We need to find

$$T((x-1)^2) = \begin{pmatrix} 0\\1\\4 \end{pmatrix}, \ T(x^2) = \begin{pmatrix} 1\\4\\9 \end{pmatrix}, \ \text{and} \ T((x+1)^2) = \begin{pmatrix} 4\\9\\16 \end{pmatrix}$$

$$T(p(x)) = \left(\begin{array}{c} p(1)\\ p(2)\\ p(3) \end{array}\right)$$

Find the matrix A that represents T relative to the bases \mathcal{B} and \mathcal{E} . We need to find

$$T((x-1)^2) = \begin{pmatrix} 0\\1\\4 \end{pmatrix}, \quad T(x^2) = \begin{pmatrix} 1\\4\\9 \end{pmatrix}, \text{ and } T((x+1)^2) = \begin{pmatrix} 4\\9\\16 \end{pmatrix}$$

Column vectors in \mathbb{R}^n are already coordinate vectors relative to the standard basis, so we only have to put these columns into a matrix:

$$T(p(x)) = \left(\begin{array}{c} p(1)\\ p(2)\\ p(3) \end{array}\right)$$

Find the matrix A that represents T relative to the bases \mathcal{B} and \mathcal{E} . We need to find

$$T((x-1)^2) = \begin{pmatrix} 0\\1\\4 \end{pmatrix}, \quad T(x^2) = \begin{pmatrix} 1\\4\\9 \end{pmatrix}, \text{ and } T((x+1)^2) = \begin{pmatrix} 4\\9\\16 \end{pmatrix}$$

Column vectors in \mathbb{R}^n are already coordinate vectors relative to the standard basis, so we only have to put these columns into a matrix:

$$A = \left(\begin{array}{rrrr} 0 & 1 & 4 \\ 1 & 4 & 9 \\ 4 & 9 & 16 \end{array}\right)$$

Recall what this means: If we have a linear combination of the basis vectors (say $p(x) = -(x-1)^2 + 2x^2 - (x+1)^2$) we need only multiply the coordinates by A to get L(p(x)):

$$\begin{pmatrix} p(1) \\ p(2) \\ p(3) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 4 \\ 1 & 4 & 9 \\ 4 & 9 & 16 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \\ -2 \end{pmatrix}$$

Recall what this means: If we have a linear combination of the basis vectors (say $p(x) = -(x-1)^2 + 2x^2 - (x+1)^2$) we need only multiply the coordinates by A to get L(p(x)):

$$\begin{pmatrix} p(1) \\ p(2) \\ p(3) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 4 \\ 1 & 4 & 9 \\ 4 & 9 & 16 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \\ -2 \end{pmatrix}$$

While it doesn't seem this is much easier than plugging 1, 2 and 3 into p(x), there can be an advantage if the degrees are higher.

Recall what this means: If we have a linear combination of the basis vectors (say $p(x) = -(x-1)^2 + 2x^2 - (x+1)^2$) we need only multiply the coordinates by A to get L(p(x)):

$$\begin{pmatrix} p(1) \\ p(2) \\ p(3) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 4 \\ 1 & 4 & 9 \\ 4 & 9 & 16 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \\ -2 \end{pmatrix}$$

While it doesn't seem this is much easier than plugging 1, 2 and 3 into p(x), there can be an advantage if the degrees are higher.

Matrix multiplication never involves anything except adding simple products, while evaluating a polynomial can involve rather large powers.

The identity transformation from V to V has the identity matrix as its representing matrix *provided that the same basis is used for both instances of* V.

The identity transformation from V to V has the identity matrix as its representing matrix *provided that the same basis is used for both instances of* V.

Suppose we have a basis \mathcal{B} for V (in the 'from' role) and a basis \mathcal{C} for V (in the 'to' role).

The identity transformation from V to V has the identity matrix as its representing matrix *provided that the same basis is used for both instances of* V.

