Linear Transformations

D. H. Luecking

04 Mar 2024

A transformation or mapping is a function from a set X to a set Y. That is, T is a transformation from X to Y if for every input x from $X, T(x)$ is an element of Y.

A transformation or mapping is a function from a set X to a set Y. That is, T is a transformation from X to Y if for every input x from $X, T(x)$ is an element of Y.

In linear algebra, the sets we are most concerned with are vector spaces and the transformations are a special type called linear transformations. To express that T is a transformation from X to Y we write

$$
T: X \rightarrow Y \quad \text { or } \quad X \xrightarrow{T} Y \text {. }
$$

A transformation or mapping is a function from a set X to a set Y. That is, T is a transformation from X to Y if for every input x from $X, T(x)$ is an element of Y.

In linear algebra, the sets we are most concerned with are vector spaces and the transformations are a special type called linear transformations. To express that T is a transformation from X to Y we write

$$
T: X \rightarrow Y \quad \text { or } \quad X \xrightarrow{T} Y \text {. }
$$

Definition

Let V and W be vector spaces and $L: V \rightarrow W$.

A transformation or mapping is a function from a set X to a set Y. That is, T is a transformation from X to Y if for every input x from $X, T(x)$ is an element of Y.

In linear algebra, the sets we are most concerned with are vector spaces and the transformations are a special type called linear transformations. To express that T is a transformation from X to Y we write

$$
T: X \rightarrow Y \quad \text { or } \quad X \xrightarrow{T} Y \text {. }
$$

Definition

Let V and W be vector spaces and $L: V \rightarrow W$. We say L is a linear transformation if

1. $L(\alpha \mathbf{v})=\alpha L(\mathbf{v})$ for every $\alpha \in \mathbb{R}$ and every $\mathbf{v} \in V$, and

A transformation or mapping is a function from a set X to a set Y. That is, T is a transformation from X to Y if for every input x from $X, T(x)$ is an element of Y.

In linear algebra, the sets we are most concerned with are vector spaces and the transformations are a special type called linear transformations. To express that T is a transformation from X to Y we write

$$
T: X \rightarrow Y \quad \text { or } \quad X \xrightarrow{T} Y \text {. }
$$

Definition

Let V and W be vector spaces and $L: V \rightarrow W$. We say L is a linear transformation if

1. $L(\alpha \mathbf{v})=\alpha L(\mathbf{v})$ for every $\alpha \in \mathbb{R}$ and every $\mathbf{v} \in V$, and
2. $L\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=L\left(\mathbf{v}_{1}\right)+L\left(\mathbf{v}_{2}\right)$ for every $\mathbf{v}_{1}, \mathbf{v}_{2} \in V$.

Examples: the simplest example is the zero transformation:

Examples: the simplest example is the zero transformation: Let V and W be vector spaces. For every $\mathbf{v} \in V$, define $\mathcal{O}(\mathbf{v})=\mathbf{0}_{W}$ (where $\mathbf{0}_{W}$ is the zero vector in W). Then \mathcal{O} is a linear transformation from V to W.

Examples: the simplest example is the zero transformation: Let V and W be vector spaces. For every $\mathbf{v} \in V$, define $\mathcal{O}(\mathbf{v})=\mathbf{0}_{W}$ (where $\mathbf{0}_{W}$ is the zero vector in W). Then \mathcal{O} is a linear transformation from V to W.

In the two requirements above, both sides of the equal sign are $\mathbf{0}$ and therefore equal.

Examples: the simplest example is the zero transformation: Let V and W be vector spaces. For every $\mathbf{v} \in V$, define $\mathcal{O}(\mathbf{v})=\mathbf{0}_{W}$ (where $\mathbf{0}_{W}$ is the zero vector in W). Then \mathcal{O} is a linear transformation from V to W.
In the two requirements above, both sides of the equal sign are $\mathbf{0}$ and therefore equal.
Almost as simple is the identity transformation. Let V be a vector space. For every $\mathbf{v} \in V$, define $I(\mathbf{v})=\mathbf{v}$. Then I is a linear transformation from V to V.

Examples: the simplest example is the zero transformation: Let V and W be vector spaces. For every $\mathbf{v} \in V$, define $\mathcal{O}(\mathbf{v})=\mathbf{0}_{W}$ (where $\mathbf{0}_{W}$ is the zero vector in W). Then \mathcal{O} is a linear transformation from V to W.
In the two requirements above, both sides of the equal sign are $\mathbf{0}$ and therefore equal.
Almost as simple is the identity transformation. Let V be a vector space. For every $\mathbf{v} \in V$, define $I(\mathbf{v})=\mathbf{v}$. Then I is a linear transformation from V to V.

