Linear Transformations

D. H. Luecking

04 Mar 2024

In linear algebra, the sets we are most concerned with are vector spaces and the transformations are a special type called *linear transformations*. To express that T is a transformation from X to Y we write

$$T: X \to Y$$
 or $X \xrightarrow{T} Y$.

In linear algebra, the sets we are most concerned with are vector spaces and the transformations are a special type called *linear transformations*. To express that T is a transformation from X to Y we write

$$T: X \to Y$$
 or $X \xrightarrow{T} Y$.

Definition

Let V and W be vector spaces and $L: V \to W$.

In linear algebra, the sets we are most concerned with are vector spaces and the transformations are a special type called *linear transformations*. To express that T is a transformation from X to Y we write

$$T: X \to Y$$
 or $X \xrightarrow{T} Y$.

Definition

Let V and W be vector spaces and $L: V \to W$. We say L is a *linear* transformation if

1. $L(\alpha \mathbf{v}) = \alpha L(\mathbf{v})$ for every $\alpha \in \mathbb{R}$ and every $\mathbf{v} \in V$, and

In linear algebra, the sets we are most concerned with are vector spaces and the transformations are a special type called *linear transformations*. To express that T is a transformation from X to Y we write

$$T: X \to Y$$
 or $X \xrightarrow{T} Y$.

Definition

Let V and W be vector spaces and $L: V \to W$. We say L is a *linear* transformation if

1.
$$L(\alpha \mathbf{v}) = \alpha L(\mathbf{v})$$
 for every $\alpha \in \mathbb{R}$ and every $\mathbf{v} \in V$, and

2. $L(\mathbf{v}_1 + \mathbf{v}_2) = L(\mathbf{v}_1) + L(\mathbf{v}_2)$ for every $\mathbf{v}_1, \mathbf{v}_2 \in V$.

Examples: the simplest example is the *zero transformation*:

In the two requirements above, both sides of the equal sign are ${\bf 0}$ and therefore equal.

In the two requirements above, both sides of the equal sign are ${\bf 0}$ and therefore equal.

Almost as simple is the *identity transformation*. Let V be a vector space. For every $\mathbf{v} \in V$, define $I(\mathbf{v}) = \mathbf{v}$. Then I is a linear transformation from V to V.

In the two requirements above, both sides of the equal sign are ${\bf 0}$ and therefore equal.

Almost as simple is the *identity transformation*. Let V be a vector space. For every $\mathbf{v} \in V$, define $I(\mathbf{v}) = \mathbf{v}$. Then I is a linear transformation from V to V.

In the first requirement above, both sides of the equal sign are αv and in the second, both sides are $v_1 + v_2$.

In the two requirements above, both sides of the equal sign are ${\bf 0}$ and therefore equal.

Almost as simple is the *identity transformation*. Let V be a vector space. For every $\mathbf{v} \in V$, define $I(\mathbf{v}) = \mathbf{v}$. Then I is a linear transformation from V to V.

In the first requirement above, both sides of the equal sign are αv and in the second, both sides are $v_1 + v_2$.

It is common for authors to omit the parentheses when the transformation is linear.

In the two requirements above, both sides of the equal sign are ${\bf 0}$ and therefore equal.

Almost as simple is the *identity transformation*. Let V be a vector space. For every $\mathbf{v} \in V$, define $I(\mathbf{v}) = \mathbf{v}$. Then I is a linear transformation from V to V.

In the first requirement above, both sides of the equal sign are αv and in the second, both sides are $v_1 + v_2$.

It is common for authors to omit the parentheses when the transformation is linear. That is, writing $L\mathbf{v}$ instead of $L(\mathbf{v})$.

In the two requirements above, both sides of the equal sign are ${\bf 0}$ and therefore equal.

Almost as simple is the *identity transformation*. Let V be a vector space. For every $\mathbf{v} \in V$, define $I(\mathbf{v}) = \mathbf{v}$. Then I is a linear transformation from V to V.