Suppose we have a basis \mathcal{B} for V (in the 'from' role) and a basis \mathcal{C} for V (in the 'to' role). Then the representing matrix must satisfy

$$A[\mathbf{v}]_{\mathcal{B}} = [I\mathbf{v}]_{\mathcal{C}} = [\mathbf{v}]_{\mathcal{C}}$$

The identity transformation from V to V has the identity matrix as its representing matrix *provided that the same basis is used for both instances of* V.

Suppose we have a basis \mathcal{B} for V (in the 'from' role) and a basis \mathcal{C} for V (in the 'to' role). Then the representing matrix must satisfy

$$A[\mathbf{v}]_{\mathcal{B}} = [I\mathbf{v}]_{\mathcal{C}} = [\mathbf{v}]_{\mathcal{C}}$$

That is, the transition (change of basis) matrix from \mathcal{B} to \mathcal{C} is the same as the representing matrix for the identity transformation.

The identity transformation from V to V has the identity matrix as its representing matrix *provided that the same basis is used for both instances of* V.

Suppose we have a basis \mathcal{B} for V (in the 'from' role) and a basis \mathcal{C} for V (in the 'to' role). Then the representing matrix must satisfy

$$A[\mathbf{v}]_{\mathcal{B}} = [I\mathbf{v}]_{\mathcal{C}} = [\mathbf{v}]_{\mathcal{C}}$$

That is, the transition (change of basis) matrix from \mathcal{B} to \mathcal{C} is the same as the representing matrix for the identity transformation.

Suppose we have 2 bases \mathcal{B} and \mathcal{E} in V and a basis \mathcal{C} in W.

The identity transformation from V to V has the identity matrix as its representing matrix *provided that the same basis is used for both instances of* V.

Suppose we have a basis \mathcal{B} for V (in the 'from' role) and a basis \mathcal{C} for V (in the 'to' role). Then the representing matrix must satisfy

$$A[\mathbf{v}]_{\mathcal{B}} = [I\mathbf{v}]_{\mathcal{C}} = [\mathbf{v}]_{\mathcal{C}}$$

That is, the transition (change of basis) matrix from \mathcal{B} to \mathcal{C} is the same as the representing matrix for the identity transformation.

Suppose we have 2 bases \mathcal{B} and \mathcal{E} in V and a basis \mathcal{C} in W. Suppose A is the representing matrix for $L: V \to W$ relative to \mathcal{E} and \mathcal{C} . What is the representing matrix for L relative to \mathcal{B} and \mathcal{C} ?

$$U[\mathbf{v}]_{\mathcal{B}} = [\mathbf{v}]_{\mathcal{E}}$$
 and $A[\mathbf{v}]_{\mathcal{E}} = [L\mathbf{v}]_{\mathcal{C}}$

to get

$$AU[\mathbf{v}]_{\mathcal{B}} = [L\mathbf{v}]_{\mathcal{C}}.$$

$$U[\mathbf{v}]_{\mathcal{B}} = [\mathbf{v}]_{\mathcal{E}}$$
 and $A[\mathbf{v}]_{\mathcal{E}} = [L\mathbf{v}]_{\mathcal{C}}$

to get

$$AU[\mathbf{v}]_{\mathcal{B}} = [L\mathbf{v}]_{\mathcal{C}}.$$

So, we see that AU is the representing matrix for L relative to \mathcal{B} and \mathcal{C} .

$$U[\mathbf{v}]_{\mathcal{B}} = [\mathbf{v}]_{\mathcal{E}}$$
 and $A[\mathbf{v}]_{\mathcal{E}} = [L\mathbf{v}]_{\mathcal{C}}$

to get

$$AU[\mathbf{v}]_{\mathcal{B}} = [L\mathbf{v}]_{\mathcal{C}}.$$

So, we see that AU is the representing matrix for L relative to \mathcal{B} and \mathcal{C} . Suppose W has basis \mathcal{D} in addition to \mathcal{C} , and that S is the transition matrix from \mathcal{C} to \mathcal{D} . Then we have $S[L\mathbf{v}]_{\mathcal{C}} = [L\mathbf{v}]_{\mathcal{D}}$.

