Linear Transformations

D. H. Luecking

06 March 2024

If $L : \mathbb{R}^k \to \mathbb{R}^n$ is a linear transformation, then there is a unique $n \times k$ matrix A such that $L(\mathbf{x}) = A\mathbf{x}$ for every \mathbf{x} in \mathbb{R}^k .

If $L : \mathbb{R}^k \to \mathbb{R}^n$ is a linear transformation, then there is a unique $n \times k$ matrix A such that $L(\mathbf{x}) = A\mathbf{x}$ for every \mathbf{x} in \mathbb{R}^k .

That is, every linear transformation from \mathbb{R}^k to \mathbb{R}^n is a matrix transformation.

If $L : \mathbb{R}^k \to \mathbb{R}^n$ is a linear transformation, then there is a unique $n \times k$ matrix A such that $L(\mathbf{x}) = A\mathbf{x}$ for every \mathbf{x} in \mathbb{R}^k .

That is, every linear transformation from \mathbb{R}^k to \mathbb{R}^n is a matrix transformation.

Because of where what we are going to do later, this deserves a proof.

If $L : \mathbb{R}^k \to \mathbb{R}^n$ is a linear transformation, then there is a unique $n \times k$ matrix A such that $L(\mathbf{x}) = A\mathbf{x}$ for every \mathbf{x} in \mathbb{R}^k .

That is, every linear transformation from \mathbb{R}^k to \mathbb{R}^n is a matrix transformation.

Because of where what we are going to do later, this deserves a proof. Let $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k\}$ be the standard basis for \mathbb{R}^k . Consider the column vectors $\mathbf{a}_j = L(e_j)$ and let $A = \begin{pmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_k \end{pmatrix}$.

If $L : \mathbb{R}^k \to \mathbb{R}^n$ is a linear transformation, then there is a unique $n \times k$ matrix A such that $L(\mathbf{x}) = A\mathbf{x}$ for every \mathbf{x} in \mathbb{R}^k .

That is, every linear transformation from \mathbb{R}^k to \mathbb{R}^n is a matrix transformation.

Because of where what we are going to do later, this deserves a proof. Let $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k\}$ be the standard basis for \mathbb{R}^k . Consider the column vectors $\mathbf{a}_j = L(e_j)$ and let $A = \begin{pmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_k \end{pmatrix}$. Then A is an $n \times k$ matrix, which will turn out to be the one we need.

If
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{pmatrix} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_k \mathbf{e}_k,$$

If
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{pmatrix} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_k \mathbf{e}_k$$
, then

$$A\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_k\mathbf{a}_k$$

= $x_1L(\mathbf{e}_1) + x_2L(\mathbf{e}_2) + \dots + x_kL(\mathbf{e}_k)$
= $L(x_1\mathbf{e}_1 + x_2\mathbf{e}_2 + \dots + x_k\mathbf{e}_k) = L(\mathbf{x})$

If
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{pmatrix} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_k \mathbf{e}_k$$
, then

$$A\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_k\mathbf{a}_k$$

= $x_1L(\mathbf{e}_1) + x_2L(\mathbf{e}_2) + \dots + x_kL(\mathbf{e}_k)$
= $L(x_1\mathbf{e}_1 + x_2\mathbf{e}_2 + \dots + x_k\mathbf{e}_k) = L(\mathbf{x})$

How do we know A is unique? Well, if $B\mathbf{x} = L(\mathbf{x})$ for every \mathbf{x} in \mathbb{R}^k then certainly $B\mathbf{e}_j = L(\mathbf{e}_j) = \mathbf{a}_j$.

If
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{pmatrix} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_k \mathbf{e}_k$$
, then

$$A\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_k\mathbf{a}_k$$

= $x_1L(\mathbf{e}_1) + x_2L(\mathbf{e}_2) + \dots + x_kL(\mathbf{e}_k)$
= $L(x_1\mathbf{e}_1 + x_2\mathbf{e}_2 + \dots + x_k\mathbf{e}_k) = L(\mathbf{x})$

How do we know A is unique? Well, if $B\mathbf{x} = L(\mathbf{x})$ for every \mathbf{x} in \mathbb{R}^k then certainly $B\mathbf{e}_j = L(\mathbf{e}_j) = \mathbf{a}_j$. Since $B\mathbf{e}_j$ is the *j*th column of B and \mathbf{a}_j is the *j*th column of A, this says that B and A have the same columns and so are the same matrix.

