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A transformation or mapping is a function from a set X to a set Y . That
is, T is a transformation from X to Y if for every input x from X, T (x) is
an element of Y .

In linear algebra, the sets we are most concerned with are vector spaces
and the transformations are a special type called linear transformations.
To express that T is a transformation from X to Y we write

T : X → Y or X
T−−→ Y.

Definition

Let V and W be vector spaces and L : V → W . We say L is a linear
transformation if

1. L(αv) = αL(v) for every α ∈ R and every v ∈ V , and

2. L(v1 + v2) = L(v1) + L(v2) for every v1,v2 ∈ V .
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Examples: the simplest example is the zero transformation:

Let V and W
be vector spaces. For every v ∈ V , define O(v) = 0W (where 0W is the
zero vector in W ). Then O is a linear transformation from V to W .

In the two requirements above, both sides of the equal sign are 0 and
therefore equal.

Almost as simple is the identity transformation. Let V be a vector space.
For every v ∈ V , define I(v) = v. Then I is a linear transformation from
V to V .

In the first requirement above, both sides of the equal sign are αv and in
the second, both sides are v1 + v2.

It is common for authors to omit the parentheses when the transformation
is linear. That is, writing Lv instead of L(v). However, parentheses must
be used when necessary to avoid confusion: L(v1 + v2) = Lv1 + Lv2 and
L(αv) = αLv.
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Some examples in R2

Define P1 : R2 → R2 and P2 : R2 → R2 by

P1

 x1
x2

 =

 x1
0

 and P2

 x1
x2

 =

 0
x2


These are both linear transformations. For example

If x =

 x1
x2

 and y =

 y1
y2


then

P1(x+ y) =

 x1 + y1
0

 and P1(x) + P1(y) =

 x1
0

+

 y1
0


If A is an n× k matrix then L(x) = Ax is a linear transformation from Rk

to Rn. These are called matrix transformations.
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An example from geometry

Let’s represent R2 as arrows starting at the origin.

Let θ be any angle and
define Rθ as the transformation that rotates an arrow by the angle θ. Here
is a picture of two arrows and their sum, together with a picture of this
transformation (with θ = 30◦) applied to all of them:

x

y
x+ y

(0, 0)

Rθx

Rθy
Rθ(x+ y)

(0, 0)
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Examples in Rn×k

Transposing is a linear transformation from Rn×k to Rk×n:

If α is any
scalar, A and B any n× k matrices, then (αA)T = αAT and
(A+B)T = AT +BT .

Multiplying from the left by an m× n matrix is a linear transformation
from Rn×k to Rm×k: If C is m× n while A and B are n× k then
C(αA) = αCA and C(A+B) = CA+ CB.

Properties of linear transformations

If L : V → W is a linear transformation then

1. L(0V ) = 0W where 0V is the zero vector in V and 0W is the zero
vector in W .

2. L(−v) = −L(v), where v is any vector in V ,

3. if v1,v2, . . . ,vn are vectors in V then

L(c1v1 + c2v2 + · · ·+ cnvn) = c1Lv1 + c2Lv2 + · · ·+ cnLvn.
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The first of these comes from using the scalar α = 0 in the definition:

L(0V ) = L(0v) = 0L(v) = 0W .

The second of these comes from using the scalar α = −1 in the definition:

L(−v) = L((−1)v) = (−1)L(v) = −L(v).

The third property above comes from applying the two conditions in the
definition repeatedly:

L(c1v1+c2v2+ · · · ) = L(c1v1)+L(c2v2+ · · · ) = c1L(v1)+L(c2v2+ · · · )
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Two subspaces associated with a linear transformation

Definition

Let L : V → W be a linear transformation. The kernel or null space of L
(denoted ker(L) or N (L)) is the set

ker(L) = N (L) = {v ∈ V : L(v) = 0W }.

Definition

Let L : V → W be a linear transformation and S a subspace of V . The
image of S (denoted L(S)) is the set

L(S) = {L(v) : v ∈ S} = {w ∈ W : w = L(v) for some v ∈ S}

The image of V , namely L(V ), is called the range of L, sometimes
denoted R(L).
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Theorem

For any linear transformation L : V → W and any subspace S of V

1. ker(L) is a subspace of V .

2. L(S) is a subspace of W .

These are subsets of vector spaces and both contain the appropriate 0, so
we need only show they are both closed under scalar multiplication and
addition.

Suppose α ∈ R and v ∈ ker(L). Then L(v) = 0 and so
L(αv) = αL(v) = 0. Thus αv ∈ ker(L).

If v1 and v2 are in ker(L) then L(v1 + v2) = L(v1) + L(v2) = 0+ 0 = 0
and so v1 + v2 ∈ ker(L).