$$U[\mathbf{v}]_{\mathcal{B}} = [\mathbf{v}]_{\mathcal{E}}$$
 and $A[\mathbf{v}]_{\mathcal{E}} = [L\mathbf{v}]_{\mathcal{C}}$

to get

$$AU[\mathbf{v}]_{\mathcal{B}} = [L\mathbf{v}]_{\mathcal{C}}.$$

So, we see that AU is the representing matrix for L relative to \mathcal{B} and \mathcal{C} . Suppose W has basis \mathcal{D} in addition to \mathcal{C} , and that S is the transition matrix from \mathcal{C} to \mathcal{D} . Then we have $S[L\mathbf{v}]_{\mathcal{C}} = [L\mathbf{v}]_{\mathcal{D}}$.

Multiplying
$$A[\mathbf{v}]_{\mathcal{E}} = [L\mathbf{v}]_{\mathcal{C}}$$
 by S gives $SA[\mathbf{v}]_{\mathcal{E}} = S[L\mathbf{v}]_{\mathcal{C}} = [L\mathbf{v}]_{\mathcal{D}}$

we get that SA is the representing matrix relative to \mathcal{E} and \mathcal{D} .

$$U[\mathbf{v}]_{\mathcal{B}} = [\mathbf{v}]_{\mathcal{E}}$$
 and $A[\mathbf{v}]_{\mathcal{E}} = [L\mathbf{v}]_{\mathcal{C}}$

to get

$$AU[\mathbf{v}]_{\mathcal{B}} = [L\mathbf{v}]_{\mathcal{C}}.$$

So, we see that AU is the representing matrix for L relative to \mathcal{B} and \mathcal{C} . Suppose W has basis \mathcal{D} in addition to \mathcal{C} , and that S is the transition matrix from \mathcal{C} to \mathcal{D} . Then we have $S[L\mathbf{v}]_{\mathcal{C}} = [L\mathbf{v}]_{\mathcal{D}}$.

Multiplying
$$A[\mathbf{v}]_{\mathcal{E}} = [L\mathbf{v}]_{\mathcal{C}}$$
 by S gives $SA[\mathbf{v}]_{\mathcal{E}} = S[L\mathbf{v}]_{\mathcal{C}} = [L\mathbf{v}]_{\mathcal{D}}$

we get that SA is the representing matrix relative to \mathcal{E} and \mathcal{D} . Similarly, multiplying $AU[\mathbf{v}]_{\mathcal{B}} = [L\mathbf{v}]_{\mathcal{C}}$ by S shows that SAU is the matrix representing L relative to \mathcal{B} and \mathcal{D} .

$$L\left(\begin{array}{c} x_1\\ x_2 \end{array}\right) = \left(\begin{array}{c} 0.7x_1 + 0.2x_2\\ 0.3x_1 + 0.8x_2 \end{array}\right) =$$

$$L\left(\begin{array}{c} x_1\\ x_2 \end{array}\right) = \left(\begin{array}{c} 0.7x_1 + 0.2x_2\\ 0.3x_1 + 0.8x_2 \end{array}\right) =$$

This is a matrix transformation since $L(\mathbf{x}) = \begin{pmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{pmatrix} \mathbf{x}$.

$$L\left(\begin{array}{c} x_1\\ x_2 \end{array}\right) = \left(\begin{array}{c} 0.7x_1 + 0.2x_2\\ 0.3x_1 + 0.8x_2 \end{array}\right) =$$

This is a matrix transformation since $L(\mathbf{x}) = \begin{pmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{pmatrix} \mathbf{x}$. Since a vector in \mathbb{R}^n is its own coordinate vector relative to the standard basis \mathcal{E} , we can also view this as the representing matrix relative to the bases \mathcal{E} and \mathcal{E} .

$$L\left(\begin{array}{c} x_1\\ x_2 \end{array}\right) = \left(\begin{array}{c} 0.7x_1 + 0.2x_2\\ 0.3x_1 + 0.8x_2 \end{array}\right) =$$

This is a matrix transformation since $L(\mathbf{x}) = \begin{pmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{pmatrix} \mathbf{x}$. Since a vector in \mathbb{R}^n is its own coordinate vector relative to the standard basis \mathcal{E} , we can also view this as the representing matrix relative to the bases \mathcal{E} and \mathcal{E} .