In the first requirement above, both sides of the equal sign are $\alpha \mathbf{v}$ and in the second, both sides are $\mathbf{v}_{1}+\mathbf{v}_{2}$.

Examples: the simplest example is the zero transformation: Let V and W be vector spaces. For every $\mathbf{v} \in V$, define $\mathcal{O}(\mathbf{v})=\mathbf{0}_{W}$ (where $\mathbf{0}_{W}$ is the zero vector in W). Then \mathcal{O} is a linear transformation from V to W.
In the two requirements above, both sides of the equal sign are $\mathbf{0}$ and therefore equal.
Almost as simple is the identity transformation. Let V be a vector space. For every $\mathbf{v} \in V$, define $I(\mathbf{v})=\mathbf{v}$. Then I is a linear transformation from V to V.

In the first requirement above, both sides of the equal sign are $\alpha \mathbf{v}$ and in the second, both sides are $\mathbf{v}_{1}+\mathbf{v}_{2}$.

It is common for authors to omit the parentheses when the transformation is linear.

Examples: the simplest example is the zero transformation: Let V and W be vector spaces. For every $\mathbf{v} \in V$, define $\mathcal{O}(\mathbf{v})=\mathbf{0}_{W}$ (where $\mathbf{0}_{W}$ is the zero vector in W). Then \mathcal{O} is a linear transformation from V to W.
In the two requirements above, both sides of the equal sign are $\mathbf{0}$ and therefore equal.
Almost as simple is the identity transformation. Let V be a vector space. For every $\mathbf{v} \in V$, define $I(\mathbf{v})=\mathbf{v}$. Then I is a linear transformation from V to V.

In the first requirement above, both sides of the equal sign are $\alpha \mathbf{v}$ and in the second, both sides are $\mathbf{v}_{1}+\mathbf{v}_{2}$.
It is common for authors to omit the parentheses when the transformation is linear. That is, writing $L \mathbf{v}$ instead of $L(\mathbf{v})$.

Examples: the simplest example is the zero transformation: Let V and W be vector spaces. For every $\mathbf{v} \in V$, define $\mathcal{O}(\mathbf{v})=\mathbf{0}_{W}$ (where $\mathbf{0}_{W}$ is the zero vector in W). Then \mathcal{O} is a linear transformation from V to W.
In the two requirements above, both sides of the equal sign are $\mathbf{0}$ and therefore equal.
Almost as simple is the identity transformation. Let V be a vector space. For every $\mathbf{v} \in V$, define $I(\mathbf{v})=\mathbf{v}$. Then I is a linear transformation from V to V.
In the first requirement above, both sides of the equal sign are $\alpha \mathbf{v}$ and in the second, both sides are $\mathbf{v}_{1}+\mathbf{v}_{2}$.
It is common for authors to omit the parentheses when the transformation is linear. That is, writing $L \mathbf{v}$ instead of $L(\mathbf{v})$. However, parentheses must be used when necessary to avoid confusion: $L\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=L \mathbf{v}_{1}+L \mathbf{v}_{2}$ and $L(\alpha \mathbf{v})=\alpha L \mathbf{v}$.

Some examples in \mathbb{R}^{2}

Some examples in \mathbb{R}^{2}
Define $P_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $P_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
P_{1}\binom{x_{1}}{x_{2}}=\binom{x_{1}}{0} \quad \text { and } \quad P_{2}\binom{x_{1}}{x_{2}}=\binom{0}{x_{2}}
$$

Some examples in \mathbb{R}^{2}
Define $P_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $P_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
P_{1}\binom{x_{1}}{x_{2}}=\binom{x_{1}}{0} \quad \text { and } \quad P_{2}\binom{x_{1}}{x_{2}}=\binom{0}{x_{2}}
$$

These are both linear transformations. For example

$$
\text { If } \mathbf{x}=\binom{x_{1}}{x_{2}} \quad \text { and } \quad \mathbf{y}=\binom{y_{1}}{y_{2}}
$$

then

$$
P_{1}(\mathbf{x}+\mathbf{y})=\binom{x_{1}+y_{1}}{0} \quad \text { and } \quad P_{1}(\mathbf{x})+P_{1}(\mathbf{y})=\binom{x_{1}}{0}+\binom{y_{1}}{0}
$$

Some examples in \mathbb{R}^{2}

Define $P_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $P_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
P_{1}\binom{x_{1}}{x_{2}}=\binom{x_{1}}{0} \quad \text { and } \quad P_{2}\binom{x_{1}}{x_{2}}=\binom{0}{x_{2}}
$$

These are both linear transformations. For example

$$
\text { If } \mathbf{x}=\binom{x_{1}}{x_{2}} \quad \text { and } \quad \mathbf{y}=\binom{y_{1}}{y_{2}}
$$

then

$$
P_{1}(\mathbf{x}+\mathbf{y})=\binom{x_{1}+y_{1}}{0} \quad \text { and } \quad P_{1}(\mathbf{x})+P_{1}(\mathbf{y})=\binom{x_{1}}{0}+\binom{y_{1}}{0}
$$

If A is an $n \times k$ matrix then $L(\mathbf{x})=A \mathbf{x}$ is a linear transformation from \mathbb{R}^{k} to \mathbb{R}^{n}.

