Linear Transformations

D. H. Luecking

06 March 2024

Theorem

If $L: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ is a linear transformation, then there is a unique $n \times k$ matrix A such that $L(\mathbf{x})=A \mathbf{x}$ for every \mathbf{x} in \mathbb{R}^{k}.

Theorem

If $L: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ is a linear transformation, then there is a unique $n \times k$ matrix A such that $L(\mathbf{x})=A \mathbf{x}$ for every \mathbf{x} in \mathbb{R}^{k}.

That is, every linear transformation from \mathbb{R}^{k} to \mathbb{R}^{n} is a matrix transformation.

Theorem

If $L: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ is a linear transformation, then there is a unique $n \times k$ matrix A such that $L(\mathbf{x})=A \mathbf{x}$ for every \mathbf{x} in \mathbb{R}^{k}.

That is, every linear transformation from \mathbb{R}^{k} to \mathbb{R}^{n} is a matrix transformation.

Because of where what we are going to do later, this deserves a proof.

Theorem

If $L: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ is a linear transformation, then there is a unique $n \times k$ matrix A such that $L(\mathbf{x})=A \mathbf{x}$ for every \mathbf{x} in \mathbb{R}^{k}.

That is, every linear transformation from \mathbb{R}^{k} to \mathbb{R}^{n} is a matrix transformation.

Because of where what we are going to do later, this deserves a proof. Let $\mathcal{E}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{k}\right\}$ be the standard basis for \mathbb{R}^{k}. Consider the column vectors $\mathbf{a}_{j}=L\left(e_{j}\right)$ and let $A=\left(\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{k}\end{array}\right)$.

Theorem

If $L: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ is a linear transformation, then there is a unique $n \times k$ matrix A such that $L(\mathbf{x})=A \mathbf{x}$ for every \mathbf{x} in \mathbb{R}^{k}.

That is, every linear transformation from \mathbb{R}^{k} to \mathbb{R}^{n} is a matrix transformation.

Because of where what we are going to do later, this deserves a proof. Let $\mathcal{E}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{k}\right\}$ be the standard basis for \mathbb{R}^{k}. Consider the column vectors $\mathbf{a}_{j}=L\left(e_{j}\right)$ and let $A=\left(\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{k}\end{array}\right)$. Then A is an $n \times k$ matrix, which will turn out to be the one we need.

If $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{k}\end{array}\right)=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{k} \mathbf{e}_{k}$

If $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{k}\end{array}\right)=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{k} \mathbf{e}_{k}$, then

$$
\begin{aligned}
A \mathbf{x} & =x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{k} \mathbf{a}_{k} \\
& =x_{1} L\left(\mathbf{e}_{1}\right)+x_{2} L\left(\mathbf{e}_{2}\right)+\cdots+x_{k} L\left(\mathbf{e}_{k}\right) \\
& =L\left(x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{k} \mathbf{e}_{k}\right)=L(\mathbf{x})
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } \mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{k}
\end{array}\right)=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{k} \mathbf{e}_{k}, \text { then } \\
& A \mathbf{x}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{k} \mathbf{a}_{k} \\
& =x_{1} L\left(\mathbf{e}_{1}\right)+x_{2} L\left(\mathbf{e}_{2}\right)+\cdots+x_{k} L\left(\mathbf{e}_{k}\right) \\
& =L\left(x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{k} \mathbf{e}_{k}\right)=L(\mathbf{x})
\end{aligned}
$$

How do we know A is unique? Well, if $B \mathbf{x}=L(\mathbf{x})$ for every \mathbf{x} in \mathbb{R}^{k} then certainly $B \mathbf{e}_{j}=L\left(\mathbf{e}_{j}\right)=\mathbf{a}_{j}$.

$$
\begin{aligned}
& \text { If } \mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{k}
\end{array}\right)=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{k} \mathbf{e}_{k}, \text { then } \\
& A \mathbf{x}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{k} \mathbf{a}_{k} \\
& =x_{1} L\left(\mathbf{e}_{1}\right)+x_{2} L\left(\mathbf{e}_{2}\right)+\cdots+x_{k} L\left(\mathbf{e}_{k}\right) \\
& =L\left(x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{k} \mathbf{e}_{k}\right)=L(\mathbf{x})
\end{aligned}
$$

How do we know A is unique? Well, if $B \mathbf{x}=L(\mathbf{x})$ for every \mathbf{x} in \mathbb{R}^{k} then certainly $B \mathbf{e}_{j}=L\left(\mathbf{e}_{j}\right)=\mathbf{a}_{j}$. Since $B \mathbf{e}_{j}$ is the j th column of B and \mathbf{a}_{j} is the j th column of A, this says that B and A have the same columns and so are the same matrix.

Example

Define L from \mathbb{R}^{3} to \mathbb{R}^{2} as follows $L\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\binom{x_{1}-2 x_{2}+x_{3}}{x_{2}-3 x_{3}}$

Example

Define L from \mathbb{R}^{3} to \mathbb{R}^{2} as follows $L\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\binom{x_{1}-2 x_{2}+x_{3}}{x_{2}-3 x_{3}}$
Then

$$
L\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\binom{1}{0}, L\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\binom{-2}{1}, L\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\binom{1}{-3}
$$

Example

Define L from \mathbb{R}^{3} to \mathbb{R}^{2} as follows $L\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\binom{x_{1}-2 x_{2}+x_{3}}{x_{2}-3 x_{3}}$
Then

$$
L\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\binom{1}{0}, L\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\binom{-2}{1}, L\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\binom{1}{-3}
$$

And so the matrix that produces L is $A=\left(\begin{array}{rrr}1 & -2 & 1 \\ 0 & 1 & -3\end{array}\right)$.