In the first requirement above, both sides of the equal sign are αv and in the second, both sides are $v_1 + v_2$.

It is common for authors to omit the parentheses when the transformation is linear. That is, writing $L\mathbf{v}$ instead of $L(\mathbf{v})$. However, parentheses must be used when necessary to avoid confusion: $L(\mathbf{v}_1 + \mathbf{v}_2) = L\mathbf{v}_1 + L\mathbf{v}_2$ and $L(\alpha \mathbf{v}) = \alpha L\mathbf{v}$.

Define $P_1: \mathbb{R}^2 \to \mathbb{R}^2$ and $P_2: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$P_1 \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) = \left(\begin{array}{c} x_1 \\ 0 \end{array} \right) \text{ and } P_2 \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) = \left(\begin{array}{c} 0 \\ x_2 \end{array} \right)$$

Define $P_1: \mathbb{R}^2 \to \mathbb{R}^2$ and $P_2: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$P_1 \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) = \left(\begin{array}{c} x_1 \\ 0 \end{array} \right) \text{ and } P_2 \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) = \left(\begin{array}{c} 0 \\ x_2 \end{array} \right)$$

These are both linear transformations. For example

If
$$\mathbf{x} = \left(egin{array}{c} x_1 \\ x_2 \end{array}
ight)$$
 and $\mathbf{y} = \left(egin{array}{c} y_1 \\ y_2 \end{array}
ight)$

then

$$P_1(\mathbf{x} + \mathbf{y}) = \left(\begin{array}{c} x_1 + y_1 \\ 0 \end{array}\right) \quad \text{and} \quad P_1(\mathbf{x}) + P_1(\mathbf{y}) = \left(\begin{array}{c} x_1 \\ 0 \end{array}\right) + \left(\begin{array}{c} y_1 \\ 0 \end{array}\right)$$

Define $P_1: \mathbb{R}^2 \to \mathbb{R}^2$ and $P_2: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$P_1 \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) = \left(\begin{array}{c} x_1 \\ 0 \end{array} \right) \text{ and } P_2 \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) = \left(\begin{array}{c} 0 \\ x_2 \end{array} \right)$$

These are both linear transformations. For example

If
$$\mathbf{x} = \left(egin{array}{c} x_1 \\ x_2 \end{array}
ight)$$
 and $\mathbf{y} = \left(egin{array}{c} y_1 \\ y_2 \end{array}
ight)$

then

$$P_1(\mathbf{x} + \mathbf{y}) = \begin{pmatrix} x_1 + y_1 \\ 0 \end{pmatrix} \text{ and } P_1(\mathbf{x}) + P_1(\mathbf{y}) = \begin{pmatrix} x_1 \\ 0 \end{pmatrix} + \begin{pmatrix} y_1 \\ 0 \end{pmatrix}$$

If A is an $n \times k$ matrix then $L(\mathbf{x}) = A\mathbf{x}$ is a linear transformation from \mathbb{R}^k to \mathbb{R}^n .

Define $P_1: \mathbb{R}^2 \to \mathbb{R}^2$ and $P_2: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$P_1 \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) = \left(\begin{array}{c} x_1 \\ 0 \end{array} \right) \text{ and } P_2 \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) = \left(\begin{array}{c} 0 \\ x_2 \end{array} \right)$$

These are both linear transformations. For example

If
$$\mathbf{x} = \left(egin{array}{c} x_1 \ x_2 \end{array}
ight)$$
 and $\mathbf{y} = \left(egin{array}{c} y_1 \ y_2 \end{array}
ight)$

then

$$P_1(\mathbf{x} + \mathbf{y}) = \begin{pmatrix} x_1 + y_1 \\ 0 \end{pmatrix} \text{ and } P_1(\mathbf{x}) + P_1(\mathbf{y}) = \begin{pmatrix} x_1 \\ 0 \end{pmatrix} + \begin{pmatrix} y_1 \\ 0 \end{pmatrix}$$

If A is an $n \times k$ matrix then $L(\mathbf{x}) = A\mathbf{x}$ is a linear transformation from \mathbb{R}^k to \mathbb{R}^n . These are called *matrix transformations*.