Some examples in \mathbb{R}^{2}

Define $P_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $P_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
P_{1}\binom{x_{1}}{x_{2}}=\binom{x_{1}}{0} \quad \text { and } \quad P_{2}\binom{x_{1}}{x_{2}}=\binom{0}{x_{2}}
$$

These are both linear transformations. For example

$$
\text { If } \mathbf{x}=\binom{x_{1}}{x_{2}} \quad \text { and } \quad \mathbf{y}=\binom{y_{1}}{y_{2}}
$$

then

$$
P_{1}(\mathbf{x}+\mathbf{y})=\binom{x_{1}+y_{1}}{0} \quad \text { and } P_{1}(\mathbf{x})+P_{1}(\mathbf{y})=\binom{x_{1}}{0}+\binom{y_{1}}{0}
$$

If A is an $n \times k$ matrix then $L(\mathbf{x})=A \mathbf{x}$ is a linear transformation from \mathbb{R}^{k} to \mathbb{R}^{n}. These are called matrix transformations.

An example from geometry

Let's represent \mathbb{R}^{2} as arrows starting at the origin.

An example from geometry

Let's represent \mathbb{R}^{2} as arrows starting at the origin. Let θ be any angle and define R_{θ} as the transformation that rotates an arrow by the angle θ.

An example from geometry

Let's represent \mathbb{R}^{2} as arrows starting at the origin. Let θ be any angle and define R_{θ} as the transformation that rotates an arrow by the angle θ. Here is a picture of two arrows and their sum, together with a picture of this transformation (with $\theta=30^{\circ}$) applied to all of them:

An example from geometry

Let's represent \mathbb{R}^{2} as arrows starting at the origin. Let θ be any angle and define R_{θ} as the transformation that rotates an arrow by the angle θ. Here is a picture of two arrows and their sum, together with a picture of this transformation (with $\theta=30^{\circ}$) applied to all of them:

Examples in $\mathbb{R}^{n \times k}$

Transposing is a linear transformation from $\mathbb{R}^{n \times k}$ to $\mathbb{R}^{k \times n}$:

Examples in $\mathbb{R}^{n \times k}$

Transposing is a linear transformation from $\mathbb{R}^{n \times k}$ to $\mathbb{R}^{k \times n}$: If α is any scalar, A and B any $n \times k$ matrices, then $(\alpha A)^{T}=\alpha A^{T}$ and $(A+B)^{T}=A^{T}+B^{T}$.

Examples in $\mathbb{R}^{n \times k}$

Transposing is a linear transformation from $\mathbb{R}^{n \times k}$ to $\mathbb{R}^{k \times n}$: If α is any scalar, A and B any $n \times k$ matrices, then $(\alpha A)^{T}=\alpha A^{T}$ and $(A+B)^{T}=A^{T}+B^{T}$.
Multiplying from the left by an $m \times n$ matrix is a linear transformation from $\mathbb{R}^{n \times k}$ to $\mathbb{R}^{m \times k}$:

Examples in $\mathbb{R}^{n \times k}$

Transposing is a linear transformation from $\mathbb{R}^{n \times k}$ to $\mathbb{R}^{k \times n}$: If α is any scalar, A and B any $n \times k$ matrices, then $(\alpha A)^{T}=\alpha A^{T}$ and $(A+B)^{T}=A^{T}+B^{T}$.
Multiplying from the left by an $m \times n$ matrix is a linear transformation from $\mathbb{R}^{n \times k}$ to $\mathbb{R}^{m \times k}$: If C is $m \times n$ while A and B are $n \times k$ then $C(\alpha A)=\alpha C A$ and $C(A+B)=C A+C B$.

Properties of linear transformations

Examples in $\mathbb{R}^{n \times k}$

Transposing is a linear transformation from $\mathbb{R}^{n \times k}$ to $\mathbb{R}^{k \times n}$: If α is any scalar, A and B any $n \times k$ matrices, then $(\alpha A)^{T}=\alpha A^{T}$ and $(A+B)^{T}=A^{T}+B^{T}$.
Multiplying from the left by an $m \times n$ matrix is a linear transformation from $\mathbb{R}^{n \times k}$ to $\mathbb{R}^{m \times k}$: If C is $m \times n$ while A and B are $n \times k$ then $C(\alpha A)=\alpha C A$ and $C(A+B)=C A+C B$.