Define
$$L$$
 from \mathbb{R}^3 to \mathbb{R}^2 as follows $L\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix} = \begin{pmatrix} x_1 - 2x_2 + x_3\\x_2 - 3x_3 \end{pmatrix}$

Define
$$L$$
 from \mathbb{R}^3 to \mathbb{R}^2 as follows $L\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix} = \begin{pmatrix} x_1 - 2x_2 + x_3\\x_2 - 3x_3 \end{pmatrix}$
Then

$$L \begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 1\\0 \end{pmatrix}, L \begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} -2\\1 \end{pmatrix}, L \begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} 1\\-3 \end{pmatrix}$$

Define
$$L$$
 from \mathbb{R}^3 to \mathbb{R}^2 as follows $L\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix} = \begin{pmatrix} x_1 - 2x_2 + x_3\\x_2 - 3x_3 \end{pmatrix}$
Then

$$L\begin{pmatrix}1\\0\\0\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix}, L\begin{pmatrix}0\\1\\0\end{pmatrix} = \begin{pmatrix}-2\\1\end{pmatrix}, L\begin{pmatrix}0\\0\\1\end{pmatrix} = \begin{pmatrix}1\\-3\end{pmatrix}$$

And so the matrix that produces L is $A = \begin{pmatrix}1 & -2 & 1\\0 & 1 & -3\end{pmatrix}$.

Define
$$L$$
 from \mathbb{R}^3 to \mathbb{R}^2 as follows $L\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix} = \begin{pmatrix} x_1 - 2x_2 + x_3\\x_2 - 3x_3 \end{pmatrix}$
Then

$$L\begin{pmatrix}1\\0\\0\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix}, L\begin{pmatrix}0\\1\\0\end{pmatrix} = \begin{pmatrix}-2\\1\end{pmatrix}, L\begin{pmatrix}0\\0\\1\end{pmatrix} = \begin{pmatrix}1\\-3\end{pmatrix}$$

And so the matrix that produces L is $A = \begin{pmatrix}1 & -2 & 1\\0 & 1 & -3\end{pmatrix}$.
Check: $A\mathbf{x} = \begin{pmatrix}1 & -2 & 1\\0 & 1 & -3\end{pmatrix} \begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix} = \begin{pmatrix}x_1 - 2x_2 + x_3\\x_2 - 3x_3\end{pmatrix} = L\mathbf{x}$

Define
$$L$$
 from \mathbb{R}^3 to \mathbb{R}^2 as follows $L\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix} = \begin{pmatrix} x_1 - 2x_2 + x_3\\x_2 - 3x_3 \end{pmatrix}$
Then

$$L \begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 1\\0 \end{pmatrix}, L \begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} -2\\1 \end{pmatrix}, L \begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} 1\\-3 \end{pmatrix}$$

And so the matrix that produces L is $A = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -3 \end{pmatrix}$.

Check:
$$A\mathbf{x} = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 - 2x_2 + x_3 \\ x_2 - 3x_3 \end{pmatrix} = L\mathbf{x}$$

Another example: The rotation transformations R_{θ} satisfy $R_{\theta}\mathbf{e}_1 = \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix}$ and $R_{\theta}\mathbf{e}_2 = \begin{pmatrix} -\sin\theta \\ \cos\theta \end{pmatrix}$

Define
$$L$$
 from \mathbb{R}^3 to \mathbb{R}^2 as follows $L\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix} = \begin{pmatrix} x_1 - 2x_2 + x_3\\x_2 - 3x_3 \end{pmatrix}$
Then

$$L\begin{pmatrix}1\\0\\0\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix}, L\begin{pmatrix}0\\1\\0\end{pmatrix} = \begin{pmatrix}-2\\1\end{pmatrix}, L\begin{pmatrix}0\\0\\1\end{pmatrix} = \begin{pmatrix}1\\-3\end{pmatrix}$$

And so the matrix that produces L is $A = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -3 \end{pmatrix}$.

Check:
$$A\mathbf{x} = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 - 2x_2 + x_3 \\ x_2 - 3x_3 \end{pmatrix} = L\mathbf{x}$$

Another example: The rotation transformations R_{θ} satisfy

$$R_{\theta}\mathbf{e}_{1} = \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix} \text{ and } R_{\theta}\mathbf{e}_{2} = \begin{pmatrix} -\sin\theta \\ \cos\theta \end{pmatrix} \text{ so}$$
$$R_{\theta}\mathbf{x} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \mathbf{x}.$$

We saw that, using a basis \mathcal{B} , we could associate vectors \mathbf{v} in an k-dimensional vector space V with column vectors $[\mathbf{v}]_{\mathcal{B}}$ in \mathbb{R}^k .

We saw that, using a basis \mathcal{B} , we could associate vectors \mathbf{v} in an k-dimensional vector space V with column vectors $[\mathbf{v}]_{\mathcal{B}}$ in \mathbb{R}^k . Using the basis \mathcal{E} in \mathbb{R}^k we can associate a matrix to any linear transformation.