Example

Define L from \mathbb{R}^{3} to \mathbb{R}^{2} as follows $L\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\binom{x_{1}-2 x_{2}+x_{3}}{x_{2}-3 x_{3}}$
Then
$L\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\binom{1}{0}, L\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=\binom{-2}{1}, L\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=\binom{1}{-3}$
And so the matrix that produces L is $A=\left(\begin{array}{rrr}1 & -2 & 1 \\ 0 & 1 & -3\end{array}\right)$.
Check: $A \mathbf{x}=\left(\begin{array}{rrr}1 & -2 & 1 \\ 0 & 1 & -3\end{array}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\binom{x_{1}-2 x_{2}+x_{3}}{x_{2}-3 x_{3}}=L \mathbf{x}$

Example

Define L from \mathbb{R}^{3} to \mathbb{R}^{2} as follows $L\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\binom{x_{1}-2 x_{2}+x_{3}}{x_{2}-3 x_{3}}$
Then
$L\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\binom{1}{0}, L\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=\binom{-2}{1}, L\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=\binom{1}{-3}$
And so the matrix that produces L is $A=\left(\begin{array}{rrr}1 & -2 & 1 \\ 0 & 1 & -3\end{array}\right)$.
Check: $A \mathbf{x}=\left(\begin{array}{rrr}1 & -2 & 1 \\ 0 & 1 & -3\end{array}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\binom{x_{1}-2 x_{2}+x_{3}}{x_{2}-3 x_{3}}=L \mathbf{x}$
Another example: The rotation transformations R_{θ} satisfy
$R_{\theta} \mathbf{e}_{1}=\binom{\cos \theta}{\sin \theta}$ and $R_{\theta} \mathbf{e}_{2}=\binom{-\sin \theta}{\cos \theta}$

Example

Define L from \mathbb{R}^{3} to \mathbb{R}^{2} as follows $L\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\binom{x_{1}-2 x_{2}+x_{3}}{x_{2}-3 x_{3}}$
Then
$L\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\binom{1}{0}, L\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=\binom{-2}{1}, L\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=\binom{1}{-3}$
And so the matrix that produces L is $A=\left(\begin{array}{rrr}1 & -2 & 1 \\ 0 & 1 & -3\end{array}\right)$.
Check: $A \mathbf{x}=\left(\begin{array}{rrr}1 & -2 & 1 \\ 0 & 1 & -3\end{array}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\binom{x_{1}-2 x_{2}+x_{3}}{x_{2}-3 x_{3}}=L \mathbf{x}$
Another example: The rotation transformations R_{θ} satisfy
$R_{\theta} \mathbf{e}_{1}=\binom{\cos \theta}{\sin \theta}$ and $R_{\theta} \mathbf{e}_{2}=\binom{-\sin \theta}{\cos \theta}$ so
$R_{\theta} \mathbf{x}=\left(\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right) \mathbf{x}$.

The use of bases

The use of bases

We saw that, using a basis \mathcal{B}, we could associate vectors \mathbf{v} in an k-dimensional vector space V with column vectors $[\mathbf{v}]_{\mathcal{B}}$ in \mathbb{R}^{k}.

The use of bases

We saw that, using a basis \mathcal{B}, we could associate vectors \mathbf{v} in an k-dimensional vector space V with column vectors $[\mathbf{v}]_{\mathcal{B}}$ in \mathbb{R}^{k}. Using the basis \mathcal{E} in \mathbb{R}^{k} we can associate a matrix to any linear transformation.

The use of bases

We saw that, using a basis \mathcal{B}, we could associate vectors \mathbf{v} in an k-dimensional vector space V with column vectors $[\mathbf{v}]_{\mathcal{B}}$ in \mathbb{R}^{k}. Using the basis \mathcal{E} in \mathbb{R}^{k} we can associate a matrix to any linear transformation.

Putting these two ideas together, if we have bases for both V and W, we can associate a matrix to any linear transformation $L: V \rightarrow W$.

The use of bases

We saw that, using a basis \mathcal{B}, we could associate vectors \mathbf{v} in an k-dimensional vector space V with column vectors $[\mathbf{v}]_{\mathcal{B}}$ in \mathbb{R}^{k}. Using the basis \mathcal{E} in \mathbb{R}^{k} we can associate a matrix to any linear transformation.

Putting these two ideas together, if we have bases for both V and W, we can associate a matrix to any linear transformation $L: V \rightarrow W$.
The idea is as follows: Let $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right]$ be a basis for V (where k is the dimension of V)

The use of bases

We saw that, using a basis \mathcal{B}, we could associate vectors \mathbf{v} in an k-dimensional vector space V with column vectors $[\mathbf{v}]_{\mathcal{B}}$ in \mathbb{R}^{k}. Using the basis \mathcal{E} in \mathbb{R}^{k} we can associate a matrix to any linear transformation.

Putting these two ideas together, if we have bases for both V and W, we can associate a matrix to any linear transformation $L: V \rightarrow W$.
The idea is as follows: Let $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right]$ be a basis for V (where k is the dimension of V) and $\mathcal{C}=\left[\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}\right]$ a basis for W (where n is the dimension of W).