Properties of linear transformations

If $L: V \rightarrow W$ is a linear transformation then

1. $L\left(\mathbf{0}_{V}\right)=\mathbf{0}_{W}$ where $\mathbf{0}_{V}$ is the zero vector in V and $\mathbf{0}_{W}$ is the zero vector in W.

Examples in $\mathbb{R}^{n \times k}$

Transposing is a linear transformation from $\mathbb{R}^{n \times k}$ to $\mathbb{R}^{k \times n}$: If α is any scalar, A and B any $n \times k$ matrices, then $(\alpha A)^{T}=\alpha A^{T}$ and $(A+B)^{T}=A^{T}+B^{T}$.
Multiplying from the left by an $m \times n$ matrix is a linear transformation from $\mathbb{R}^{n \times k}$ to $\mathbb{R}^{m \times k}$: If C is $m \times n$ while A and B are $n \times k$ then $C(\alpha A)=\alpha C A$ and $C(A+B)=C A+C B$.

Properties of linear transformations

If $L: V \rightarrow W$ is a linear transformation then

1. $L\left(\mathbf{0}_{V}\right)=\mathbf{0}_{W}$ where $\mathbf{0}_{V}$ is the zero vector in V and $\mathbf{0}_{W}$ is the zero vector in W.
2. $L(-\mathbf{v})=-L(\mathbf{v})$, where \mathbf{v} is any vector in V,

Examples in $\mathbb{R}^{n \times k}$

Transposing is a linear transformation from $\mathbb{R}^{n \times k}$ to $\mathbb{R}^{k \times n}$: If α is any scalar, A and B any $n \times k$ matrices, then $(\alpha A)^{T}=\alpha A^{T}$ and $(A+B)^{T}=A^{T}+B^{T}$.
Multiplying from the left by an $m \times n$ matrix is a linear transformation from $\mathbb{R}^{n \times k}$ to $\mathbb{R}^{m \times k}$: If C is $m \times n$ while A and B are $n \times k$ then $C(\alpha A)=\alpha C A$ and $C(A+B)=C A+C B$.

Properties of linear transformations

If $L: V \rightarrow W$ is a linear transformation then

1. $L\left(\mathbf{0}_{V}\right)=\mathbf{0}_{W}$ where $\mathbf{0}_{V}$ is the zero vector in V and $\mathbf{0}_{W}$ is the zero vector in W.
2. $L(-\mathbf{v})=-L(\mathbf{v})$, where \mathbf{v} is any vector in V,
3. if $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are vectors in V then

$$
L\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}\right)=c_{1} L \mathbf{v}_{1}+c_{2} L \mathbf{v}_{2}+\cdots+c_{n} L \mathbf{v}_{n}
$$

The first of these comes from using the scalar $\alpha=0$ in the definition:

$$
L\left(\mathbf{0}_{V}\right)=L(0 \mathbf{v})=0 L(\mathbf{v})=\mathbf{0}_{W}
$$

The first of these comes from using the scalar $\alpha=0$ in the definition:

$$
L\left(\mathbf{0}_{V}\right)=L(0 \mathbf{v})=0 L(\mathbf{v})=\mathbf{0}_{W}
$$

The second of these comes from using the scalar $\alpha=-1$ in the definition:

$$
L(-\mathbf{v})=L((-1) \mathbf{v})=(-1) L(\mathbf{v})=-L(\mathbf{v})
$$

The first of these comes from using the scalar $\alpha=0$ in the definition:

$$
L\left(\mathbf{0}_{V}\right)=L(0 \mathbf{v})=0 L(\mathbf{v})=\mathbf{0}_{W}
$$

The second of these comes from using the scalar $\alpha=-1$ in the definition:

$$
L(-\mathbf{v})=L((-1) \mathbf{v})=(-1) L(\mathbf{v})=-L(\mathbf{v})
$$

The third property above comes from applying the two conditions in the definition repeatedly:
$L\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots\right)=L\left(c_{1} \mathbf{v}_{1}\right)+L\left(c_{2} \mathbf{v}_{2}+\cdots\right)=c_{1} L\left(\mathbf{v}_{1}\right)+L\left(c_{2} \mathbf{v}_{2}+\cdots\right)$