Let's represent \mathbb{R}^2 as arrows starting at the origin.

Let's represent \mathbb{R}^2 as arrows starting at the origin. Let θ be any angle and define R_{θ} as the transformation that rotates an arrow by the angle θ .

Let's represent \mathbb{R}^2 as arrows starting at the origin. Let θ be any angle and define R_{θ} as the transformation that rotates an arrow by the angle θ . Here is a picture of two arrows and their sum, together with a picture of this transformation (with $\theta = 30^{\circ}$) applied to all of them:

Let's represent \mathbb{R}^2 as arrows starting at the origin. Let θ be any angle and define R_{θ} as the transformation that rotates an arrow by the angle θ . Here is a picture of two arrows and their sum, together with a picture of this transformation (with $\theta = 30^{\circ}$) applied to all of them:

Transposing is a linear transformation from $\mathbb{R}^{n \times k}$ to $\mathbb{R}^{k \times n}$:

Transposing is a linear transformation from $\mathbb{R}^{n \times k}$ to $\mathbb{R}^{k \times n}$: If α is any scalar, A and B any $n \times k$ matrices, then $(\alpha A)^T = \alpha A^T$ and $(A + B)^T = A^T + B^T$.

Transposing is a linear transformation from $\mathbb{R}^{n \times k}$ to $\mathbb{R}^{k \times n}$: If α is any scalar, A and B any $n \times k$ matrices, then $(\alpha A)^T = \alpha A^T$ and $(A + B)^T = A^T + B^T$.

Multiplying from the left by an $m \times n$ matrix is a linear transformation from $\mathbb{R}^{n \times k}$ to $\mathbb{R}^{m \times k}$:

Transposing is a linear transformation from $\mathbb{R}^{n \times k}$ to $\mathbb{R}^{k \times n}$: If α is any scalar, A and B any $n \times k$ matrices, then $(\alpha A)^T = \alpha A^T$ and $(A + B)^T = A^T + B^T$.

Multiplying from the left by an $m \times n$ matrix is a linear transformation from $\mathbb{R}^{n \times k}$ to $\mathbb{R}^{m \times k}$: If C is $m \times n$ while A and B are $n \times k$ then $C(\alpha A) = \alpha CA$ and C(A + B) = CA + CB.

Properties of linear transformations

Transposing is a linear transformation from $\mathbb{R}^{n \times k}$ to $\mathbb{R}^{k \times n}$: If α is any scalar, A and B any $n \times k$ matrices, then $(\alpha A)^T = \alpha A^T$ and $(A + B)^T = A^T + B^T$.

Multiplying from the left by an $m \times n$ matrix is a linear transformation from $\mathbb{R}^{n \times k}$ to $\mathbb{R}^{m \times k}$: If C is $m \times n$ while A and B are $n \times k$ then $C(\alpha A) = \alpha CA$ and C(A + B) = CA + CB.

Properties of linear transformations

- If $L:V\to W$ is a linear transformation then
 - 1. $L(\mathbf{0}_V) = \mathbf{0}_W$ where $\mathbf{0}_V$ is the zero vector in V and $\mathbf{0}_W$ is the zero vector in W.

Transposing is a linear transformation from $\mathbb{R}^{n \times k}$ to $\mathbb{R}^{k \times n}$: If α is any scalar, A and B any $n \times k$ matrices, then $(\alpha A)^T = \alpha A^T$ and $(A + B)^T = A^T + B^T$.

Multiplying from the left by an $m \times n$ matrix is a linear transformation from $\mathbb{R}^{n \times k}$ to $\mathbb{R}^{m \times k}$: If C is $m \times n$ while A and B are $n \times k$ then $C(\alpha A) = \alpha CA$ and C(A + B) = CA + CB.