We saw that, using a basis \mathcal{B} , we could associate vectors \mathbf{v} in an k-dimensional vector space V with column vectors $[\mathbf{v}]_{\mathcal{B}}$ in \mathbb{R}^k . Using the basis \mathcal{E} in \mathbb{R}^k we can associate a matrix to any linear transformation.

Putting these two ideas together, if we have bases for both V and W, we can associate a matrix to any linear transformation $L: V \to W$.

We saw that, using a basis \mathcal{B} , we could associate vectors \mathbf{v} in an k-dimensional vector space V with column vectors $[\mathbf{v}]_{\mathcal{B}}$ in \mathbb{R}^k . Using the basis \mathcal{E} in \mathbb{R}^k we can associate a matrix to any linear transformation.

Putting these two ideas together, if we have bases for both V and W, we can associate a matrix to any linear transformation $L: V \to W$.

The idea is as follows: Let $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k]$ be a basis for V (where k is the dimension of V)

We saw that, using a basis \mathcal{B} , we could associate vectors \mathbf{v} in an k-dimensional vector space V with column vectors $[\mathbf{v}]_{\mathcal{B}}$ in \mathbb{R}^k . Using the basis \mathcal{E} in \mathbb{R}^k we can associate a matrix to any linear transformation.

Putting these two ideas together, if we have bases for both V and W, we can associate a matrix to any linear transformation $L: V \to W$.

The idea is as follows: Let $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k]$ be a basis for V (where k is the dimension of V) and $\mathcal{C} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n]$ a basis for W (where n is the dimension of W).

We saw that, using a basis \mathcal{B} , we could associate vectors \mathbf{v} in an k-dimensional vector space V with column vectors $[\mathbf{v}]_{\mathcal{B}}$ in \mathbb{R}^k . Using the basis \mathcal{E} in \mathbb{R}^k we can associate a matrix to any linear transformation.

Putting these two ideas together, if we have bases for both V and W, we can associate a matrix to any linear transformation $L: V \to W$.

The idea is as follows: Let $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k]$ be a basis for V (where k is the dimension of V) and $\mathcal{C} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n]$ a basis for W (where n is the dimension of W). The vectors in V can all be written $\mathbf{v} = \sum_{j=1}^k x_j \mathbf{v}_j$.

We saw that, using a basis \mathcal{B} , we could associate vectors \mathbf{v} in an k-dimensional vector space V with column vectors $[\mathbf{v}]_{\mathcal{B}}$ in \mathbb{R}^k . Using the basis \mathcal{E} in \mathbb{R}^k we can associate a matrix to any linear transformation.

Putting these two ideas together, if we have bases for both V and W, we can associate a matrix to any linear transformation $L: V \to W$.

The idea is as follows: Let $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k]$ be a basis for V (where k is the dimension of V) and $\mathcal{C} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n]$ a basis for W (where n is the dimension of W). The vectors in V can all be written $\mathbf{v} = \sum_{j=1}^k x_j \mathbf{v}_j$. Applying the linear transformation L to that, we get $L(\mathbf{v}) = \sum_{j=1}^k x_j \mathbf{L} \mathbf{v}_j$.

We saw that, using a basis \mathcal{B} , we could associate vectors \mathbf{v} in an k-dimensional vector space V with column vectors $[\mathbf{v}]_{\mathcal{B}}$ in \mathbb{R}^k . Using the basis \mathcal{E} in \mathbb{R}^k we can associate a matrix to any linear transformation.

Putting these two ideas together, if we have bases for both V and W, we can associate a matrix to any linear transformation $L: V \to W$.

The idea is as follows: Let $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k]$ be a basis for V (where k is the dimension of V) and $\mathcal{C} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n]$ a basis for W (where n is the dimension of W). The vectors in V can all be written $\mathbf{v} = \sum_{j=1}^k x_j \mathbf{v}_j$. Applying the linear transformation L to that, we get $L(\mathbf{v}) = \sum_{j=1}^k x_j \mathbf{L} \mathbf{v}_j$. Using the basis \mathcal{C} for W we can obtain a column vector $[L(\mathbf{v})]_{\mathcal{C}}$.

The matrix we associate to L is the one that we can multiply by the coordinates of v to obtain the coordinates of Lv.

The matrix we associate to L is the one that we can multiply by the coordinates of v to obtain the coordinates of Lv. To get this matrix, it is enough to know that the transformation defined in three steps as follows

$$\mathbf{x} \in \mathbb{R}^k \longrightarrow \mathbf{v} = \sum_{j=1}^k x_k \mathbf{v}_k \in V \xrightarrow{L} L(\mathbf{v}) \in W \longrightarrow [L\mathbf{v}]_{\mathcal{C}} \in \mathbb{R}^n$$

is a linear transformation.

