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Theorem

If L : Rk → Rn is a linear transformation, then there is a unique n× k
matrix A such that L(x) = Ax for every x in Rk.

That is, every linear transformation from Rk to Rn is a matrix
transformation.

Because of where what we are going to do later, this deserves a proof.

Let E = {e1, e2, . . . , ek} be the standard basis for Rk. Consider the

column vectors aj = L(ej) and let A =
 a1 a2 · · · ak

. Then A

is an n× k matrix, which will turn out to be the one we need.
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If x =


x1
x2
...
xk

 = x1e1 + x2e2 + · · ·+ xkek,

then

Ax = x1a1 + x2a2 + · · ·+ xkak

= x1L(e1) + x2L(e2) + · · ·+ xkL(ek)

= L(x1e1 + x2e2 + · · ·+ xkek) = L(x)

How do we know A is unique? Well, if Bx = L(x) for every x in Rk then
certainly Bej = L(ej) = aj . Since Bej is the jth column of B and aj is
the jth column of A, this says that B and A have the same columns and
so are the same matrix.
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Example

Define L from R3 to R2 as follows L


x1
x2
x3

 =

 x1 − 2x2 + x3
x2 − 3x3



Then

L


1
0
0

 =

 1
0

 , L


0
1
0

 =

 −2
1

 , L


0
0
1

 =

 1
−3


And so the matrix that produces L is A =

 1 −2 1
0 1 −3

.

Check: Ax =

 1 −2 1
0 1 −3




x1
x2
x3

 =

 x1 − 2x2 + x3
x2 − 3x3

 = Lx

Another example: The rotation transformations Rθ satisfy

Rθe1 =

 cos θ
sin θ

 and Rθe2 =

 − sin θ
cos θ

 so

Rθx =

 cos θ − sin θ
sin θ cos θ

x.
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The use of bases

We saw that, using a basis B, we could associate vectors v in an
k-dimensional vector space V with column vectors [v]B in Rk.

Using the basis E in Rk we can associate a matrix to any linear
transformation.

Putting these two ideas together, if we have bases for both V and W , we
can associate a matrix to any linear transformation L : V → W .

The idea is as follows: Let B = [v1,v2, . . . ,vk] be a basis for V (where k
is the dimension of V ) and C = [w1,w2, . . . ,wn] a basis for W (where n is
the dimension of W ). The vectors in V can all be written v =

∑k
j=1 xjvj .

Applying the linear transformation L to that, we get L(v) =
∑k

j=1 xjLvj .
Using the basis C for W we can obtain a column vector [L(v)]C .
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The matrix we associate to L is the one that we can multiply by the
coordinates of v to obtain the coordinates of Lv.

To get this matrix, it is
enough to know that the transformation defined in three steps as follows

x ∈ Rk −−→ v =
k∑

j=1

xkvk ∈ V
L−−→ L(v) ∈ W −−→ [Lv]C ∈ Rn

is a linear transformation.

I claim the following are linear transformations:

S : Rk → V defined by S


x1
x2
...
xk

 =
k∑

j=1

xjvj

T : W → Rn defined by T (w) = [w]C .

If you accept all that, and that T (L(Sx)) is a linear transformation. then,
since it goes from Rk to Rn, it must be a matrix transformation. The
matrix A associated to it satisfies A[v]B = [Lv]C .
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Let’s verify that S is linear.

If x =


x1
...
xk

 and y =


y1
...
yk

 so x+ y =


x1 + y1

...
xk + yk

,

then

S(x+ y) =

k∑
j=1

(xj + yj)vj

=

k∑
j=1

xjvj +

k∑
j=1

yjvj

= S(x) + S(x)
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Similarly, αx =


αx1
...

αxk



so

S(αx) =

k∑
j=1

(αxj)vj

= α

k∑
j=1

xjvj

= αS(x)

The linearity of T we already used earlier. One needs to show that

[w +w′]C = [w]C + [w′]C and [αw]C = α[w]C .
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Suppose w =
∑n

i=1 biwi and w′ =
∑n

i=1 ciwi so that
w +w′ =

∑n
i=1(bi + ci)wi.