Properties of linear transformations

If $L:V\to W$ is a linear transformation then

1. $L(\mathbf{0}_V) = \mathbf{0}_W$ where $\mathbf{0}_V$ is the zero vector in V and $\mathbf{0}_W$ is the zero vector in W.

2.
$$L(-\mathbf{v}) = -L(\mathbf{v})$$
, where \mathbf{v} is any vector in V ,

Transposing is a linear transformation from $\mathbb{R}^{n \times k}$ to $\mathbb{R}^{k \times n}$: If α is any scalar, A and B any $n \times k$ matrices, then $(\alpha A)^T = \alpha A^T$ and $(A + B)^T = A^T + B^T$.

Multiplying from the left by an $m \times n$ matrix is a linear transformation from $\mathbb{R}^{n \times k}$ to $\mathbb{R}^{m \times k}$: If C is $m \times n$ while A and B are $n \times k$ then $C(\alpha A) = \alpha CA$ and C(A + B) = CA + CB.

Properties of linear transformations

If $L:V\to W$ is a linear transformation then

- 1. $L(\mathbf{0}_V) = \mathbf{0}_W$ where $\mathbf{0}_V$ is the zero vector in V and $\mathbf{0}_W$ is the zero vector in W.
- 2. $L(-\mathbf{v}) = -L(\mathbf{v})$, where \mathbf{v} is any vector in V,
- 3. if $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are vectors in V then

$$L(c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_n\mathbf{v}_n)=c_1L\mathbf{v}_1+c_2L\mathbf{v}_2+\cdots+c_nL\mathbf{v}_n.$$

The first of these comes from using the scalar $\alpha = 0$ in the definition:

$$L(\mathbf{0}_V) = L(0\mathbf{v}) = 0L(\mathbf{v}) = \mathbf{0}_W.$$

The first of these comes from using the scalar $\alpha = 0$ in the definition:

$$L(\mathbf{0}_V) = L(0\mathbf{v}) = 0L(\mathbf{v}) = \mathbf{0}_W.$$

The second of these comes from using the scalar $\alpha = -1$ in the definition:

$$L(-\mathbf{v}) = L((-1)\mathbf{v}) = (-1)L(\mathbf{v}) = -L(\mathbf{v}).$$

The first of these comes from using the scalar $\alpha = 0$ in the definition:

$$L(\mathbf{0}_V) = L(0\mathbf{v}) = 0L(\mathbf{v}) = \mathbf{0}_W.$$

The second of these comes from using the scalar $\alpha = -1$ in the definition:

$$L(-\mathbf{v}) = L((-1)\mathbf{v}) = (-1)L(\mathbf{v}) = -L(\mathbf{v}).$$

The third property above comes from applying the two conditions in the definition repeatedly:

$$L(c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots) = L(c_1\mathbf{v}_1) + L(c_2\mathbf{v}_2 + \dots) = c_1L(\mathbf{v}_1) + L(c_2\mathbf{v}_2 + \dots)$$

Two subspaces associated with a linear transformation

Definition

Let $L: V \to W$ be a linear transformation. The *kernel* or *null space* of L (denoted ker(L) or $\mathcal{N}(L)$) is the set

$$\ker(L) = \mathcal{N}(L) = \{ \mathbf{v} \in V : L(\mathbf{v}) = \mathbf{0}_W \}.$$

Definition

Let $L: V \to W$ be a linear transformation and S a subspace of V. The *image* of S (denoted L(S)) is the set

$$L(S) = \{L(\mathbf{v}) : \mathbf{v} \in S\} = \{\mathbf{w} \in W : \mathbf{w} = L(\mathbf{v}) \text{ for some } \mathbf{v} \in S\}$$

The image of V, namely L(V), is called the *range of* L, sometimes denoted $\mathcal{R}(L)$.

For any linear transformation $L:V \rightarrow W$ and any subspace S of V

For any linear transformation $L:V \rightarrow W$ and any subspace S of V

1. $\ker(L)$ is a subspace of V.