The use of bases

We saw that, using a basis \mathcal{B}, we could associate vectors \mathbf{v} in an k-dimensional vector space V with column vectors $[\mathbf{v}]_{\mathcal{B}}$ in \mathbb{R}^{k}. Using the basis \mathcal{E} in \mathbb{R}^{k} we can associate a matrix to any linear transformation.
Putting these two ideas together, if we have bases for both V and W, we can associate a matrix to any linear transformation $L: V \rightarrow W$.
The idea is as follows: Let $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right]$ be a basis for V (where k is the dimension of V) and $\mathcal{C}=\left[\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}\right]$ a basis for W (where n is the dimension of W). The vectors in V can all be written $\mathbf{v}=\sum_{j=1}^{k} x_{j} \mathbf{v}_{j}$.

The use of bases

We saw that, using a basis \mathcal{B}, we could associate vectors \mathbf{v} in an k-dimensional vector space V with column vectors $[\mathbf{v}]_{\mathcal{B}}$ in \mathbb{R}^{k}. Using the basis \mathcal{E} in \mathbb{R}^{k} we can associate a matrix to any linear transformation.
Putting these two ideas together, if we have bases for both V and W, we can associate a matrix to any linear transformation $L: V \rightarrow W$.
The idea is as follows: Let $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right]$ be a basis for V (where k is the dimension of V) and $\mathcal{C}=\left[\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}\right]$ a basis for W (where n is the dimension of $W)$. The vectors in V can all be written $\mathbf{v}=\sum_{j=1}^{k} x_{j} \mathbf{v}_{j}$. Applying the linear transformation L to that, we get $L(\mathbf{v})=\sum_{j=1}^{k} x_{j} L \mathbf{v}_{j}$.

The use of bases

We saw that, using a basis \mathcal{B}, we could associate vectors \mathbf{v} in an k-dimensional vector space V with column vectors $[\mathbf{v}]_{\mathcal{B}}$ in \mathbb{R}^{k}. Using the basis \mathcal{E} in \mathbb{R}^{k} we can associate a matrix to any linear transformation.
Putting these two ideas together, if we have bases for both V and W, we can associate a matrix to any linear transformation $L: V \rightarrow W$.
The idea is as follows: Let $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right]$ be a basis for V (where k is the dimension of V) and $\mathcal{C}=\left[\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}\right]$ a basis for W (where n is the dimension of $W)$. The vectors in V can all be written $\mathbf{v}=\sum_{j=1}^{k} x_{j} \mathbf{v}_{j}$. Applying the linear transformation L to that, we get $L(\mathbf{v})=\sum_{j=1}^{k} x_{j} L \mathbf{v}_{j}$. Using the basis \mathcal{C} for W we can obtain a column vector $[L(\mathbf{v})]_{\mathcal{C}}$.

The matrix we associate to L is the one that we can multiply by the coordinates of \mathbf{v} to obtain the coordinates of $L \mathbf{v}$.

The matrix we associate to L is the one that we can multiply by the coordinates of \mathbf{v} to obtain the coordinates of $L \mathbf{v}$. To get this matrix, it is enough to know that the transformation defined in three steps as follows

$$
\mathbf{x} \in \mathbb{R}^{k} \longrightarrow \mathbf{v}=\sum_{j=1}^{k} x_{k} \mathbf{v}_{k} \in V \xrightarrow{L} L(\mathbf{v}) \in W \longrightarrow[L \mathbf{v}]_{\mathcal{C}} \in \mathbb{R}^{n}
$$

is a linear transformation.

The matrix we associate to L is the one that we can multiply by the coordinates of \mathbf{v} to obtain the coordinates of $L \mathbf{v}$. To get this matrix, it is enough to know that the transformation defined in three steps as follows

$$
\mathbf{x} \in \mathbb{R}^{k} \longrightarrow \mathbf{v}=\sum_{j=1}^{k} x_{k} \mathbf{v}_{k} \in V \xrightarrow{L} L(\mathbf{v}) \in W \longrightarrow[L \mathbf{v}]_{\mathcal{C}} \in \mathbb{R}^{n}
$$

is a linear transformation.
I claim the following are linear transformations:

$$
\begin{aligned}
& S: \mathbb{R}^{k} \rightarrow V \text { defined by } S\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{k}
\end{array}\right)=\sum_{j=1}^{k} x_{j} \mathbf{v}_{j} \\
& T: W \rightarrow \mathbb{R}^{n} \text { defined by } T(\mathbf{w})=[\mathbf{w}]_{\mathcal{C}} .
\end{aligned}
$$

The matrix we associate to L is the one that we can multiply by the coordinates of \mathbf{v} to obtain the coordinates of $L \mathbf{v}$. To get this matrix, it is enough to know that the transformation defined in three steps as follows

$$
\mathbf{x} \in \mathbb{R}^{k} \longrightarrow \mathbf{v}=\sum_{j=1}^{k} x_{k} \mathbf{v}_{k} \in V \xrightarrow{L} L(\mathbf{v}) \in W \longrightarrow[L \mathbf{v}]_{\mathcal{C}} \in \mathbb{R}^{n}
$$

is a linear transformation.
I claim the following are linear transformations:

$$
\begin{aligned}
& S: \mathbb{R}^{k} \rightarrow V \text { defined by } S\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{k}
\end{array}\right)=\sum_{j=1}^{k} x_{j} \mathbf{v}_{j} \\
& T: W \rightarrow \mathbb{R}^{n} \text { defined by } T(\mathbf{w})=[\mathbf{w}]_{\mathcal{C}} .
\end{aligned}
$$

If you accept all that, and that $T(L(S \mathbf{x}))$ is a linear transformation. then, since it goes from \mathbb{R}^{k} to \mathbb{R}^{n}, it must be a matrix transformation. The matrix A associated to it satisfies $A[\mathbf{v}]_{\mathcal{B}}=[L \mathbf{v}]_{\mathcal{C}}$.