Now consider our example basis

$$\mathcal{B} = \begin{bmatrix} \mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \end{bmatrix}, \mathbf{v}_2 = \begin{pmatrix} 2 \\ 3 \end{bmatrix} \end{bmatrix}$$

Since

$$L\mathbf{v}_1=(1/2)\mathbf{v}_1+0\mathbf{v}_2$$
 and $L\mathbf{v}_2=0\mathbf{v}_1+1\mathbf{v}_2$

$$L\left(\begin{array}{c} x_1\\ x_2 \end{array}\right) = \left(\begin{array}{c} 0.7x_1 + 0.2x_2\\ 0.3x_1 + 0.8x_2 \end{array}\right) =$$

This is a matrix transformation since $L(\mathbf{x}) = \begin{pmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{pmatrix} \mathbf{x}$. Since a vector in \mathbb{R}^n is its own coordinate vector relative to the standard basis \mathcal{E} , we can also view this as the representing matrix relative to the bases \mathcal{E} and \mathcal{E} .

Now consider our example basis

$$\mathcal{B} = \begin{bmatrix} \mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \end{bmatrix}, \mathbf{v}_2 = \begin{pmatrix} 2 \\ 3 \end{bmatrix} \end{bmatrix}$$

Since

$$L\mathbf{v}_1=(1/2)\mathbf{v}_1+0\mathbf{v}_2$$
 and $L\mathbf{v}_2=0\mathbf{v}_1+1\mathbf{v}_2$

we have

$$[L\mathbf{v}_1]_{\mathcal{B}} = \left(\begin{array}{c} 1/2\\0\end{array}\right)$$
 and $[L\mathbf{v}_2]_{\mathcal{B}} = \left(\begin{array}{c} 0\\1\end{array}\right)$

and so the representing matrix for L relative to ${\cal B}$ and ${\cal B}$ is

$$D = \left(\begin{array}{cc} 1/2 & 0 \\ 0 & 1 \end{array} \right) \,.$$

and so the representing matrix for L relative to $\mathcal B$ and $\mathcal B$ is

$$D = \left(\begin{array}{cc} 1/2 & 0 \\ 0 & 1 \end{array} \right) \,.$$

To complete the example, note that the transition matrix from ${\mathcal B}$ to ${\mathcal E}$ is

$$S = \left(\begin{array}{rrr} 1 & 2\\ -1 & 3 \end{array}\right)$$

while the transition matrix from ${\mathcal E}$ to ${\mathcal B}$ is

$$S^{-1} = \left(\begin{array}{cc} 3/5 & -2/5\\ 1/5 & 1/5 \end{array}\right)$$

and so the representing matrix for L relative to $\mathcal B$ and $\mathcal B$ is

$$D = \left(\begin{array}{cc} 1/2 & 0 \\ 0 & 1 \end{array} \right) \,.$$

To complete the example, note that the transition matrix from $\mathcal B$ to $\mathcal E$ is

$$S = \left(\begin{array}{rrr} 1 & 2\\ -1 & 3 \end{array}\right)$$

while the transition matrix from ${\mathcal E}$ to ${\mathcal B}$ is

$$S^{-1} = \left(\begin{array}{cc} 3/5 & -2/5\\ 1/5 & 1/5 \end{array}\right)$$

We see that

$$D = \left(\begin{array}{cc} 1/2 & 0\\ 0 & 1 \end{array}\right) = S^{-1}AS$$

and so the representing matrix for L relative to \mathcal{B} and \mathcal{B} is

$$D = \left(\begin{array}{cc} 1/2 & 0\\ 0 & 1 \end{array}\right)$$

To complete the example, note that the transition matrix from $\mathcal B$ to $\mathcal E$ is