Two subspaces associated with a linear transformation

Definition

Let $L: V \rightarrow W$ be a linear transformation. The kernel or null space of L (denoted $\operatorname{ker}(L)$ or $\mathcal{N}(L)$) is the set

$$
\operatorname{ker}(L)=\mathcal{N}(L)=\left\{\mathbf{v} \in V: L(\mathbf{v})=\mathbf{0}_{W}\right\}
$$

Definition

Let $L: V \rightarrow W$ be a linear transformation and S a subspace of V. The image of S (denoted $L(S)$) is the set

$$
L(S)=\{L(\mathbf{v}): \mathbf{v} \in S\}=\{\mathbf{w} \in W: \mathbf{w}=L(\mathbf{v}) \text { for some } \mathbf{v} \in S\}
$$

The image of V, namely $L(V)$, is called the range of L, sometimes denoted $\mathcal{R}(L)$.

Theorem
For any linear transformation $L: V \rightarrow W$ and any subspace S of V

Theorem

For any linear transformation $L: V \rightarrow W$ and any subspace S of V

1. $\operatorname{ker}(L)$ is a subspace of V.

> Theorem
> For any linear transformation $L: V \rightarrow W$ and any subspace S of V
> 1. $\operatorname{ker}(L)$ is a subspace of V.
> 2. $L(S)$ is a subspace of W.

These are subsets of vector spaces and both contain the appropriate $\mathbf{0}$, so we need only show they are both closed under scalar multiplication and addition.

Theorem

For any linear transformation $L: V \rightarrow W$ and any subspace S of V

1. $\operatorname{ker}(L)$ is a subspace of V.
2. $L(S)$ is a subspace of W.

These are subsets of vector spaces and both contain the appropriate $\mathbf{0}$, so we need only show they are both closed under scalar multiplication and addition.

Suppose $\alpha \in \mathbb{R}$ and $\mathbf{v} \in \operatorname{ker}(L)$. Then $L(\mathbf{v})=\mathbf{0}$ and so $L(\alpha \mathbf{v})=\alpha L(\mathbf{v})=\mathbf{0}$. Thus $\alpha \mathbf{v} \in \operatorname{ker}(L)$.

Theorem

For any linear transformation $L: V \rightarrow W$ and any subspace S of V

1. $\operatorname{ker}(L)$ is a subspace of V.
2. $L(S)$ is a subspace of W.

These are subsets of vector spaces and both contain the appropriate $\mathbf{0}$, so we need only show they are both closed under scalar multiplication and addition.
Suppose $\alpha \in \mathbb{R}$ and $\mathbf{v} \in \operatorname{ker}(L)$. Then $L(\mathbf{v})=\mathbf{0}$ and so $L(\alpha \mathbf{v})=\alpha L(\mathbf{v})=\mathbf{0}$. Thus $\alpha \mathbf{v} \in \operatorname{ker}(L)$.
If \mathbf{v}_{1} and \mathbf{v}_{2} are in $\operatorname{ker}(L)$ then $L\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=L\left(\mathbf{v}_{1}\right)+L\left(\mathbf{v}_{2}\right)=\mathbf{0}+\mathbf{0}=\mathbf{0}$ and so $\mathbf{v}_{1}+\mathbf{v}_{2} \in \operatorname{ker}(L)$.

Theorem

For any linear transformation $L: V \rightarrow W$ and any subspace S of V

1. $\operatorname{ker}(L)$ is a subspace of V.
2. $L(S)$ is a subspace of W.

These are subsets of vector spaces and both contain the appropriate $\mathbf{0}$, so we need only show they are both closed under scalar multiplication and addition.

Suppose $\alpha \in \mathbb{R}$ and $\mathbf{v} \in \operatorname{ker}(L)$. Then $L(\mathbf{v})=\mathbf{0}$ and so $L(\alpha \mathbf{v})=\alpha L(\mathbf{v})=\mathbf{0}$. Thus $\alpha \mathbf{v} \in \operatorname{ker}(L)$.
If \mathbf{v}_{1} and \mathbf{v}_{2} are in $\operatorname{ker}(L)$ then $L\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=L\left(\mathbf{v}_{1}\right)+L\left(\mathbf{v}_{2}\right)=\mathbf{0}+\mathbf{0}=\mathbf{0}$ and so $\mathbf{v}_{1}+\mathbf{v}_{2} \in \operatorname{ker}(L)$.
Now suppose \mathbf{w}_{1} and \mathbf{w}_{2} are in $L(S)$.

Theorem

For any linear transformation $L: V \rightarrow W$ and any subspace S of V

1. $\operatorname{ker}(L)$ is a subspace of V.
2. $L(S)$ is a subspace of W.