Let's verify that S is linear.
If $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{k}\end{array}\right)$ and $\mathbf{y}=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{k}\end{array}\right)$ so $\mathbf{x}+\mathbf{y}=\left(\begin{array}{c}x_{1}+y_{1} \\ \vdots \\ x_{k}+y_{k}\end{array}\right)$,

Let's verify that S is linear.
If $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{k}\end{array}\right)$ and $\mathbf{y}=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{k}\end{array}\right)$ so $\mathbf{x}+\mathbf{y}=\left(\begin{array}{c}x_{1}+y_{1} \\ \vdots \\ x_{k}+y_{k}\end{array}\right)$, then

$$
\begin{aligned}
S(\mathbf{x}+\mathbf{y}) & =\sum_{j=1}^{k}\left(x_{j}+y_{j}\right) \mathbf{v}_{j} \\
& =\sum_{j=1}^{k} x_{j} \mathbf{v}_{j}+\sum_{j=1}^{k} y_{j} \mathbf{v}_{j} \\
& =S(\mathbf{x})+S(\mathbf{x})
\end{aligned}
$$

Similarly, $\alpha \mathbf{x}=\left(\begin{array}{c}\alpha x_{1} \\ \vdots \\ \alpha x_{k}\end{array}\right)$

Similarly, $\alpha \mathbf{x}=\left(\begin{array}{c}\alpha x_{1} \\ \vdots \\ \alpha x_{k}\end{array}\right)$ so

$$
\begin{aligned}
S(\alpha \mathbf{x}) & =\sum_{j=1}^{k}\left(\alpha x_{j}\right) \mathbf{v}_{j} \\
& =\alpha \sum_{j=1}^{k} x_{j} \mathbf{v}_{j} \\
& =\alpha S(\mathbf{x})
\end{aligned}
$$

Similarly, $\alpha \mathbf{x}=\left(\begin{array}{c}\alpha x_{1} \\ \vdots \\ \alpha x_{k}\end{array}\right)$ so

$$
\begin{aligned}
S(\alpha \mathbf{x}) & =\sum_{j=1}^{k}\left(\alpha x_{j}\right) \mathbf{v}_{j} \\
& =\alpha \sum_{j=1}^{k} x_{j} \mathbf{v}_{j} \\
& =\alpha S(\mathbf{x})
\end{aligned}
$$

The linearity of T we already used earlier.

Similarly, $\alpha \mathbf{x}=\left(\begin{array}{c}\alpha x_{1} \\ \vdots \\ \alpha x_{k}\end{array}\right)$ so

$$
\begin{aligned}
S(\alpha \mathbf{x}) & =\sum_{j=1}^{k}\left(\alpha x_{j}\right) \mathbf{v}_{j} \\
& =\alpha \sum_{j=1}^{k} x_{j} \mathbf{v}_{j} \\
& =\alpha S(\mathbf{x})
\end{aligned}
$$

The linearity of T we already used earlier. One needs to show that

$$
\left[\mathbf{w}+\mathbf{w}^{\prime}\right]_{\mathcal{C}}=[\mathbf{w}]_{\mathcal{C}}+\left[\mathbf{w}^{\prime}\right]_{\mathcal{C}} \quad \text { and } \quad[\alpha \mathbf{w}]_{\mathcal{C}}=\alpha[\mathbf{w}]_{\mathcal{C}}
$$

Suppose $\mathbf{w}=\sum_{i=1}^{n} b_{i} \mathbf{w}_{i}$ and $\mathbf{w}^{\prime}=\sum_{i=1}^{n} c_{i} \mathbf{w}_{i}$ so that $\mathbf{w}+\mathbf{w}^{\prime}=\sum_{i=1}^{n}\left(b_{i}+c_{i}\right) \mathbf{w}_{i}$.

Suppose $\mathbf{w}=\sum_{i=1}^{n} b_{i} \mathbf{w}_{i}$ and $\mathbf{w}^{\prime}=\sum_{i=1}^{n} c_{i} \mathbf{w}_{i}$ so that $\mathbf{w}+\mathbf{w}^{\prime}=\sum_{i=1}^{n}\left(b_{i}+c_{i}\right) \mathbf{w}_{i}$. Thus

$$
T\left(\mathbf{w}+\mathbf{w}^{\prime}\right)=\left(\begin{array}{c}
b_{1}+c_{1} \\
\vdots \\
b_{n}+c_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)+\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=T(\mathbf{w})+T\left(\mathbf{w}^{\prime}\right)
$$