For any linear transformation $L:V \to W$ and any subspace S of V

- 1. $\ker(L)$ is a subspace of V.
- 2. L(S) is a subspace of W.

These are subsets of vector spaces and both contain the appropriate $\mathbf{0}$, so we need only show they are both closed under scalar multiplication and addition.

For any linear transformation $L:V \to W$ and any subspace S of V

- 1. $\ker(L)$ is a subspace of V.
- 2. L(S) is a subspace of W.

These are subsets of vector spaces and both contain the appropriate $\mathbf{0}$, so we need only show they are both closed under scalar multiplication and addition.

Suppose $\alpha \in \mathbb{R}$ and $\mathbf{v} \in \ker(L)$. Then $L(\mathbf{v}) = \mathbf{0}$ and so $L(\alpha \mathbf{v}) = \alpha L(\mathbf{v}) = \mathbf{0}$. Thus $\alpha \mathbf{v} \in \ker(L)$.

For any linear transformation $L:V \to W$ and any subspace S of V

- 1. $\ker(L)$ is a subspace of V.
- 2. L(S) is a subspace of W.

These are subsets of vector spaces and both contain the appropriate $\mathbf{0}$, so we need only show they are both closed under scalar multiplication and addition.

Suppose $\alpha \in \mathbb{R}$ and $\mathbf{v} \in \ker(L)$. Then $L(\mathbf{v}) = \mathbf{0}$ and so $L(\alpha \mathbf{v}) = \alpha L(\mathbf{v}) = \mathbf{0}$. Thus $\alpha \mathbf{v} \in \ker(L)$.

If \mathbf{v}_1 and \mathbf{v}_2 are in $\ker(L)$ then $L(\mathbf{v}_1 + \mathbf{v}_2) = L(\mathbf{v}_1) + L(\mathbf{v}_2) = \mathbf{0} + \mathbf{0} = \mathbf{0}$ and so $\mathbf{v}_1 + \mathbf{v}_2 \in \ker(L)$.

For any linear transformation $L:V \to W$ and any subspace S of V

- 1. $\ker(L)$ is a subspace of V.
- 2. L(S) is a subspace of W.

These are subsets of vector spaces and both contain the appropriate $\mathbf{0}$, so we need only show they are both closed under scalar multiplication and addition.

Suppose $\alpha \in \mathbb{R}$ and $\mathbf{v} \in \ker(L)$. Then $L(\mathbf{v}) = \mathbf{0}$ and so $L(\alpha \mathbf{v}) = \alpha L(\mathbf{v}) = \mathbf{0}$. Thus $\alpha \mathbf{v} \in \ker(L)$. If \mathbf{v}_1 and \mathbf{v}_2 are in $\ker(L)$ then $L(\mathbf{v}_1 + \mathbf{v}_2) = L(\mathbf{v}_1) + L(\mathbf{v}_2) = \mathbf{0} + \mathbf{0} = \mathbf{0}$ and so $\mathbf{v}_1 + \mathbf{v}_2 \in \ker(L)$.

Now suppose \mathbf{w}_1 and \mathbf{w}_2 are in L(S).

For any linear transformation $L: V \to W$ and any subspace S of V

- 1. $\ker(L)$ is a subspace of V.
- 2. L(S) is a subspace of W.

These are subsets of vector spaces and both contain the appropriate $\mathbf{0}$, so we need only show they are both closed under scalar multiplication and addition.

Suppose $\alpha \in \mathbb{R}$ and $\mathbf{v} \in \ker(L)$. Then $L(\mathbf{v}) = \mathbf{0}$ and so $L(\alpha \mathbf{v}) = \alpha L(\mathbf{v}) = \mathbf{0}$. Thus $\alpha \mathbf{v} \in \ker(L)$. If \mathbf{v}_1 and \mathbf{v}_2 are in $\ker(L)$ then $L(\mathbf{v}_1 + \mathbf{v}_2) = L(\mathbf{v}_1) + L(\mathbf{v}_2) = \mathbf{0} + \mathbf{0} = \mathbf{0}$ and so $\mathbf{v}_1 + \mathbf{v}_2 \in \ker(L)$.