$$S = \left(\begin{array}{rrr} 1 & 2\\ -1 & 3 \end{array}\right)$$

while the transition matrix from ${\mathcal E}$ to ${\mathcal B}$ is

$$S^{-1} = \left(\begin{array}{cc} 3/5 & -2/5\\ 1/5 & 1/5 \end{array}\right)$$

We see that

$$D = \left(\begin{array}{cc} 1/2 & 0\\ 0 & 1 \end{array}\right) = S^{-1}AS$$

Schematically, the representing matrix relative to ${\cal B}$ and ${\cal B}$ comes from

$$\mathcal{B} \xrightarrow{\text{transition matrix } S} \mathcal{E} \xrightarrow{\text{representing matrix } A} \mathcal{E} \xrightarrow{\text{transition matrix } S^{-1}} \mathcal{B}$$

Definition

We say that a linear transformation $L: V \to W$ is *invertible* if there is another linear transformation $T: W \to V$ that satisfies $T(L(\mathbf{v})) = \mathbf{v}$ and $L(T(\mathbf{w})) = \mathbf{w}$ for every $\mathbf{v} \in V$ and $\mathbf{w} \in W$. We write $T = L^{-1}$.

Definition

We say that a linear transformation $L: V \to W$ is *invertible* if there is another linear transformation $T: W \to V$ that satisfies $T(L(\mathbf{v})) = \mathbf{v}$ and $L(T(\mathbf{w})) = \mathbf{w}$ for every $\mathbf{v} \in V$ and $\mathbf{w} \in W$. We write $T = L^{-1}$.

By the same definition T is invertible and $L = T^{-1}$.

If L is invertible and $\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ is an independent set, then so is $\{L\mathbf{v}_1, \dots, L\mathbf{v}_m\}$.

Definition

We say that a linear transformation $L: V \to W$ is *invertible* if there is another linear transformation $T: W \to V$ that satisfies $T(L(\mathbf{v})) = \mathbf{v}$ and $L(T(\mathbf{w})) = \mathbf{w}$ for every $\mathbf{v} \in V$ and $\mathbf{w} \in W$. We write $T = L^{-1}$.

By the same definition T is invertible and $L = T^{-1}$.

If L is invertible and $\{\mathbf{v}_1, \ldots, \mathbf{v}_m\}$ is an independent set, then so is $\{L\mathbf{v}_1, \ldots, L\mathbf{v}_m\}$. Also, if $\{\mathbf{v}_1, \ldots, \mathbf{v}_m\}$ is a spanning set in V, then $\{L\mathbf{v}_1, \ldots, L\mathbf{v}_m\}$ is a spanning set in W.

Definition

We say that a linear transformation $L: V \to W$ is *invertible* if there is another linear transformation $T: W \to V$ that satisfies $T(L(\mathbf{v})) = \mathbf{v}$ and $L(T(\mathbf{w})) = \mathbf{w}$ for every $\mathbf{v} \in V$ and $\mathbf{w} \in W$. We write $T = L^{-1}$.

By the same definition T is invertible and $L = T^{-1}$.

If L is invertible and $\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ is an independent set, then so is $\{L\mathbf{v}_1, \dots, L\mathbf{v}_m\}$. Also, if $\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ is a spanning set in V, then $\{L\mathbf{v}_1, \dots, L\mathbf{v}_m\}$ is a spanning set in W.

Let $\mathcal{B} = [\mathbf{v}_1, \dots, \mathbf{v}_k]$ be a basis for V and $\mathcal{C} = [\mathbf{w}_1, \dots, \mathbf{w}_n]$ a basis for W. Let A be the representing matrix for $L: V \to W$ relative to \mathcal{B} and \mathcal{C} . Then

1. The transformation $S\mathbf{x} = \sum_{j=1}^{k} x_j \mathbf{v}_j$ (from \mathbb{R}^k to V), is invertible with $S(\mathcal{N}(A)) = \ker(L)$ and $S^{-1}(\ker(L)) = \mathcal{N}(A)$. Thus, the dimension of $\ker(L)$ is the nullity of A.