The matrix we associate to L is the one that we can multiply by the coordinates of \mathbf{v} to obtain the coordinates of $L\mathbf{v}$. To get this matrix, it is enough to know that the transformation defined in three steps as follows

$$\mathbf{x} \in \mathbb{R}^k \longrightarrow \mathbf{v} = \sum_{j=1}^k x_k \mathbf{v}_k \in V \xrightarrow{L} L(\mathbf{v}) \in W \longrightarrow [L\mathbf{v}]_{\mathcal{C}} \in \mathbb{R}^n$$

is a linear transformation.

I claim the following are linear transformations:

$$S: \mathbb{R}^k \to V \text{ defined by } S \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{pmatrix} = \sum_{j=1}^k x_j \mathbf{v}_j$$
$$T: W \to \mathbb{R}^n \text{ defined by } T(\mathbf{w}) = [\mathbf{w}]_{\mathcal{C}}.$$

The matrix we associate to L is the one that we can multiply by the coordinates of \mathbf{v} to obtain the coordinates of $L\mathbf{v}$. To get this matrix, it is enough to know that the transformation defined in three steps as follows

$$\mathbf{x} \in \mathbb{R}^k \longrightarrow \mathbf{v} = \sum_{j=1}^k x_k \mathbf{v}_k \in V \xrightarrow{L} L(\mathbf{v}) \in W \longrightarrow [L\mathbf{v}]_{\mathcal{C}} \in \mathbb{R}^n$$

is a linear transformation.

I claim the following are linear transformations:

$$S: \mathbb{R}^k \to V \text{ defined by } S \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{pmatrix} = \sum_{j=1}^k x_j \mathbf{v}_j$$
$$T: W \to \mathbb{R}^n \text{ defined by } T(\mathbf{w}) = [\mathbf{w}]_{\mathcal{C}}.$$

If you accept all that, and that $T(L(S\mathbf{x}))$ is a linear transformation. then, since it goes from \mathbb{R}^k to \mathbb{R}^n , it must be a matrix transformation. The matrix A associated to it satisfies $A[\mathbf{v}]_{\mathcal{B}} = [L\mathbf{v}]_{\mathcal{C}}$.

Let's verify that
$$S$$
 is linear.
If $\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_k \end{pmatrix}$ and $\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_k \end{pmatrix}$ so $\mathbf{x} + \mathbf{y} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_k + y_k \end{pmatrix}$,

Let's verify that
$$S$$
 is linear.
If $\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_k \end{pmatrix}$ and $\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_k \end{pmatrix}$ so $\mathbf{x} + \mathbf{y} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_k + y_k \end{pmatrix}$, then

$$S(\mathbf{x} + \mathbf{y}) = \sum_{j=1}^{k} (x_j + y_j) \mathbf{v}_j$$
$$= \sum_{j=1}^{k} x_j \mathbf{v}_j + \sum_{j=1}^{k} y_j \mathbf{v}_j$$
$$= S(\mathbf{x}) + S(\mathbf{x})$$

Similarly,
$$\alpha \mathbf{x} = \left(\begin{array}{c} \alpha x_1 \\ \vdots \\ \alpha x_k \end{array}\right)$$

Similarly,
$$\alpha \mathbf{x} = \left(\begin{array}{c} \alpha x_1 \\ \vdots \\ \alpha x_k \end{array} \right)$$
 so

$$S(\alpha \mathbf{x}) = \sum_{j=1}^{k} (\alpha x_j) \mathbf{v}_j$$
$$= \alpha \sum_{j=1}^{k} x_j \mathbf{v}_j$$
$$= \alpha S(\mathbf{x})$$

Similarly,
$$\alpha \mathbf{x} = \begin{pmatrix} \alpha x_1 \\ \vdots \\ \alpha x_k \end{pmatrix}$$
 so

$$S(\alpha \mathbf{x}) = \sum_{j=1}^{k} (\alpha x_j) \mathbf{v}_j$$
$$= \alpha \sum_{j=1}^{k} x_j \mathbf{v}_j$$
$$= \alpha S(\mathbf{x})$$

The linearity of T we already used earlier.