Suppose $\mathbf{w}=\sum_{i=1}^{n} b_{i} \mathbf{w}_{i}$ and $\mathbf{w}^{\prime}=\sum_{i=1}^{n} c_{i} \mathbf{w}_{i}$ so that $\mathbf{w}+\mathbf{w}^{\prime}=\sum_{i=1}^{n}\left(b_{i}+c_{i}\right) \mathbf{w}_{i}$. Thus

$$
T\left(\mathbf{w}+\mathbf{w}^{\prime}\right)=\left(\begin{array}{c}
b_{1}+c_{1} \\
\vdots \\
b_{n}+c_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)+\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=T(\mathbf{w})+T\left(\mathbf{w}^{\prime}\right)
$$

Also, because $\alpha \mathbf{w}=\sum_{i=1}^{n} \alpha b_{i} \mathbf{w}_{i}$,

Suppose $\mathbf{w}=\sum_{i=1}^{n} b_{i} \mathbf{w}_{i}$ and $\mathbf{w}^{\prime}=\sum_{i=1}^{n} c_{i} \mathbf{w}_{i}$ so that $\mathbf{w}+\mathbf{w}^{\prime}=\sum_{i=1}^{n}\left(b_{i}+c_{i}\right) \mathbf{w}_{i}$. Thus

$$
T\left(\mathbf{w}+\mathbf{w}^{\prime}\right)=\left(\begin{array}{c}
b_{1}+c_{1} \\
\vdots \\
b_{n}+c_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)+\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=T(\mathbf{w})+T\left(\mathbf{w}^{\prime}\right)
$$

Also, because $\alpha \mathbf{w}=\sum_{i=1}^{n} \alpha b_{i} \mathbf{w}_{i}$,

$$
T(\alpha \mathbf{w})=\left(\begin{array}{c}
\alpha b_{1} \\
\vdots \\
\alpha b_{n}
\end{array}\right)=\alpha\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)=\alpha T(\mathbf{w})
$$

To finish the discussion we have to verify that a composition of linear transformations is a linear transformation.

To finish the discussion we have to verify that a composition of linear transformations is a linear transformation.

Theorem

If V, W, X are vector spaces, $L: V \rightarrow W$ is a linear transformation and $T: W \rightarrow X$ is a linear transformation, then if we define $Q: V \rightarrow X$ by $Q(\mathbf{v})=T(L(\mathbf{v}))$, then Q is a linear transformation.

To finish the discussion we have to verify that a composition of linear transformations is a linear transformation.

Theorem

If V, W, X are vector spaces, $L: V \rightarrow W$ is a linear transformation and $T: W \rightarrow X$ is a linear transformation, then if we define $Q: V \rightarrow X$ by $Q(\mathbf{v})=T(L(\mathbf{v}))$, then Q is a linear transformation.

Lets verify that the addition requirement holds: let \mathbf{v}_{1} and \mathbf{v}_{2} be in V.

To finish the discussion we have to verify that a composition of linear transformations is a linear transformation.

Theorem

If V, W, X are vector spaces, $L: V \rightarrow W$ is a linear transformation and $T: W \rightarrow X$ is a linear transformation, then if we define $Q: V \rightarrow X$ by $Q(\mathbf{v})=T(L(\mathbf{v}))$, then Q is a linear transformation.

Lets verify that the addition requirement holds: let \mathbf{v}_{1} and \mathbf{v}_{2} be in V. Since L is linear $L\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=L\left(\mathbf{v}_{1}\right)+L\left(\mathbf{v}_{2}\right)$.

To finish the discussion we have to verify that a composition of linear transformations is a linear transformation.

Theorem

If V, W, X are vector spaces, $L: V \rightarrow W$ is a linear transformation and $T: W \rightarrow X$ is a linear transformation, then if we define $Q: V \rightarrow X$ by $Q(\mathbf{v})=T(L(\mathbf{v}))$, then Q is a linear transformation.

Lets verify that the addition requirement holds: let \mathbf{v}_{1} and \mathbf{v}_{2} be in V. Since L is linear $L\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=L\left(\mathbf{v}_{1}\right)+L\left(\mathbf{v}_{2}\right)$. Since T is linear $T\left(L\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)\right)=T\left(L\left(\mathbf{v}_{1}\right)+L\left(\mathbf{v}_{2}\right)\right)=T\left(L\left(\mathbf{v}_{1}\right)\right)+T\left(L\left(\mathbf{v}_{2}\right)\right)$.

To finish the discussion we have to verify that a composition of linear transformations is a linear transformation.

Theorem

If V, W, X are vector spaces, $L: V \rightarrow W$ is a linear transformation and $T: W \rightarrow X$ is a linear transformation, then if we define $Q: V \rightarrow X$ by $Q(\mathbf{v})=T(L(\mathbf{v}))$, then Q is a linear transformation.

Lets verify that the addition requirement holds: let \mathbf{v}_{1} and \mathbf{v}_{2} be in V. Since L is linear $L\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=L\left(\mathbf{v}_{1}\right)+L\left(\mathbf{v}_{2}\right)$. Since T is linear $T\left(L\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)\right)=T\left(L\left(\mathbf{v}_{1}\right)+L\left(\mathbf{v}_{2}\right)\right)=T\left(L\left(\mathbf{v}_{1}\right)\right)+T\left(L\left(\mathbf{v}_{2}\right)\right)$.
That is, $Q\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=Q\left(\mathbf{v}_{1}\right)+Q\left(\mathbf{v}_{2}\right)$.