- 1. The transformation $S\mathbf{x} = \sum_{j=1}^{k} x_j \mathbf{v}_j$ (from \mathbb{R}^k to V), is invertible with $S(\mathcal{N}(A)) = \ker(L)$ and $S^{-1}(\ker(L)) = \mathcal{N}(A)$. Thus, the dimension of $\ker(L)$ is the nullity of A.
- 2. The transformation $T\mathbf{w} = [\mathbf{w}]_{\mathcal{C}}$ (from W to \mathbb{R}^n) is invertible. T(L(V)) is the column space of A and the image of the column space by T^{-1} is L(V). Thus, the dimension of L(V) is the rank of A.

- 1. The transformation $S\mathbf{x} = \sum_{j=1}^{k} x_j \mathbf{v}_j$ (from \mathbb{R}^k to V), is invertible with $S(\mathcal{N}(A)) = \ker(L)$ and $S^{-1}(\ker(L)) = \mathcal{N}(A)$. Thus, the dimension of $\ker(L)$ is the nullity of A.
- 2. The transformation $T\mathbf{w} = [\mathbf{w}]_{\mathcal{C}}$ (from W to \mathbb{R}^n) is invertible. T(L(V)) is the column space of A and the image of the column space by T^{-1} is L(V). Thus, the dimension of L(V) is the rank of A.
- 3. The linear transformation L is invertible if and only if V and W have the same dimension and the representing matrix of L is invertible.

- 1. The transformation $S\mathbf{x} = \sum_{j=1}^{k} x_j \mathbf{v}_j$ (from \mathbb{R}^k to V), is invertible with $S(\mathcal{N}(A)) = \ker(L)$ and $S^{-1}(\ker(L)) = \mathcal{N}(A)$. Thus, the dimension of $\ker(L)$ is the nullity of A.
- 2. The transformation $T\mathbf{w} = [\mathbf{w}]_{\mathcal{C}}$ (from W to \mathbb{R}^n) is invertible. T(L(V)) is the column space of A and the image of the column space by T^{-1} is L(V). Thus, the dimension of L(V) is the rank of A.
- 3. The linear transformation L is invertible if and only if V and W have the same dimension and the representing matrix of L is invertible.

Let L and T be linear transformations from V to W and let A and B be their representing matrices relative to the same bases \mathcal{B} and \mathcal{C} . Then the representing matrix for L + T is A + B.

- 1. The transformation $S\mathbf{x} = \sum_{j=1}^{k} x_j \mathbf{v}_j$ (from \mathbb{R}^k to V), is invertible with $S(\mathcal{N}(A)) = \ker(L)$ and $S^{-1}(\ker(L)) = \mathcal{N}(A)$. Thus, the dimension of $\ker(L)$ is the nullity of A.
- 2. The transformation $T\mathbf{w} = [\mathbf{w}]_{\mathcal{C}}$ (from W to \mathbb{R}^n) is invertible. T(L(V)) is the column space of A and the image of the column space by T^{-1} is L(V). Thus, the dimension of L(V) is the rank of A.
- 3. The linear transformation L is invertible if and only if V and W have the same dimension and the representing matrix of L is invertible.

Let L and T be linear transformations from V to W and let A and B be their representing matrices relative to the same bases \mathcal{B} and \mathcal{C} . Then the representing matrix for L + T is A + B.

Let $L: V \to W$ and $T: W \to X$ be linear transformations and Let \mathcal{B} , \mathcal{C} and \mathcal{D} be bases for V, W, and X.

- 1. The transformation $S\mathbf{x} = \sum_{j=1}^{k} x_j \mathbf{v}_j$ (from \mathbb{R}^k to V), is invertible with $S(\mathcal{N}(A)) = \ker(L)$ and $S^{-1}(\ker(L)) = \mathcal{N}(A)$. Thus, the dimension of $\ker(L)$ is the nullity of A.
- 2. The transformation $T\mathbf{w} = [\mathbf{w}]_{\mathcal{C}}$ (from W to \mathbb{R}^n) is invertible. T(L(V)) is the column space of A and the image of the column space by T^{-1} is L(V). Thus, the dimension of L(V) is the rank of A.
- 3. The linear transformation L is invertible if and only if V and W have the same dimension and the representing matrix of L is invertible.