Similarly,
$$\alpha \mathbf{x} = \begin{pmatrix} \alpha x_1 \\ \vdots \\ \alpha x_k \end{pmatrix}$$
 so

$$S(\alpha \mathbf{x}) = \sum_{j=1}^{k} (\alpha x_j) \mathbf{v}_j$$
$$= \alpha \sum_{j=1}^{k} x_j \mathbf{v}_j$$
$$= \alpha S(\mathbf{x})$$

The linearity of T we already used earlier. One needs to show that

$$[\mathbf{w} + \mathbf{w}']_{\mathcal{C}} = [\mathbf{w}]_{\mathcal{C}} + [\mathbf{w}']_{\mathcal{C}} \text{ and } [\alpha \mathbf{w}]_{\mathcal{C}} = \alpha [\mathbf{w}]_{\mathcal{C}}.$$

Suppose
$$\mathbf{w} = \sum_{i=1}^{n} b_i \mathbf{w}_i$$
 and $\mathbf{w}' = \sum_{i=1}^{n} c_i \mathbf{w}_i$ so that $\mathbf{w} + \mathbf{w}' = \sum_{i=1}^{n} (b_i + c_i) \mathbf{w}_i$.

Suppose $\mathbf{w} = \sum_{i=1}^{n} b_i \mathbf{w}_i$ and $\mathbf{w}' = \sum_{i=1}^{n} c_i \mathbf{w}_i$ so that $\mathbf{w} + \mathbf{w}' = \sum_{i=1}^{n} (b_i + c_i) \mathbf{w}_i$. Thus

$$T(\mathbf{w} + \mathbf{w}') = \begin{pmatrix} b_1 + c_1 \\ \vdots \\ b_n + c_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} + \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = T(\mathbf{w}) + T(\mathbf{w}')$$

Suppose $\mathbf{w} = \sum_{i=1}^{n} b_i \mathbf{w}_i$ and $\mathbf{w}' = \sum_{i=1}^{n} c_i \mathbf{w}_i$ so that $\mathbf{w} + \mathbf{w}' = \sum_{i=1}^{n} (b_i + c_i) \mathbf{w}_i$. Thus

$$T(\mathbf{w} + \mathbf{w}') = \begin{pmatrix} b_1 + c_1 \\ \vdots \\ b_n + c_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} + \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = T(\mathbf{w}) + T(\mathbf{w}')$$

Also, because $\alpha \mathbf{w} = \sum_{i=1}^{n} \alpha b_i \mathbf{w}_i$,

Suppose $\mathbf{w} = \sum_{i=1}^{n} b_i \mathbf{w}_i$ and $\mathbf{w}' = \sum_{i=1}^{n} c_i \mathbf{w}_i$ so that $\mathbf{w} + \mathbf{w}' = \sum_{i=1}^{n} (b_i + c_i) \mathbf{w}_i$. Thus

$$T(\mathbf{w} + \mathbf{w}') = \begin{pmatrix} b_1 + c_1 \\ \vdots \\ b_n + c_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} + \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = T(\mathbf{w}) + T(\mathbf{w}')$$

Also, because $\alpha \mathbf{w} = \sum_{i=1}^{n} \alpha b_i \mathbf{w}_i$,

$$T(\alpha \mathbf{w}) = \begin{pmatrix} \alpha b_1 \\ \vdots \\ \alpha b_n \end{pmatrix} = \alpha \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = \alpha T(\mathbf{w}).$$

Theorem

If V, W, X are vector spaces, $L: V \to W$ is a linear transformation and $T: W \to X$ is a linear transformation, then if we define $Q: V \to X$ by $Q(\mathbf{v}) = T(L(\mathbf{v}))$, then Q is a linear transformation.

Theorem

If V, W, X are vector spaces, $L: V \to W$ is a linear transformation and $T: W \to X$ is a linear transformation, then if we define $Q: V \to X$ by $Q(\mathbf{v}) = T(L(\mathbf{v}))$, then Q is a linear transformation.

Lets verify that the addition requirement holds: let \mathbf{v}_1 and \mathbf{v}_2 be in V.

Theorem

If V, W, X are vector spaces, $L: V \to W$ is a linear transformation and $T: W \to X$ is a linear transformation, then if we define $Q: V \to X$ by $Q(\mathbf{v}) = T(L(\mathbf{v}))$, then Q is a linear transformation.

Lets verify that the addition requirement holds: let \mathbf{v}_1 and \mathbf{v}_2 be in V. Since L is linear $L(\mathbf{v}_1 + \mathbf{v}_2) = L(\mathbf{v}_1) + L(\mathbf{v}_2)$.

Theorem

If V, W, X are vector spaces, $L: V \to W$ is a linear transformation and $T: W \to X$ is a linear transformation, then if we define $Q: V \to X$ by $Q(\mathbf{v}) = T(L(\mathbf{v}))$, then Q is a linear transformation.

Lets verify that the addition requirement holds: let \mathbf{v}_1 and \mathbf{v}_2 be in V. Since L is linear $L(\mathbf{v}_1 + \mathbf{v}_2) = L(\mathbf{v}_1) + L(\mathbf{v}_2)$. Since T is linear $T(L(\mathbf{v}_1 + \mathbf{v}_2)) = T(L(\mathbf{v}_1) + L(\mathbf{v}_2)) = T(L(\mathbf{v}_1)) + T(L(\mathbf{v}_2))$.