Now suppose \mathbf{w}_1 and \mathbf{w}_2 are in L(S). Then $\mathbf{w}_1 = L(\mathbf{v}_1)$ for some $\mathbf{v}_1 \in S$ and $\mathbf{w}_2 = L(\mathbf{v}_2)$ for some $\mathbf{v}_2 \in S$.

For any linear transformation $L:V \to W$ and any subspace S of V

- 1. $\ker(L)$ is a subspace of V.
- 2. L(S) is a subspace of W.

These are subsets of vector spaces and both contain the appropriate $\mathbf{0}$, so we need only show they are both closed under scalar multiplication and addition.

Suppose
$$\alpha \in \mathbb{R}$$
 and $\mathbf{v} \in \ker(L)$. Then $L(\mathbf{v}) = \mathbf{0}$ and so $L(\alpha \mathbf{v}) = \alpha L(\mathbf{v}) = \mathbf{0}$. Thus $\alpha \mathbf{v} \in \ker(L)$.
If \mathbf{v}_1 and \mathbf{v}_2 are in $\ker(L)$ then $L(\mathbf{v}_1 + \mathbf{v}_2) = L(\mathbf{v}_1) + L(\mathbf{v}_2) = \mathbf{0} + \mathbf{0} =$ and so $\mathbf{v}_1 + \mathbf{v}_2 \in \ker(L)$.

Now suppose \mathbf{w}_1 and \mathbf{w}_2 are in L(S). Then $\mathbf{w}_1 = L(\mathbf{v}_1)$ for some $\mathbf{v}_1 \in S$ and $\mathbf{w}_2 = L(\mathbf{v}_2)$ for some $\mathbf{v}_2 \in S$. Since S is a subspace, $\mathbf{v}_1 + \mathbf{v}_2 \in S$ and $\mathbf{w}_1 + \mathbf{w}_2 = L(\mathbf{v}_1) + L(\mathbf{v}_2)$

n

For any linear transformation $L:V \to W$ and any subspace S of V

- 1. $\ker(L)$ is a subspace of V.
- 2. L(S) is a subspace of W.

These are subsets of vector spaces and both contain the appropriate $\mathbf{0}$, so we need only show they are both closed under scalar multiplication and addition.

Suppose
$$\alpha \in \mathbb{R}$$
 and $\mathbf{v} \in \ker(L)$. Then $L(\mathbf{v}) = \mathbf{0}$ and so $L(\alpha \mathbf{v}) = \alpha L(\mathbf{v}) = \mathbf{0}$. Thus $\alpha \mathbf{v} \in \ker(L)$.
If \mathbf{v}_1 and \mathbf{v}_2 are in $\ker(L)$ then $L(\mathbf{v}_1 + \mathbf{v}_2) = L(\mathbf{v}_1) + L(\mathbf{v}_2) = \mathbf{0} + \mathbf{0} = \mathbf{0}$ and so $\mathbf{v}_1 + \mathbf{v}_2 \in \ker(L)$.

Now suppose \mathbf{w}_1 and \mathbf{w}_2 are in L(S). Then $\mathbf{w}_1 = L(\mathbf{v}_1)$ for some $\mathbf{v}_1 \in S$ and $\mathbf{w}_2 = L(\mathbf{v}_2)$ for some $\mathbf{v}_2 \in S$. Since S is a subspace, $\mathbf{v}_1 + \mathbf{v}_2 \in S$ and $\mathbf{w}_1 + \mathbf{w}_2 = L(\mathbf{v}_1) + L(\mathbf{v}_2) = L(\mathbf{v}_1 + \mathbf{v}_2) \in L(S)$.

For any linear transformation $L:V \to W$ and any subspace S of V

- 1. $\ker(L)$ is a subspace of V.
- 2. L(S) is a subspace of W.