Let L and T be linear transformations from V to W and let A and B be their representing matrices relative to the same bases \mathcal{B} and \mathcal{C} . Then the representing matrix for L + T is A + B.

Let $L: V \to W$ and $T: W \to X$ be linear transformations and Let \mathcal{B} , \mathcal{C} and \mathcal{D} be bases for V, W, and X. If A is the representing matrix for Lwith respect to \mathcal{B} and \mathcal{C} , and B is the representing matrix for T with respect to \mathcal{C} and \mathcal{D} , then BA is the representing matrix for TL with respect to \mathcal{B} and \mathcal{D} .

- 1. The transformation $S\mathbf{x} = \sum_{j=1}^{k} x_j \mathbf{v}_j$ (from \mathbb{R}^k to V), is invertible with $S(\mathcal{N}(A)) = \ker(L)$ and $S^{-1}(\ker(L)) = \mathcal{N}(A)$. Thus, the dimension of $\ker(L)$ is the nullity of A.
- 2. The transformation $T\mathbf{w} = [\mathbf{w}]_{\mathcal{C}}$ (from W to \mathbb{R}^n) is invertible. T(L(V)) is the column space of A and the image of the column space by T^{-1} is L(V). Thus, the dimension of L(V) is the rank of A.
- 3. The linear transformation L is invertible if and only if V and W have the same dimension and the representing matrix of L is invertible.

Let L and T be linear transformations from V to W and let A and B be their representing matrices relative to the same bases \mathcal{B} and \mathcal{C} . Then the representing matrix for L + T is A + B.

Let $L: V \to W$ and $T: W \to X$ be linear transformations and Let \mathcal{B} , \mathcal{C} and \mathcal{D} be bases for V, W, and X. If A is the representing matrix for Lwith respect to \mathcal{B} and \mathcal{C} , and B is the representing matrix for T with respect to \mathcal{C} and \mathcal{D} , then BA is the representing matrix for TL with respect to \mathcal{B} and \mathcal{D} .

We have just seen an example where two representing matrices A and D satisfy $D=S^{-1}AS.$

We have just seen an example where two representing matrices A and D satisfy $D = S^{-1}AS$. S is the transition matrix from \mathcal{B} to \mathcal{E} and its inverse is the transition matrix from \mathcal{E} to \mathcal{B} .

We have just seen an example where two representing matrices A and D satisfy $D = S^{-1}AS$. S is the transition matrix from \mathcal{B} to \mathcal{E} and its inverse is the transition matrix from \mathcal{E} to \mathcal{B} .

This sort of thing happens all the time so there is a name for it:

Definition

If A and B are square matrices, we say the B similar to A if there is an invertible matrix S such that $B = S^{-1}AS$.

We have just seen an example where two representing matrices A and D satisfy $D = S^{-1}AS$. S is the transition matrix from \mathcal{B} to \mathcal{E} and its inverse is the transition matrix from \mathcal{E} to \mathcal{B} .

This sort of thing happens all the time so there is a name for it:

Definition

If A and B are square matrices, we say the B similar to A if there is an invertible matrix S such that $B = S^{-1}AS$.

Note that if $T = S^{-1}$ then T is invertible with $T^{-1} = S$.

We have just seen an example where two representing matrices A and D satisfy $D = S^{-1}AS$. S is the transition matrix from \mathcal{B} to \mathcal{E} and its inverse is the transition matrix from \mathcal{E} to \mathcal{B} .

This sort of thing happens all the time so there is a name for it:

Definition

If A and B are square matrices, we say the B similar to A if there is an invertible matrix S such that $B = S^{-1}AS$.

Note that if $T = S^{-1}$ then T is invertible with $T^{-1} = S$. Moreover, $A = T^{-1}BT$. Thus, if B is similar to A then A is similar to B.