Theorem

If V, W, X are vector spaces, $L: V \to W$ is a linear transformation and $T: W \to X$ is a linear transformation, then if we define $Q: V \to X$ by $Q(\mathbf{v}) = T(L(\mathbf{v}))$, then Q is a linear transformation.

Lets verify that the addition requirement holds: let \mathbf{v}_1 and \mathbf{v}_2 be in V. Since L is linear $L(\mathbf{v}_1 + \mathbf{v}_2) = L(\mathbf{v}_1) + L(\mathbf{v}_2)$. Since T is linear $T(L(\mathbf{v}_1 + \mathbf{v}_2)) = T(L(\mathbf{v}_1) + L(\mathbf{v}_2)) = T(L(\mathbf{v}_1)) + T(L(\mathbf{v}_2))$. That is, $Q(\mathbf{v}_1 + \mathbf{v}_2) = Q(\mathbf{v}_1) + Q(\mathbf{v}_2)$.

Theorem

If V, W, X are vector spaces, $L: V \to W$ is a linear transformation and $T: W \to X$ is a linear transformation, then if we define $Q: V \to X$ by $Q(\mathbf{v}) = T(L(\mathbf{v}))$, then Q is a linear transformation.

Lets verify that the addition requirement holds: let \mathbf{v}_1 and \mathbf{v}_2 be in V. Since L is linear $L(\mathbf{v}_1 + \mathbf{v}_2) = L(\mathbf{v}_1) + L(\mathbf{v}_2)$. Since T is linear $T(L(\mathbf{v}_1 + \mathbf{v}_2)) = T(L(\mathbf{v}_1) + L(\mathbf{v}_2)) = T(L(\mathbf{v}_1)) + T(L(\mathbf{v}_2))$. That is, $Q(\mathbf{v}_1 + \mathbf{v}_2) = Q(\mathbf{v}_1) + Q(\mathbf{v}_2)$. Exercise: verify that $Q(\alpha \mathbf{v}) = \alpha Q(\mathbf{v})$.

Theorem

If V, W, X are vector spaces, $L: V \to W$ is a linear transformation and $T: W \to X$ is a linear transformation, then if we define $Q: V \to X$ by $Q(\mathbf{v}) = T(L(\mathbf{v}))$, then Q is a linear transformation.

Lets verify that the addition requirement holds: let \mathbf{v}_1 and \mathbf{v}_2 be in V. Since L is linear $L(\mathbf{v}_1 + \mathbf{v}_2) = L(\mathbf{v}_1) + L(\mathbf{v}_2)$. Since T is linear $T(L(\mathbf{v}_1 + \mathbf{v}_2)) = T(L(\mathbf{v}_1) + L(\mathbf{v}_2)) = T(L(\mathbf{v}_1)) + T(L(\mathbf{v}_2))$. That is, $Q(\mathbf{v}_1 + \mathbf{v}_2) = Q(\mathbf{v}_1) + Q(\mathbf{v}_2)$. Exercise: verify that $Q(\alpha \mathbf{v}) = \alpha Q(\mathbf{v})$.

We can compose more that just 2 transformations: Because S and L (from earlier) are linear, so is $L(S(\mathbf{x}))$. Because T is linear, so is $T(L(S(\mathbf{x})))$.

Let V be a vector space with basis \mathcal{B} . Let W be a vector space with basis \mathcal{C} . Let $L: V \to W$ be a linear transformation. Then there exists a unique matrix A that satisfies $A[\mathbf{v}]_{\mathcal{B}} = [L\mathbf{v}]_{\mathcal{C}}$.

Let V be a vector space with basis \mathcal{B} . Let W be a vector space with basis \mathcal{C} . Let $L: V \to W$ be a linear transformation. Then there exists a unique matrix A that satisfies $A[\mathbf{v}]_{\mathcal{B}} = [L\mathbf{v}]_{\mathcal{C}}$.

The previous discussion is the proof of this theorem. Let $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k]$ and $\mathcal{C} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n]$.

Let V be a vector space with basis \mathcal{B} . Let W be a vector space with basis \mathcal{C} . Let $L: V \to W$ be a linear transformation. Then there exists a unique matrix A that satisfies $A[\mathbf{v}]_{\mathcal{B}} = [L\mathbf{v}]_{\mathcal{C}}$.

The previous discussion is the proof of this theorem. Let $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k]$ and $\mathcal{C} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n]$. Then $T(L(S(\mathbf{x})))$ is a linear transformation from \mathbb{R}^k to \mathbb{R}^n and A is the matrix of this transformation.