To finish the discussion we have to verify that a composition of linear transformations is a linear transformation.

Theorem

If V, W, X are vector spaces, $L: V \rightarrow W$ is a linear transformation and $T: W \rightarrow X$ is a linear transformation, then if we define $Q: V \rightarrow X$ by $Q(\mathbf{v})=T(L(\mathbf{v}))$, then Q is a linear transformation.

Lets verify that the addition requirement holds: let \mathbf{v}_{1} and \mathbf{v}_{2} be in V. Since L is linear $L\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=L\left(\mathbf{v}_{1}\right)+L\left(\mathbf{v}_{2}\right)$. Since T is linear $T\left(L\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)\right)=T\left(L\left(\mathbf{v}_{1}\right)+L\left(\mathbf{v}_{2}\right)\right)=T\left(L\left(\mathbf{v}_{1}\right)\right)+T\left(L\left(\mathbf{v}_{2}\right)\right)$.
That is, $Q\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=Q\left(\mathbf{v}_{1}\right)+Q\left(\mathbf{v}_{2}\right)$.
Exercise: verify that $Q(\alpha \mathbf{v})=\alpha Q(\mathbf{v})$.

To finish the discussion we have to verify that a composition of linear transformations is a linear transformation.

Theorem

If V, W, X are vector spaces, $L: V \rightarrow W$ is a linear transformation and $T: W \rightarrow X$ is a linear transformation, then if we define $Q: V \rightarrow X$ by $Q(\mathbf{v})=T(L(\mathbf{v}))$, then Q is a linear transformation.

Lets verify that the addition requirement holds: let \mathbf{v}_{1} and \mathbf{v}_{2} be in V. Since L is linear $L\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=L\left(\mathbf{v}_{1}\right)+L\left(\mathbf{v}_{2}\right)$. Since T is linear $T\left(L\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)\right)=T\left(L\left(\mathbf{v}_{1}\right)+L\left(\mathbf{v}_{2}\right)\right)=T\left(L\left(\mathbf{v}_{1}\right)\right)+T\left(L\left(\mathbf{v}_{2}\right)\right)$.
That is, $Q\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=Q\left(\mathbf{v}_{1}\right)+Q\left(\mathbf{v}_{2}\right)$.
Exercise: verify that $Q(\alpha \mathbf{v})=\alpha Q(\mathbf{v})$.
We can compose more that just 2 transformations: Because S and L (from earlier) are linear, so is $L(S(\mathbf{x}))$. Because T is linear, so is $T(L(S(\mathbf{x})))$.

Theorem

Let V be a vector space with basis \mathcal{B}. Let W be a vector space with basis \mathcal{C}. Let $L: V \rightarrow W$ be a linear transformation. Then there exists a unique matrix A that satisfies $A[\mathbf{v}]_{\mathcal{B}}=[L \mathbf{v}]_{\mathcal{C}}$.

Theorem

Let V be a vector space with basis \mathcal{B}. Let W be a vector space with basis \mathcal{C}. Let $L: V \rightarrow W$ be a linear transformation. Then there exists a unique matrix A that satisfies $A[\mathbf{v}]_{\mathcal{B}}=[L \mathbf{v}]_{\mathcal{C}}$.

The previous discussion is the proof of this theorem. Let $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right]$ and $\mathcal{C}=\left[\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}\right]$.

Theorem

Let V be a vector space with basis \mathcal{B}. Let W be a vector space with basis \mathcal{C}. Let $L: V \rightarrow W$ be a linear transformation. Then there exists a unique matrix A that satisfies $A[\mathbf{v}]_{\mathcal{B}}=[L \mathbf{v}]_{\mathcal{C}}$.

The previous discussion is the proof of this theorem. Let $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right]$ and $\mathcal{C}=\left[\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}\right]$. Then $T(L(S(\mathbf{x})))$ is a linear transformation from \mathbb{R}^{k} to \mathbb{R}^{n} and A is the matrix of this transformation.

Theorem

Let V be a vector space with basis \mathcal{B}. Let W be a vector space with basis \mathcal{C}. Let $L: V \rightarrow W$ be a linear transformation. Then there exists a unique matrix A that satisfies $A[\mathbf{v}]_{\mathcal{B}}=[L \mathbf{v}]_{\mathcal{C}}$.

The previous discussion is the proof of this theorem. Let $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right]$ and $\mathcal{C}=\left[\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}\right]$. Then $T(L(S(\mathbf{x})))$ is a linear transformation from \mathbb{R}^{k} to \mathbb{R}^{n} and A is the matrix of this transformation.
Note that if $\mathbf{v}=\sum_{j=1}^{k} x_{j} \mathbf{v}_{j}$, then $[\mathbf{v}]_{\mathcal{B}}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{k}\end{array}\right)$ and so $S\left([\mathbf{v}]_{\mathcal{B}}\right)=\mathbf{v}$.

Theorem

Let V be a vector space with basis \mathcal{B}. Let W be a vector space with basis \mathcal{C}. Let $L: V \rightarrow W$ be a linear transformation. Then there exists a unique matrix A that satisfies $A[\mathbf{v}]_{\mathcal{B}}=[L \mathbf{v}]_{\mathcal{C}}$.