These are subsets of vector spaces and both contain the appropriate $\mathbf{0}$, so we need only show they are both closed under scalar multiplication and addition.
Suppose $\alpha \in \mathbb{R}$ and $\mathbf{v} \in \operatorname{ker}(L)$. Then $L(\mathbf{v})=\mathbf{0}$ and so $L(\alpha \mathbf{v})=\alpha L(\mathbf{v})=\mathbf{0}$. Thus $\alpha \mathbf{v} \in \operatorname{ker}(L)$.
If \mathbf{v}_{1} and \mathbf{v}_{2} are in $\operatorname{ker}(L)$ then $L\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=L\left(\mathbf{v}_{1}\right)+L\left(\mathbf{v}_{2}\right)=\mathbf{0}+\mathbf{0}=\mathbf{0}$ and so $\mathbf{v}_{1}+\mathbf{v}_{2} \in \operatorname{ker}(L)$.
Now suppose \mathbf{w}_{1} and \mathbf{w}_{2} are in $L(S)$. Then $\mathbf{w}_{1}=L\left(\mathbf{v}_{1}\right)$ for some $\mathbf{v}_{1} \in S$ and $\mathbf{w}_{2}=L\left(\mathbf{v}_{2}\right)$ for some $\mathbf{v}_{2} \in S$.

Theorem

For any linear transformation $L: V \rightarrow W$ and any subspace S of V

1. $\operatorname{ker}(L)$ is a subspace of V.
2. $L(S)$ is a subspace of W.

These are subsets of vector spaces and both contain the appropriate $\mathbf{0}$, so we need only show they are both closed under scalar multiplication and addition.

Suppose $\alpha \in \mathbb{R}$ and $\mathbf{v} \in \operatorname{ker}(L)$. Then $L(\mathbf{v})=\mathbf{0}$ and so $L(\alpha \mathbf{v})=\alpha L(\mathbf{v})=\mathbf{0}$. Thus $\alpha \mathbf{v} \in \operatorname{ker}(L)$.
If \mathbf{v}_{1} and \mathbf{v}_{2} are in $\operatorname{ker}(L)$ then $L\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=L\left(\mathbf{v}_{1}\right)+L\left(\mathbf{v}_{2}\right)=\mathbf{0}+\mathbf{0}=\mathbf{0}$ and so $\mathbf{v}_{1}+\mathbf{v}_{2} \in \operatorname{ker}(L)$.
Now suppose \mathbf{w}_{1} and \mathbf{w}_{2} are in $L(S)$. Then $\mathbf{w}_{1}=L\left(\mathbf{v}_{1}\right)$ for some $\mathbf{v}_{1} \in S$ and $\mathbf{w}_{2}=L\left(\mathbf{v}_{2}\right)$ for some $\mathbf{v}_{2} \in S$. Since S is a subspace, $\mathbf{v}_{1}+\mathbf{v}_{2} \in S$ and $\mathbf{w}_{1}+\mathbf{w}_{2}=L\left(\mathbf{v}_{1}\right)+L\left(\mathbf{v}_{2}\right)$

Theorem

For any linear transformation $L: V \rightarrow W$ and any subspace S of V

1. $\operatorname{ker}(L)$ is a subspace of V.
2. $L(S)$ is a subspace of W.

These are subsets of vector spaces and both contain the appropriate $\mathbf{0}$, so we need only show they are both closed under scalar multiplication and addition.
Suppose $\alpha \in \mathbb{R}$ and $\mathbf{v} \in \operatorname{ker}(L)$. Then $L(\mathbf{v})=\mathbf{0}$ and so $L(\alpha \mathbf{v})=\alpha L(\mathbf{v})=\mathbf{0}$. Thus $\alpha \mathbf{v} \in \operatorname{ker}(L)$.
If \mathbf{v}_{1} and \mathbf{v}_{2} are in $\operatorname{ker}(L)$ then $L\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=L\left(\mathbf{v}_{1}\right)+L\left(\mathbf{v}_{2}\right)=\mathbf{0}+\mathbf{0}=\mathbf{0}$ and so $\mathbf{v}_{1}+\mathbf{v}_{2} \in \operatorname{ker}(L)$.
Now suppose \mathbf{w}_{1} and \mathbf{w}_{2} are in $L(S)$. Then $\mathbf{w}_{1}=L\left(\mathbf{v}_{1}\right)$ for some $\mathbf{v}_{1} \in S$ and $\mathbf{w}_{2}=L\left(\mathbf{v}_{2}\right)$ for some $\mathbf{v}_{2} \in S$. Since S is a subspace, $\mathbf{v}_{1}+\mathbf{v}_{2} \in S$ and $\mathbf{w}_{1}+\mathbf{w}_{2}=L\left(\mathbf{v}_{1}\right)+L\left(\mathbf{v}_{2}\right)=L\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right) \in L(S)$.