These are subsets of vector spaces and both contain the appropriate $\mathbf{0}$, so we need only show they are both closed under scalar multiplication and addition.

Suppose
$$\alpha \in \mathbb{R}$$
 and $\mathbf{v} \in \ker(L)$. Then $L(\mathbf{v}) = \mathbf{0}$ and so $L(\alpha \mathbf{v}) = \alpha L(\mathbf{v}) = \mathbf{0}$. Thus $\alpha \mathbf{v} \in \ker(L)$.

If \mathbf{v}_1 and \mathbf{v}_2 are in $\ker(L)$ then $L(\mathbf{v}_1 + \mathbf{v}_2) = L(\mathbf{v}_1) + L(\mathbf{v}_2) = \mathbf{0} + \mathbf{0} = \mathbf{0}$ and so $\mathbf{v}_1 + \mathbf{v}_2 \in \ker(L)$.

Now suppose \mathbf{w}_1 and \mathbf{w}_2 are in L(S). Then $\mathbf{w}_1 = L(\mathbf{v}_1)$ for some $\mathbf{v}_1 \in S$ and $\mathbf{w}_2 = L(\mathbf{v}_2)$ for some $\mathbf{v}_2 \in S$. Since S is a subspace, $\mathbf{v}_1 + \mathbf{v}_2 \in S$ and $\mathbf{w}_1 + \mathbf{w}_2 = L(\mathbf{v}_1) + L(\mathbf{v}_2) = L(\mathbf{v}_1 + \mathbf{v}_2) \in L(S)$.

Similarly, $\mathbf{w} = L(\mathbf{v})$ in L(S) and $\alpha \in \mathbb{R}$ imply that $\alpha \mathbf{w} = \alpha L(\mathbf{v}) = L(\alpha \mathbf{v})$ is in L(S).

If A is an $n \times k$ matrix and $L : \mathbb{R}^k \to \mathbb{R}^n$ is given by $L(\mathbf{x}) = A\mathbf{x}$, then $\ker(L) = \mathcal{N}(A)$.

If A is an $n \times k$ matrix and $L : \mathbb{R}^k \to \mathbb{R}^n$ is given by $L(\mathbf{x}) = A\mathbf{x}$, then $\ker(L) = \mathcal{N}(A)$.

The range $L(\mathbb{R}^k)$ is the set of all possible $A\mathbf{x}$ for $\mathbf{x} \in \mathbb{R}^k$. Recall that if

 $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ are the columns of A and $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{bmatrix}$ then

 $A\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_k\mathbf{a}_k$

That is, the range of L is the span of the columns, that is, the column space of A. Since $\mathcal{R}(L)$ is the column space of A, the notation $\mathcal{R}(A)$ is sometimes used for the column space.

If A is an $n \times k$ matrix and $L : \mathbb{R}^k \to \mathbb{R}^n$ is given by $L(\mathbf{x}) = A\mathbf{x}$, then $\ker(L) = \mathcal{N}(A)$.

The range $L(\mathbb{R}^k)$ is the set of all possible $A\mathbf{x}$ for $\mathbf{x} \in \mathbb{R}^k$. Recall that if

 $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ are the columns of A and $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{bmatrix}$ then

 $A\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_k\mathbf{a}_k$

That is, the range of L is the span of the columns, that is, the column space of A. Since $\mathcal{R}(L)$ is the column space of A, the notation $\mathcal{R}(A)$ is sometimes used for the column space.

There is nothing special about muliplying on the left, Ax.

If A is an $n \times k$ matrix and $L : \mathbb{R}^k \to \mathbb{R}^n$ is given by $L(\mathbf{x}) = A\mathbf{x}$, then $\ker(L) = \mathcal{N}(A)$.

The range $L(\mathbb{R}^k)$ is the set of all possible $A\mathbf{x}$ for $\mathbf{x} \in \mathbb{R}^k$. Recall that if

 $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ are the columns of A and $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{bmatrix}$ then

 $A\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_k\mathbf{a}_k$

That is, the range of L is the span of the columns, that is, the column space of A. Since $\mathcal{R}(L)$ is the column space of A, the notation $\mathcal{R}(A)$ is sometimes used for the column space.