The previous discussion is the proof of this theorem. Let $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right]$ and $\mathcal{C}=\left[\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}\right]$. Then $T(L(S(\mathbf{x})))$ is a linear transformation from \mathbb{R}^{k} to \mathbb{R}^{n} and A is the matrix of this transformation.
Note that if $\mathbf{v}=\sum_{j=1}^{k} x_{j} \mathbf{v}_{j}$, then $[\mathbf{v}]_{\mathcal{B}}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{k}\end{array}\right)$ and so $S\left([\mathbf{v}]_{\mathcal{B}}\right)=\mathbf{v}$. Also, by definition, $T(L(\mathbf{v}))=[L \mathbf{v}]_{\mathcal{C}}$. Then we get

$$
A[\mathbf{v}]_{\mathcal{B}}=T\left(L\left(S\left([\mathbf{v}]_{\mathcal{B}}\right)\right)\right)=T(L(\mathbf{v}))=[L \mathbf{v}]_{\mathcal{C}}
$$

Theorem

Let V be a vector space with basis \mathcal{B}. Let W be a vector space with basis \mathcal{C}. Let $L: V \rightarrow W$ be a linear transformation. Then there exists a unique matrix A that satisfies $A[\mathbf{v}]_{\mathcal{B}}=[L \mathbf{v}]_{\mathcal{C}}$.

The previous discussion is the proof of this theorem. Let $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right]$ and $\mathcal{C}=\left[\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}\right]$. Then $T(L(S(\mathbf{x})))$ is a linear transformation from \mathbb{R}^{k} to \mathbb{R}^{n} and A is the matrix of this transformation.
Note that if $\mathbf{v}=\sum_{j=1}^{k} x_{j} \mathbf{v}_{j}$, then $[\mathbf{v}]_{\mathcal{B}}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{k}\end{array}\right)$ and so $S\left([\mathbf{v}]_{\mathcal{B}}\right)=\mathbf{v}$. Also, by definition, $T(L(\mathbf{v}))=[L \mathbf{v}]_{\mathcal{C}}$. Then we get

$$
A[\mathbf{v}]_{\mathcal{B}}=T\left(L\left(S\left([\mathbf{v}]_{\mathcal{B}}\right)\right)\right)=T(L(\mathbf{v}))=[L \mathbf{v}]_{\mathcal{C}}
$$

The matrix A is called the representing matrix for L relative to the bases \mathcal{B} and \mathcal{C}.

The method of obtaining A we saw earlier carries forward to this case: if $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right]$ then $A=\left(\begin{array}{llll}{\left[L \mathbf{v}_{1}\right]_{\mathcal{C}}} & {\left[L \mathbf{v}_{2}\right]_{\mathcal{C}}} & \cdots & {\left[L \mathbf{v}_{k}\right]_{\mathcal{C}}}\end{array}\right)$.

The method of obtaining A we saw earlier carries forward to this case: if $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right]$ then $A=\left(\begin{array}{llll}{\left[L \mathbf{v}_{1}\right]_{\mathcal{C}}} & {\left[L \mathbf{v}_{2}\right]_{\mathcal{C}}} & \cdots & {\left[L \mathbf{v}_{k}\right]_{\mathcal{C}}}\end{array}\right)$. That is, the columns of A are the coordinate vectors of $L \mathbf{v}_{j}$, where \mathbf{v}_{j} are the vectors in the ordered basis \mathcal{B} for V.

Example

Let V be any vector space and $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right]$ an ordered basis for V.

The method of obtaining A we saw earlier carries forward to this case: if $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right]$ then $A=\left(\begin{array}{llll}{\left[L \mathbf{v}_{1}\right]_{\mathcal{C}}} & {\left[L \mathbf{v}_{2}\right]_{\mathcal{C}}} & \cdots & {\left[L \mathbf{v}_{k}\right]_{\mathcal{C}}}\end{array}\right)$. That is, the columns of A are the coordinate vectors of $L \mathbf{v}_{j}$, where \mathbf{v}_{j} are the vectors in the ordered basis \mathcal{B} for V.

Example

Let V be any vector space and $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right]$ an ordered basis for V. Define $L: V \rightarrow \mathbb{R}^{2}$ by

$$
L\left(x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}\right)=\binom{x_{1}+2 x_{2}-3 x_{3}}{3 x_{1}+x_{2}}
$$

The method of obtaining A we saw earlier carries forward to this case: if $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right]$ then $A=\left(\begin{array}{llll}{\left[L \mathbf{v}_{1}\right]_{\mathcal{C}}} & {\left[L \mathbf{v}_{2}\right]_{\mathcal{C}}} & \cdots & {\left[L \mathbf{v}_{k}\right]_{\mathcal{C}}}\end{array}\right)$. That is, the columns of A are the coordinate vectors of $L \mathbf{v}_{j}$, where \mathbf{v}_{j} are the vectors in the ordered basis \mathcal{B} for V.

Example

Let V be any vector space and $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right]$ an ordered basis for V. Define $L: V \rightarrow \mathbb{R}^{2}$ by

$$
L\left(x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}\right)=\binom{x_{1}+2 x_{2}-3 x_{3}}{3 x_{1}+x_{2}}
$$

Let $\mathcal{C}=\left[\binom{1}{1},\binom{-2}{-1}\right]$ be an ordered basis for \mathbb{R}^{2}.