Theorem

For any linear transformation $L: V \rightarrow W$ and any subspace S of V

1. $\operatorname{ker}(L)$ is a subspace of V.
2. $L(S)$ is a subspace of W.

These are subsets of vector spaces and both contain the appropriate $\mathbf{0}$, so we need only show they are both closed under scalar multiplication and addition.

Suppose $\alpha \in \mathbb{R}$ and $\mathbf{v} \in \operatorname{ker}(L)$. Then $L(\mathbf{v})=\mathbf{0}$ and so $L(\alpha \mathbf{v})=\alpha L(\mathbf{v})=\mathbf{0}$. Thus $\alpha \mathbf{v} \in \operatorname{ker}(L)$.
If \mathbf{v}_{1} and \mathbf{v}_{2} are in $\operatorname{ker}(L)$ then $L\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=L\left(\mathbf{v}_{1}\right)+L\left(\mathbf{v}_{2}\right)=\mathbf{0}+\mathbf{0}=\mathbf{0}$ and so $\mathbf{v}_{1}+\mathbf{v}_{2} \in \operatorname{ker}(L)$.
Now suppose \mathbf{w}_{1} and \mathbf{w}_{2} are in $L(S)$. Then $\mathbf{w}_{1}=L\left(\mathbf{v}_{1}\right)$ for some $\mathbf{v}_{1} \in S$ and $\mathbf{w}_{2}=L\left(\mathbf{v}_{2}\right)$ for some $\mathbf{v}_{2} \in S$. Since S is a subspace, $\mathbf{v}_{1}+\mathbf{v}_{2} \in S$ and $\mathbf{w}_{1}+\mathbf{w}_{2}=L\left(\mathbf{v}_{1}\right)+L\left(\mathbf{v}_{2}\right)=L\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right) \in L(S)$.
Similarly, $\mathbf{w}=L(\mathbf{v})$ in $L(S)$ and $\alpha \in \mathbb{R}$ imply that $\alpha \mathbf{w}=\alpha L(\mathbf{v})=L(\alpha \mathbf{v})$ is in $L(S)$.

Examples

If A is an $n \times k$ matrix and $L: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ is given by $L(\mathbf{x})=A \mathbf{x}$, then $\operatorname{ker}(L)=\mathcal{N}(A)$.

Examples

If A is an $n \times k$ matrix and $L: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ is given by $L(\mathbf{x})=A \mathbf{x}$, then $\operatorname{ker}(L)=\mathcal{N}(A)$.
The range $L\left(\mathbb{R}^{k}\right)$ is the set of all possible $A \mathrm{x}$ for $\mathrm{x} \in \mathbb{R}^{k}$. Recall that if
$\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{k}$ are the columns of A and $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{k}\end{array}\right)$ then

$$
A \mathbf{x}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{k} \mathbf{a}_{k}
$$

That is, the range of L is the span of the columns, that is, the column space of A. Since $\mathcal{R}(L)$ is the column space of A, the notation $\mathcal{R}(A)$ is sometimes used for the column space.

Examples

If A is an $n \times k$ matrix and $L: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ is given by $L(\mathbf{x})=A \mathbf{x}$, then $\operatorname{ker}(L)=\mathcal{N}(A)$.
The range $L\left(\mathbb{R}^{k}\right)$ is the set of all possible $A \mathbf{x}$ for $\mathbf{x} \in \mathbb{R}^{k}$. Recall that if
$\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{k}$ are the columns of A and $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{k}\end{array}\right)$ then

$$
A \mathbf{x}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{k} \mathbf{a}_{k}
$$

That is, the range of L is the span of the columns, that is, the column space of A. Since $\mathcal{R}(L)$ is the column space of A, the notation $\mathcal{R}(A)$ is sometimes used for the column space.
There is nothing special about muliplying on the left, $A \mathbf{x}$.

Examples

If A is an $n \times k$ matrix and $L: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ is given by $L(\mathbf{x})=A \mathbf{x}$, then $\operatorname{ker}(L)=\mathcal{N}(A)$.
The range $L\left(\mathbb{R}^{k}\right)$ is the set of all possible $A \mathbf{x}$ for $\mathbf{x} \in \mathbb{R}^{k}$. Recall that if
$\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{k}$ are the columns of A and $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{k}\end{array}\right)$ then

$$
A \mathbf{x}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{k} \mathbf{a}_{k}
$$

That is, the range of L is the span of the columns, that is, the column space of A. Since $\mathcal{R}(L)$ is the column space of A, the notation $\mathcal{R}(A)$ is sometimes used for the column space.
There is nothing special about muliplying on the left, $A \mathbf{x}$. We could also regard \mathbb{R}^{n} and \mathbb{R}^{k} as sets of row vectors. Then we can define a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ by $T(\overrightarrow{\mathbf{x}})=\overrightarrow{\mathbf{x}} A$. In this case, the range $T\left(\mathbb{R}^{n}\right)$ is the row space of A.

