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If L : R — R™ is a linear transformation, then there is a unique n x k
matrix A such that L(x) = Ax for every x in RF.

That is, every linear transformation from R* to R” is a matrix
transformation.

Because of where what we are going to do later, this deserves a proof.
Let £ = {ej,ea,...,e,} be the standard basis for R¥. Consider the
column vectors a; = L(ej) andlet A= | a; ay --- ay ] . Then A

is an n X k matrix, which will turn out to be the one we need.
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If x =

€k,
2 + x2e2 +
" = TIi€ex

Lk
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If x =

T
€2
= x1€e1 + xses + - - - + x1€1, then

Lk

Ax = x1a1 + x99 + - - - + 2%
= le(el) + ng(eg) + -+ ka(ek)
= L($161 + x0€90 4+ - - - 4 xkek) = L(X)

3/15



x1
T2

If x = ) = x1€e1 + xses + - - - + x1€1, then

Lk

Ax = x1a1 + x99 + - - - + 2%
=x1L(e1) + xoL(eg) + -+ + xxL(eg)
= L(xlel + x9€9 + - - + xkek) = L(X)

How do we know A is unique? Well, if Bx = L(x) for every x in R” then
certainly Be; = L(e;) = a;.

3/15



T
€2
If x = . = x1€e1 + xses + - - - + x1€1, then

Lk

Ax = x1a1 + x99 + - - - + 2%
= a:lL(el) + ng(eg) + -+ ka(ek)
= L(mlel + x9€9 + - - + xkek) = L(X)

How do we know A is unique? Well, if Bx = L(x) for every x in R” then
certainly Be; = L(e;) = a;. Since Be; is the jth column of B and a; is
the jth column of A, this says that B and A have the same columns and
so are the same matrix.
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Example

I
i -2
Define L from R3 to R? as follows L | x5 | = [ Ty — 2% + T3 ]
3 xo2 — 313
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xo2 — 313
3
Then
1 0 0
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T
Define L from R? to R? as follows L | zo | = [ Ty — 2x3 + 3 ]
3

Then
1

0
)G )0 ) )
0 0 1

And so the matrix that produces L is A = [ 1 =2 1 ] )

0 1 -3
1
cax— | L 2L (w22t )
Check.Ax_[O 1_3] o _[ St ]_LX
3
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Example

Define L from R? to R? as follows L | z»

1 _[:B1—2:B2—|-£1?3]
z3

Then
1

0
Llo :[é],L 1 :[_f],Lo :[_;’]
0 0 1

And so the matrix that produces L is A = [ 1 =2 1 ] )

0 1 -3
Z1
. _ 1 -2 1 . {L‘1—2£L‘2+ZL‘3 .
Check: Ax = [ 0 1 3 ] ig = [ 9 — 33 ] =[Lx
3

Another example: The rotation transformations Ry satisfy
cos 0 —sinf
Roer = [ sin @ ] and Ryez = [ cos @ ]
cosf) —sinf
Rox = [ sinf  cosf ] x
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The use of bases

We saw that, using a basis B, we could associate vectors v in an
k-dimensional vector space V with column vectors [v]s in R¥.

Using the basis £ in R* we can associate a matrix to any linear
transformation.

Putting these two ideas together, if we have bases for both V' and W, we
can associate a matrix to any linear transformation L : V — W.

The idea is as follows: Let B = [v1,Va,..., V] be a basis for V' (where k
is the dimension of V') and C = [w, w2, ..., w,] a basis for W (where n is
the dimension of W'). The vectors in V' can all be written v = Z?:l TjVj.

Applying the linear transformation L to that, we get L(v) = Z?Zl

Using the basis C for W we can obtain a column vector [L(v)]c.

ijVj.
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The matrix we associate to L is the one that we can multiply by the
coordinates of v to obtain the coordinates of Lv.
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The matrix we associate to L is the one that we can multiply by the
coordinates of v to obtain the coordinates of Lv. To get this matrix, it is
enough to know that the transformation defined in three steps as follows

k
L
XERk———)szxkvkEV———)L(V)EW———)[LV]CERn
j=1
is a linear transformation.
| claim the following are linear transformations:

xy
k - T2 :
S:RF -V definedby S| | =) v,
: =
Tk

T:W — R" defined by T'(w) = [w]c.

If you accept all that, and that T'(L(Sx)) is a linear transformation. then,
since it goes from R* to R™, it must be a matrix transformation. The

matrix A associated to it satisfies A[v|g = [Lv]c.
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Let’s verify that .S is linear.
xy (1 1+
If x = : andy = : sox+y= : ,

T Yk Tk + Yk
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Let’s verify that .S is linear.

x1 n 1+ Y1
If x = : and y = : sOX+y= : , then
Ty Yk Tk + Yk
k
Sx+y) = (x+y)v;
j=1
k k
=D wvit D uv
j=1 j=1
= 5(x) + 5(x)
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Similarly, ax =

azxy
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T
Similarly, ax = : o)

azxy

k
S(ax) = Z(aa:j)vj
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T
Similarly, ax = : o)

AT
k
E 04.1‘3
J=1
=« E IjVj
j=1

= aS(x)

The linearity of T we already used earlier.
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T
Similarly, ax = : o)

azxy

k
S(ax) = Z(aa:j)vj

The linearity of T' we already used earlier. One needs to show that

w+wle=[wlc+ [W]ec and [aw]c = a[w]c.
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Suppose w = > byw; and w' =Y | ¢;w; so that
wH+w =>" (b +c)ws.
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Also, because aw = > | ab;w;,

b1 C1
= | +] [ =TW+THW)
by, Cn,
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Suppose w = > byw; and w' =Y | ¢;w; so that
w+w =>" (bi+ ¢)w;. Thus

b1+ ¢ b1 c1
rowew)= | =] [+ | = rem o)
by + cp b, Cn,

Also, because aw = > | ab;w;,

Oébl bl
T(aw) = =a| : =aT(w).
ab,, b,
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To finish the discussion we have to verify that a composition of linear
transformations is a linear transformation.
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To finish the discussion we have to verify that a composition of linear
transformations is a linear transformation.