Let V be a vector space with basis \mathcal{B} . Let W be a vector space with basis C. Let $L: V \to W$ be a linear transformation. Then there exists a unique matrix A that satisfies $A[\mathbf{v}]_{\mathcal{B}} = [L\mathbf{v}]_{\mathcal{C}}$.

The previous discussion is the proof of this theorem. Let $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k]$ and $\mathcal{C} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n]$. Then $T(L(S(\mathbf{x})))$ is a linear transformation from \mathbb{R}^k to \mathbb{R}^n and A is the matrix of this transformation.

Note that if
$$\mathbf{v} = \sum_{j=1}^{k} x_j \mathbf{v}_j$$
, then $[\mathbf{v}]_{\mathcal{B}} = \begin{pmatrix} x_1 \\ \vdots \\ x_k \end{pmatrix}$ and so $S([\mathbf{v}]_{\mathcal{B}}) = \mathbf{v}$.

Let V be a vector space with basis \mathcal{B} . Let W be a vector space with basis C. Let $L: V \to W$ be a linear transformation. Then there exists a unique matrix A that satisfies $A[\mathbf{v}]_{\mathcal{B}} = [L\mathbf{v}]_{\mathcal{C}}$.

The previous discussion is the proof of this theorem. Let $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k]$ and $\mathcal{C} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n]$. Then $T(L(S(\mathbf{x})))$ is a linear transformation from \mathbb{R}^k to \mathbb{R}^n and A is the matrix of this transformation.

Note that if
$$\mathbf{v} = \sum_{j=1}^{k} x_j \mathbf{v}_j$$
, then $[\mathbf{v}]_{\mathcal{B}} = \begin{pmatrix} x_1 \\ \vdots \\ x_k \end{pmatrix}$ and so $S([\mathbf{v}]_{\mathcal{B}}) = \mathbf{v}$.
Also, by definition $T(L(\mathbf{v})) = [L\mathbf{v}]_{\mathcal{C}}$. Then we get

Lemma $L(L(\mathbf{v})) = |L\mathbf{v}|_{\mathcal{C}}$. Then we get

$$A[\mathbf{v}]_{\mathcal{B}} = T(L(S([\mathbf{v}]_{\mathcal{B}}))) = T(L(\mathbf{v})) = [L\mathbf{v}]_{\mathcal{C}}$$

Let V be a vector space with basis \mathcal{B} . Let W be a vector space with basis C. Let $L: V \to W$ be a linear transformation. Then there exists a unique matrix A that satisfies $A[\mathbf{v}]_{\mathcal{B}} = [L\mathbf{v}]_{\mathcal{C}}$.

The previous discussion is the proof of this theorem. Let $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k]$ and $\mathcal{C} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n]$. Then $T(L(S(\mathbf{x})))$ is a linear transformation from \mathbb{R}^k to \mathbb{R}^n and A is the matrix of this transformation.

Note that if
$$\mathbf{v} = \sum_{j=1}^{k} x_j \mathbf{v}_j$$
, then $[\mathbf{v}]_{\mathcal{B}} = \begin{pmatrix} x_1 \\ \vdots \\ x_k \end{pmatrix}$ and so $S([\mathbf{v}]_{\mathcal{B}}) = \mathbf{v}$.
Also, by definition, $T(L(\mathbf{v})) = [L\mathbf{v}]_{\mathcal{C}}$. Then we get

so, by definition, $T(L(\mathbf{v})) = [L\mathbf{v}]_{\mathcal{C}}$. Then we get

$$A[\mathbf{v}]_{\mathcal{B}} = T(L(S([\mathbf{v}]_{\mathcal{B}}))) = T(L(\mathbf{v})) = [L\mathbf{v}]_{\mathcal{C}}$$

The matrix A is called the representing matrix for L relative to the bases B and C.

The method of obtaining A we saw earlier carries forward to this case: if $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k]$ then $A = \left(\begin{array}{cc} [L\mathbf{v}_1]_{\mathcal{C}} & [L\mathbf{v}_2]_{\mathcal{C}} & \cdots & [L\mathbf{v}_k]_{\mathcal{C}} \end{array} \right)$.

Example

Let V be any vector space and $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$ an ordered basis for V.

Example

Let V be any vector space and $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$ an ordered basis for V. Define $L: V \to \mathbb{R}^2$ by

$$L(x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3) = \left(\begin{array}{c} x_1 + 2x_2 - 3x_3\\ 3x_1 + x_2 \end{array}\right)$$

Example

Let V be any vector space and $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$ an ordered basis for V. Define $L: V \to \mathbb{R}^2$ by

$$L(x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3) = \left(\begin{array}{c} x_1 + 2x_2 - 3x_3\\ 3x_1 + x_2 \end{array}\right)$$

Let $C = \left[\left(\begin{array}{c} 1\\1 \end{array} \right), \left(\begin{array}{c} -2\\-1 \end{array} \right) \right]$ be an ordered basis for \mathbb{R}^2 .