Recall the linear transformation P_{1} we defined earlier

$$
P_{1}\binom{x_{1}}{x_{2}}=\binom{x_{1}}{0}
$$

Recall the linear transformation P_{1} we defined earlier

$$
P_{1}\binom{x_{1}}{x_{2}}=\binom{x_{1}}{0}
$$

Then

$$
\operatorname{ker}\left(P_{1}\right)=\left\{\left.\binom{x_{1}}{x_{2}} \right\rvert\, x_{1}=0\right\} \quad \text { and } \quad P_{1}\left(\mathbb{R}^{2}\right)=\left\{\left.\binom{x_{1}}{x_{2}} \right\rvert\, x_{2}=0\right\}
$$

Recall the linear transformation P_{1} we defined earlier

$$
P_{1}\binom{x_{1}}{x_{2}}=\binom{x_{1}}{0}
$$

Then

$$
\operatorname{ker}\left(P_{1}\right)=\left\{\left.\binom{x_{1}}{x_{2}} \right\rvert\, x_{1}=0\right\} \quad \text { and } P_{1}\left(\mathbb{R}^{2}\right)=\left\{\left.\binom{x_{1}}{x_{2}} \right\rvert\, x_{2}=0\right\}
$$

The rotation transformations R_{θ} satisfy $\operatorname{ker}\left(R_{\theta}\right)=\{\mathbf{0}\}$ and $R_{\theta}\left(\mathbb{R}^{2}\right)=\mathbb{R}^{2}$.

Define the following transformation $L: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$:

$$
L\left(a+b x+c x^{2}\right)=b+2 c x
$$

Define the following transformation $L: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$:

$$
L\left(a+b x+c x^{2}\right)=b+2 c x
$$

(Since the outcome lies in both \mathcal{P}_{2} and \mathcal{P}_{3} it could also be consider as a transformation from \mathcal{P}_{3} to \mathcal{P}_{2}.)

Define the following transformation $L: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$:

$$
L\left(a+b x+c x^{2}\right)=b+2 c x
$$

(Since the outcome lies in both \mathcal{P}_{2} and \mathcal{P}_{3} it could also be consider as a transformation from \mathcal{P}_{3} to \mathcal{P}_{2}.) Then L is a linear transformation (exercise: check this) with

$$
\operatorname{ker}(L)=\left\{a+b x+c x^{2} \mid b=c=0\right\} \quad \text { and } L\left(\mathcal{P}_{3}\right)=\mathcal{P}_{2} .
$$

Define the following transformation $L: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$:

$$
L\left(a+b x+c x^{2}\right)=b+2 c x
$$

(Since the outcome lies in both \mathcal{P}_{2} and \mathcal{P}_{3} it could also be consider as a transformation from \mathcal{P}_{3} to \mathcal{P}_{2}.) Then L is a linear transformation (exercise: check this) with

$$
\operatorname{ker}(L)=\left\{a+b x+c x^{2} \mid b=c=0\right\} \quad \text { and } \quad L\left(\mathcal{P}_{3}\right)=\mathcal{P}_{2} .
$$

Another example $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{4}$:

$$
T\left(a+b x+c x^{2}\right)=a x+(b / 2) x^{2}+(c / 3) x^{3}
$$

Define the following transformation $L: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$:

$$
L\left(a+b x+c x^{2}\right)=b+2 c x
$$

(Since the outcome lies in both \mathcal{P}_{2} and \mathcal{P}_{3} it could also be consider as a transformation from \mathcal{P}_{3} to \mathcal{P}_{2}.) Then L is a linear transformation (exercise: check this) with

$$
\operatorname{ker}(L)=\left\{a+b x+c x^{2} \mid b=c=0\right\} \quad \text { and } L\left(\mathcal{P}_{3}\right)=\mathcal{P}_{2} .
$$

Another example $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{4}$:

$$
T\left(a+b x+c x^{2}\right)=a x+(b / 2) x^{2}+(c / 3) x^{3}
$$

(Check that this is a linear transformation.) Its kernel and range:

$$
\operatorname{ker}(T)=\{0\} \text { and } T\left(\mathcal{P}_{3}\right)=\left\{a+b x+c x^{2}+d x^{3} \mid a=0\right\}
$$