We have just seen an example where two representing matrices A and D satisfy $D = S^{-1}AS$. S is the transition matrix from \mathcal{B} to \mathcal{E} and its inverse is the transition matrix from \mathcal{E} to \mathcal{B} .

This sort of thing happens all the time so there is a name for it:

Definition

If A and B are square matrices, we say the B similar to A if there is an invertible matrix S such that $B = S^{-1}AS$.

Note that if $T = S^{-1}$ then T is invertible with $T^{-1} = S$. Moreover, $A = T^{-1}BT$. Thus, if B is similar to A then A is similar to B. If S is an $n \times n$ invertible matrix then its columns form a basis \mathcal{B} for \mathbb{R}^n . S is the transition matrix from \mathcal{B} to \mathcal{E} .

We have just seen an example where two representing matrices A and D satisfy $D = S^{-1}AS$. S is the transition matrix from \mathcal{B} to \mathcal{E} and its inverse is the transition matrix from \mathcal{E} to \mathcal{B} .

This sort of thing happens all the time so there is a name for it:

Definition

If A and B are square matrices, we say the B similar to A if there is an invertible matrix S such that $B = S^{-1}AS$.

Note that if $T = S^{-1}$ then T is invertible with $T^{-1} = S$. Moreover, $A = T^{-1}BT$. Thus, if B is similar to A then A is similar to B. If S is an $n \times n$ invertible matrix then its columns form a basis \mathcal{B} for \mathbb{R}^n . S is the transition matrix from \mathcal{B} to \mathcal{E} . If A is any $n \times n$ matrix, then it is the representing matrix relative to \mathcal{E} and \mathcal{E} for the linear transformation $L(\mathbf{x}) = A\mathbf{x}$.

We have just seen an example where two representing matrices A and D satisfy $D = S^{-1}AS$. S is the transition matrix from \mathcal{B} to \mathcal{E} and its inverse is the transition matrix from \mathcal{E} to \mathcal{B} .

This sort of thing happens all the time so there is a name for it:

Definition

If A and B are square matrices, we say the B similar to A if there is an invertible matrix S such that $B = S^{-1}AS$.

Note that if $T = S^{-1}$ then T is invertible with $T^{-1} = S$. Moreover, $A = T^{-1}BT$. Thus, if B is similar to A then A is similar to B. If S is an $n \times n$ invertible matrix then its columns form a basis \mathcal{B} for \mathbb{R}^n . S is the transition matrix from \mathcal{B} to \mathcal{E} . If A is any $n \times n$ matrix, then it is the representing matrix relative to \mathcal{E} and \mathcal{E} for the linear transformation $L(\mathbf{x}) = A\mathbf{x}$. Thus, if B is similar to A: $B = S^{-1}AS$, then B is the representing matrix for the same L, but relative to \mathcal{B} .

We have just seen an example where two representing matrices A and D satisfy $D = S^{-1}AS$. S is the transition matrix from \mathcal{B} to \mathcal{E} and its inverse is the transition matrix from \mathcal{E} to \mathcal{B} .

This sort of thing happens all the time so there is a name for it:

Definition

If A and B are square matrices, we say the B similar to A if there is an invertible matrix S such that $B = S^{-1}AS$.

Note that if $T = S^{-1}$ then T is invertible with $T^{-1} = S$. Moreover, $A = T^{-1}BT$. Thus, if B is similar to A then A is similar to B. If S is an $n \times n$ invertible matrix then its columns form a basis \mathcal{B} for \mathbb{R}^n . S is the transition matrix from \mathcal{B} to \mathcal{E} . If A is any $n \times n$ matrix, then it is the representing matrix relative to \mathcal{E} and \mathcal{E} for the linear transformation $L(\mathbf{x}) = A\mathbf{x}$. Thus, if B is similar to A: $B = S^{-1}AS$, then B is the representing matrix for the same L, but relative to \mathcal{B} .

So, two matrices are similar if and ony if they are representing matrices for the same linear tansformation, but different bases..