Example

Let V be any vector space and $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$ an ordered basis for V. Define $L: V \to \mathbb{R}^2$ by

$$L(x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3) = \left(\begin{array}{c} x_1 + 2x_2 - 3x_3\\ 3x_1 + x_2 \end{array}\right)$$

Let $C = \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \end{bmatrix}, \begin{pmatrix} -2 \\ -1 \end{bmatrix} \end{bmatrix}$ be an ordered basis for \mathbb{R}^2 . Find the matrix that represents L relative to \mathcal{B} and \mathcal{C} .

Solution: First compute

$$L(\mathbf{v}_1) = \begin{pmatrix} 1\\ 3 \end{pmatrix}, \ L(\mathbf{v}_2) = \begin{pmatrix} 2\\ 1 \end{pmatrix}, \ L(\mathbf{v}_3) = \begin{pmatrix} -3\\ 0 \end{pmatrix}$$

Now compute the coordinates relative to ${\cal C}$ for these three vectors. We can do this with the transition matrix:

$$\begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix}^{-1} = \begin{pmatrix} -1 & 2 \\ -1 & 1 \end{pmatrix}$$

This gives $[L\mathbf{v}_1]_{\mathcal{C}} = \begin{pmatrix} -1 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$, $[L\mathbf{v}_2]_{\mathcal{C}} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$, and $[L\mathbf{v}_3]_{\mathcal{C}} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$

So the representing matrix is

$$\left(\begin{array}{rrrr} 5 & 0 & 3 \\ 2 & -1 & 3 \end{array}\right)$$

`

Another example

Let $T: \mathcal{P}_3 \to \mathcal{P}_3$ be the linear transformation we saw earlier: $T(a+bx+cx^2) = b+2cx.$

Another example

Let $T: \mathcal{P}_3 \to \mathcal{P}_3$ be the linear transformation we saw earlier: $T(a+bx+cx^2) = b+2cx$. Let $\mathcal{E} = [1, x, x^2]$ be the standard basis in \mathcal{P}_3

Another example

Let $T: \mathcal{P}_3 \to \mathcal{P}_3$ be the linear transformation we saw earlier: $T(a + bx + cx^2) = b + 2cx$. Let $\mathcal{E} = [1, x, x^2]$ be the standard basis in \mathcal{P}_3 (in both the "from" and "to" role).

Another example

Let $T: \mathcal{P}_3 \to \mathcal{P}_3$ be the linear transformation we saw earlier: $T(a + bx + cx^2) = b + 2cx$. Let $\mathcal{E} = [1, x, x^2]$ be the standard basis in \mathcal{P}_3 (in both the "from" and "to" role). To get the matrix A that represents Trelative to \mathcal{E} and \mathcal{E} , we first find the result of T applied to each basis vector:

Another example

Let $T: \mathcal{P}_3 \to \mathcal{P}_3$ be the linear transformation we saw earlier: $T(a + bx + cx^2) = b + 2cx$. Let $\mathcal{E} = [1, x, x^2]$ be the standard basis in \mathcal{P}_3 (in both the "from" and "to" role). To get the matrix A that represents Trelative to \mathcal{E} and \mathcal{E} , we first find the result of T applied to each basis vector:

$$T(1) = 0, \quad T(x) = 1, \quad T(x^2) = 2x$$

Another example

Let $T: \mathcal{P}_3 \to \mathcal{P}_3$ be the linear transformation we saw earlier: $T(a + bx + cx^2) = b + 2cx$. Let $\mathcal{E} = [1, x, x^2]$ be the standard basis in \mathcal{P}_3 (in both the "from" and "to" role). To get the matrix A that represents Trelative to \mathcal{E} and \mathcal{E} , we first find the result of T applied to each basis vector:

$$T(1) = 0, \quad T(x) = 1, \quad T(x^2) = 2x$$

then find the coordinates of each of those

$$[0]_{\mathcal{E}} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}, \ [1]_{\mathcal{E}} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \ [2x]_{\mathcal{E}} = \begin{pmatrix} 0\\2\\0 \end{pmatrix}$$

Putting those columns into \boldsymbol{A} gives

$$A = \left(\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{array} \right)$$

Putting those columns into \boldsymbol{A} gives

$$A = \left(\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{array} \right)$$

Note how

$$A \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} b \\ 2c \\ 0 \end{pmatrix} \text{ corresponds to } T(a+bx+cx^2) = b+2cx+0x^2.$$