There is nothing special about muliplying on the left, $A\mathbf{x}$. We could also regard \mathbb{R}^n and \mathbb{R}^k as sets of row vectors. Then we can define a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^k$ by $T(\vec{\mathbf{x}}) = \vec{\mathbf{x}}A$. In this case, the range $T(\mathbb{R}^n)$ is the row space of A.

Recall the linear transformation P_1 we defined earlier

$$P_1\left(\begin{array}{c} x_1\\ x_2\end{array}\right) = \left(\begin{array}{c} x_1\\ 0\end{array}\right).$$

Recall the linear transformation ${\it P}_1$ we defined earlier

$$P_1\left(\begin{array}{c}x_1\\x_2\end{array}\right) = \left(\begin{array}{c}x_1\\0\end{array}\right).$$

Then

$$\ker(P_1) = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \middle| x_1 = 0 \right\} \text{ and } P_1(\mathbb{R}^2) = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \middle| x_2 = 0 \right\}$$

Recall the linear transformation P_1 we defined earlier

$$P_1\left(\begin{array}{c}x_1\\x_2\end{array}\right)=\left(\begin{array}{c}x_1\\0\end{array}\right).$$

Then

$$\ker(P_1) = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \middle| x_1 = 0 \right\} \text{ and } P_1(\mathbb{R}^2) = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \middle| x_2 = 0 \right\}$$

The rotation transformations R_{θ} satisfy $\ker(R_{\theta}) = \{\mathbf{0}\}$ and $R_{\theta}(\mathbb{R}^2) = \mathbb{R}^2$.

$$L(a+bx+cx^2) = b+2cx$$

$$L(a+bx+cx^2) = b+2cx$$

(Since the outcome lies in both \mathcal{P}_2 and \mathcal{P}_3 it could also be consider as a transformation from \mathcal{P}_3 to \mathcal{P}_2 .)

$$L(a+bx+cx^2) = b+2cx$$

(Since the outcome lies in both \mathcal{P}_2 and \mathcal{P}_3 it could also be consider as a transformation from \mathcal{P}_3 to \mathcal{P}_2 .) Then L is a linear transformation (exercise: check this) with

$$\ker(L) = \{a + bx + cx^2 \mid b = c = 0\}$$
 and $L(\mathcal{P}_3) = \mathcal{P}_2$.

$$L(a+bx+cx^2) = b+2cx$$

(Since the outcome lies in both \mathcal{P}_2 and \mathcal{P}_3 it could also be consider as a transformation from \mathcal{P}_3 to \mathcal{P}_2 .) Then L is a linear transformation (exercise: check this) with

$$\ker(L) = \{a + bx + cx^2 \mid b = c = 0\}$$
 and $L(\mathcal{P}_3) = \mathcal{P}_2$.

Another example $T : \mathcal{P}_3 \to \mathcal{P}_4$:

$$T(a + bx + cx^{2}) = ax + (b/2)x^{2} + (c/3)x^{3}$$

$$L(a+bx+cx^2) = b+2cx$$

(Since the outcome lies in both \mathcal{P}_2 and \mathcal{P}_3 it could also be consider as a transformation from \mathcal{P}_3 to \mathcal{P}_2 .) Then L is a linear transformation (exercise: check this) with

$$\ker(L) = \{a + bx + cx^2 \mid b = c = 0\}$$
 and $L(\mathcal{P}_3) = \mathcal{P}_2$.

Another example $T : \mathcal{P}_3 \to \mathcal{P}_4$:

$$T(a + bx + cx^{2}) = ax + (b/2)x^{2} + (c/3)x^{3}$$

(Check that this is a linear transformation.) Its kernel and range:

$$\ker(T) = \{0\}$$
 and $T(\mathcal{P}_3) = \{a + bx + cx^2 + dx^3 \mid a = 0\}$