Thus

T (w +w′) =


b1 + c1

...
bn + cn

 =


b1
...
bn

+


c1
...
cn

 = T (w) + T (w′)

Also, because αw =
∑n

i=1 αbiwi,

T (αw) =


αb1
...

αbn

 = α


b1
...
bn

 = αT (w).
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To finish the discussion we have to verify that a composition of linear
transformations is a linear transformation.

Theorem

If V,W,X are vector spaces, L : V → W is a linear transformation and
T : W → X is a linear transformation, then if we define Q : V → X by
Q(v) = T (L(v)), then Q is a linear transformation.

Lets verify that the addition requirement holds: let v1 and v2 be in V .
Since L is linear L(v1 + v2) = L(v1) + L(v2). Since T is linear
T (L(v1 + v2)) = T (L(v1) + L(v2)) = T (L(v1)) + T (L(v2)).

That is, Q(v1 + v2) = Q(v1) +Q(v2).

Exercise: verify that Q(αv) = αQ(v).

We can compose more that just 2 transformations: Because S and L (from
earlier) are linear, so is L(S(x)). Because T is linear, so is T (L(S(x))).
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Theorem

Let V be a vector space with basis B. Let W be a vector space with basis
C. Let L : V → W be a linear transformation. Then there exists a unique
matrix A that satisfies A[v]B = [Lv]C .

The previous discussion is the proof of this theorem. Let
B = [v1,v2, . . . ,vk] and C = [w1,w2, . . . ,wn]. Then T (L(S(x))) is a
linear transformation from Rk to Rn and A is the matrix of this
transformation.

Note that if v =
∑k

j=1 xjvj , then [v]B =


x1
...
xk

 and so S([v]B) = v.

Also, by definition, T (L(v)) = [Lv]C . Then we get

A[v]B = T (L(S([v]B))) = T (L(v)) = [Lv]C

The matrix A is called the representing matrix for L relative to the bases
B and C.
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The method of obtaining A we saw earlier carries forward to this case: if

B = [v1,v2, . . . ,vk] then A =
 [Lv1]C [Lv2]C · · · [Lvk]C

.

That

is, the columns of A are the coordinate vectors of Lvj , where vj are the
vectors in the ordered basis B for V .

Example

Let V be any vector space and B = [v1,v2,v3] an ordered basis for V .
Define L : V → R2 by

L(x1v1 + x2v2 + x3v3) =

 x1 + 2x2 − 3x3
3x1 + x2


Let C =

[ 1
1

 ,

 −2
−1

]
be an ordered basis for R2. Find the matrix

that represents L relative to B and C.
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Solution: First compute

L(v1) =

 1
3

 , L(v2) =

 2
1

 , L(v3) =

 −3
0


Now compute the coordinates relative to C for these three vectors. We can
do this with the transition matrix: 1 −2

1 −1

−1

=

 −1 2
−1 1


This gives [Lv1]C =

 −1 2
−1 1

 1
3

 =

 5
2

, [Lv2]C =

 0
−1

,

and [Lv3]C =

 3
3



13 / 15



So the representing matrix is

 5 0 3
2 −1 3



Another example

Let T : P3 → P3 be the linear transformation we saw earlier:
T (a+ bx+ cx2) = b+ 2cx. Let E = [1, x, x2] be the standard basis in P3

(in both the “from” and “to” role). To get the matrix A that represents T
relative to E and E , we first find the result of T applied to each basis
vector:

T (1) = 0, T (x) = 1, T (x2) = 2x

then find the coordinates of each of those

[0]E =


0
0
0

 , [1]E =


1
0
0

 , [2x]E =


0
2
0


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Putting those columns into A gives

A =


0 1 0
0 0 2
0 0 0



Note how

A


a
b
c

 =


b
2c
0

 corresponds to T (a+ bx+ cx2) = b+ 2cx+ 0x2.
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