Now suppose w1 and w2 are in L(S). Then w1 = L(v1) for some v1 ∈ S
and w2 = L(v2) for some v2 ∈ S. Since S is a subspace, v1 + v2 ∈ S and
w1 +w2 = L(v1) + L(v2) = L(v1 + v2) ∈ L(S).

Similarly, w = L(v) in L(S) and α ∈ R imply that αw = αL(v) = L(αv)
is in L(S).
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Examples

If A is an n× k matrix and L : Rk → Rn is given by L(x) = Ax, then
ker(L) = N (A).

The range L(Rk) is the set of all possible Ax for x ∈ Rk. Recall that if

a1,a2, . . . ,ak are the columns of A and x =


x1
x2
...
xk

 then

Ax = x1a1 + x2a2 + · · ·+ xkak

That is, the range of L is the span of the columns, that is, the column
space of A. Since R(L) is the column space of A, the notation R(A) is
sometimes used for the column space.

There is nothing special about muliplying on the left, Ax. We could also
regard Rn and Rk as sets of row vectors. Then we can define a linear
transformation T : Rn → Rk by T (x⃗) = x⃗A. In this case, the range
T (Rn) is the row space of A.
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Recall the linear transformation P1 we defined earlier

P1

 x1
x2

 =

 x1
0

 .

Then

ker(P1) =

{ x1
x2

 x1 = 0

}
and P1(R2) =

{ x1
x2

 x2 = 0

}
The rotation transformations Rθ satisfy ker(Rθ) = {0} and Rθ(R2) = R2.
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Define the following transformation L : P3 → P3:

L(a+ bx+ cx2) = b+ 2cx

(Since the outcome lies in both P2 and P3 it could also be consider as a
transformation from P3 to P2.) Then L is a linear transformation
(exercise: check this) with

ker(L) = {a+ bx+ cx2 | b = c = 0} and L(P3) = P2.

Another example T : P3 → P4:

T (a+ bx+ cx2) = ax+ (b/2)x2 + (c/3)x3

(Check that this is a linear transformation.) Its kernel and range:

ker(T ) = {0} and T (P3) = {a+ bx+ cx2 + dx3 | a = 0}

12 / 12



Define the following transformation L : P3 → P3:

L(a+ bx+ cx2) = b+ 2cx

(Since the outcome lies in both P2 and P3 it could also be consider as a
transformation from P3 to P2.)

Then L is a linear transformation
(exercise: check this) with

ker(L) = {a+ bx+ cx2 | b = c = 0} and L(P3) = P2.

Another example T : P3 → P4:

T (a+ bx+ cx2) = ax+ (b/2)x2 + (c/3)x3

(Check that this is a linear transformation.) Its kernel and range:

ker(T ) = {0} and T (P3) = {a+ bx+ cx2 + dx3 | a = 0}

12 / 12



Define the following transformation L : P3 → P3:

L(a+ bx+ cx2) = b+ 2cx

(Since the outcome lies in both P2 and P3 it could also be consider as a
transformation from P3 to P2.) Then L is a linear transformation
(exercise: check this) with

ker(L) = {a+ bx+ cx2 | b = c = 0} and L(P3) = P2.

Another example T : P3 → P4:

T (a+ bx+ cx2) = ax+ (b/2)x2 + (c/3)x3

(Check that this is a linear transformation.) Its kernel and range:

ker(T ) = {0} and T (P3) = {a+ bx+ cx2 + dx3 | a = 0}

12 / 12



Define the following transformation L : P3 → P3:

L(a+ bx+ cx2) = b+ 2cx

(Since the outcome lies in both P2 and P3 it could also be consider as a
transformation from P3 to P2.) Then L is a linear transformation
(exercise: check this) with

ker(L) = {a+ bx+ cx2 | b = c = 0} and L(P3) = P2.

Another example T : P3 → P4:

T (a+ bx+ cx2) = ax+ (b/2)x2 + (c/3)x3

(Check that this is a linear transformation.) Its kernel and range:

ker(T ) = {0} and T (P3) = {a+ bx+ cx2 + dx3 | a = 0}

12 / 12



Define the following transformation L : P3 → P3:

L(a+ bx+ cx2) = b+ 2cx

(Since the outcome lies in both P2 and P3 it could also be consider as a
transformation from P3 to P2.) Then L is a linear transformation
(exercise: check this) with

ker(L) = {a+ bx+ cx2 | b = c = 0} and L(P3) = P2.

Another example T : P3 → P4:

T (a+ bx+ cx2) = ax+ (b/2)x2 + (c/3)x3

(Check that this is a linear transformation.) Its kernel and range:

ker(T ) = {0} and T (P3) = {a+ bx+ cx2 + dx3 | a = 0}

12 / 12