If VW, X are vector spaces, L : V — W is a linear transformation and
T : W — X is a linear transformation, then if we define Q : V — X by
Q(v) =T(L(v)), then Q is a linear transformation.

Lets verify that the addition requirement holds: let v and vy be in V.
Since L is linear L(vy + va) = L(v1) + L(va). Since T is linear
T(L(vi+v2)) = T(L(v1) + L(v2)) = T(L(v1)) + T(L(v2))-

That is, Q(v1 + v2) = Q(v1) + Q(va).

Exercise: verify that Q(av) = aQ(v).

We can compose more that just 2 transformations: Because S and L (from
earlier) are linear, so is L(S(x)). Because T is linear, so is T'(L(S(x))).
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Let V' be a vector space with basis 3. Let W be a vector space with basis
C. Let L : V — W be a linear transformation. Then there exists a unique
matrix A that satisfies A[v]|g = [Lv]c.
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The previous discussion is the proof of this theorem. Let
B =[vi,va,...,vi] and C = [wy,Wa,...,w,]. Then T(L(S(x))) is a
linear transformation from R¥ to R and A is the matrix of this
transformation.

z1

Note that if v = %

j—1 TV, then [v]p = | and so S([v]g) = v.

Tk
Also, by definition, T'(L(v)) = [Lv]c. Then we get

Alv]p = T(L(5([v]))) = T(L(v)) = [Lv]e
The matrix A is called the representing matrix for L relative to the bases

B and C.
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The method of obtaining A we saw earlier carries forward to this case: if
B =[vi,Va,...,vi] then A = [ [Lvile [Lvole -+ [Lvile ] . That

is, the columns of A are the coordinate vectors of Lv;, where v; are the
vectors in the ordered basis BB for V.

Example

Let V' be any vector space and B = [v1, Vo, v3] an ordered basis for V.
Define L : V — R? by

2 _
L(a;lvl + x9vo + x3V3) = [ 71+ 2w — 323 ]

3%1 + )
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The method of obtaining A we saw earlier carries forward to this case: if
B =[vi,Va,...,vi] then A = [ [Lvile [Lvole -+ [Lvile ] . That

is, the columns of A are the coordinate vectors of Lv;, where v; are the
vectors in the ordered basis BB for V.

Example

Let V' be any vector space and B = [v1, Vo, v3] an ordered basis for V.
Define L : V — R? by

T, + 229 — 3
L(a;lvl + x9vo + x3V3) = [ 1 32, j_x2 3 ]

Let C = [[ 1 ] , [ :? ]] be an ordered basis for R?.
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The method of obtaining A we saw earlier carries forward to this case: if
B =[vi,Va,...,vi] then A = [ [Lvile [Lvole -+ [Lvile ] . That

is, the columns of A are the coordinate vectors of Lv;, where v; are the
vectors in the ordered basis BB for V.

Example

Let V' be any vector space and B = [v1, Vo, v3] an ordered basis for V.
Define L : V — R? by

T, + 229 — 3
L(aclvl + x9vo + x3V3) = [ 1 32, j_x2 3 ]

1 -1
that represents L relative to B and C.

Let C = [ [ ! ] , [ -2 ] ] be an ordered basis for R2. Find the matrix
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Solution: First compute

L(v1) = [ ;],LM)— [ f]’”"?’)‘ [ _g]

Now compute the coordinates relative to C for these three vectors. We can
do this with the transition matrix:

(172) -(27)

This gives [Lvi]c = [ j f] [;]: [ g ],[LV2]C: [ _(1) ]

ond [Lvale = 5 ]

w w
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_ . 5 03
So the representing matrix is [ 9 _1 3 ]
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So the representing matrix is [ 9 _1 3 ]

Another example

Let T : P3 — P3 be the linear transformation we saw earlier:
T(a+ bz + cx?) = b+ 2cx.
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So the representing matrix is X 0 3
P & 2 -1 3

Another example

Let T : P3 — P3 be the linear transformation we saw earlier:
T(a+ bz + cx?) = b+ 2cx. Let £ = [1, 7, 2?] be the standard basis in P3
(in both the “from” and “to” role). To get the matrix A that represents T
relative to £ and &£, we first find the result of T applied to each basis
vector:

T(1)=0, T(x)=1, T(z*) =2z

then find the coordinates of each of those
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Putting those columns into A gives

A=

o O O
O O =
SN O
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Putting those columns into A gives

010
A=10 0 2
0 00
Note how
a b
Al b | =] 2¢ corresponds to T'(a + bz + ca®) = b+ 2cx + 02°.
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