The method of obtaining A we saw earlier carries forward to this case: if $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right]$ then $A=\left(\begin{array}{llll}{\left[L \mathbf{v}_{1}\right]_{\mathcal{C}}} & {\left[L \mathbf{v}_{2}\right]_{\mathcal{C}}} & \cdots & {\left[L \mathbf{v}_{k}\right]_{\mathcal{C}}}\end{array}\right)$. That is, the columns of A are the coordinate vectors of $L \mathbf{v}_{j}$, where \mathbf{v}_{j} are the vectors in the ordered basis \mathcal{B} for V.

Example

Let V be any vector space and $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right]$ an ordered basis for V. Define $L: V \rightarrow \mathbb{R}^{2}$ by

$$
L\left(x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}\right)=\binom{x_{1}+2 x_{2}-3 x_{3}}{3 x_{1}+x_{2}}
$$

Let $\mathcal{C}=\left[\binom{1}{1},\binom{-2}{-1}\right]$ be an ordered basis for \mathbb{R}^{2}. Find the matrix that represents L relative to \mathcal{B} and \mathcal{C}.

Solution: First compute

$$
L\left(\mathbf{v}_{1}\right)=\binom{1}{3}, L\left(\mathbf{v}_{2}\right)=\binom{2}{1}, L\left(\mathbf{v}_{3}\right)=\binom{-3}{0}
$$

Now compute the coordinates relative to \mathcal{C} for these three vectors. We can do this with the transition matrix:

$$
\left(\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right)^{-1}=\left(\begin{array}{ll}
-1 & 2 \\
-1 & 1
\end{array}\right)
$$

This gives $\left[L \mathbf{v}_{1}\right]_{\mathcal{C}}=\left(\begin{array}{ll}-1 & 2 \\ -1 & 1\end{array}\right)\binom{1}{3}=\binom{5}{2},\left[L \mathbf{v}_{2}\right]_{\mathcal{C}}=\binom{0}{-1}$, and $\left[L \mathbf{v}_{3}\right]_{\mathcal{C}}=\binom{3}{3}$

So the representing matrix is $\left(\begin{array}{rrr}5 & 0 & 3 \\ 2 & -1 & 3\end{array}\right)$

So the representing matrix is $\left(\begin{array}{rrr}5 & 0 & 3 \\ 2 & -1 & 3\end{array}\right)$

Another example

Let $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ be the linear transformation we saw earlier: $T\left(a+b x+c x^{2}\right)=b+2 c x$.

So the representing matrix is $\left(\begin{array}{rrr}5 & 0 & 3 \\ 2 & -1 & 3\end{array}\right)$

Another example

Let $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ be the linear transformation we saw earlier:
$T\left(a+b x+c x^{2}\right)=b+2 c x$. Let $\mathcal{E}=\left[1, x, x^{2}\right]$ be the standard basis in \mathcal{P}_{3}

So the representing matrix is $\left(\begin{array}{rrr}5 & 0 & 3 \\ 2 & -1 & 3\end{array}\right)$

Another example

Let $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ be the linear transformation we saw earlier:
$T\left(a+b x+c x^{2}\right)=b+2 c x$. Let $\mathcal{E}=\left[1, x, x^{2}\right]$ be the standard basis in \mathcal{P}_{3} (in both the "from" and "to" role).

So the representing matrix is $\left(\begin{array}{rrr}5 & 0 & 3 \\ 2 & -1 & 3\end{array}\right)$

Another example

Let $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ be the linear transformation we saw earlier:
$T\left(a+b x+c x^{2}\right)=b+2 c x$. Let $\mathcal{E}=\left[1, x, x^{2}\right]$ be the standard basis in \mathcal{P}_{3} (in both the "from" and "to" role). To get the matrix A that represents T relative to \mathcal{E} and \mathcal{E}, we first find the result of T applied to each basis vector:

So the representing matrix is $\left(\begin{array}{rrr}5 & 0 & 3 \\ 2 & -1 & 3\end{array}\right)$

Another example

Let $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ be the linear transformation we saw earlier:
$T\left(a+b x+c x^{2}\right)=b+2 c x$. Let $\mathcal{E}=\left[1, x, x^{2}\right]$ be the standard basis in \mathcal{P}_{3} (in both the "from" and "to" role). To get the matrix A that represents T relative to \mathcal{E} and \mathcal{E}, we first find the result of T applied to each basis vector:

$$
T(1)=0, \quad T(x)=1, \quad T\left(x^{2}\right)=2 x
$$

So the representing matrix is $\left(\begin{array}{rrr}5 & 0 & 3 \\ 2 & -1 & 3\end{array}\right)$

Another example

Let $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ be the linear transformation we saw earlier:
$T\left(a+b x+c x^{2}\right)=b+2 c x$. Let $\mathcal{E}=\left[1, x, x^{2}\right]$ be the standard basis in \mathcal{P}_{3} (in both the "from" and "to" role). To get the matrix A that represents T relative to \mathcal{E} and \mathcal{E}, we first find the result of T applied to each basis vector:

$$
T(1)=0, \quad T(x)=1, \quad T\left(x^{2}\right)=2 x
$$

then find the coordinates of each of those

$$
[0]_{\mathcal{E}}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),[1]_{\mathcal{E}}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),[2 x]_{\mathcal{E}}=\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right)
$$

Putting those columns into A gives

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

Putting those columns into A gives

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

Note how
$A\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{c}b \\ 2 c \\ 0\end{array}\right)$ corresponds to $T\left(a+b x+c x^{2}\right)=b+2 c x+0 x^{2}$.

