Row and Column Spaces

D. H. Luecking

01 Mar 2024

Three vector spaces associated with a matrix

Three vector spaces associated with a matrix

Definition

If A is an $n \times k$ matrix then

1. The null space of A is the set of vectors \mathbf{x} that satisfy $A \mathbf{x}=\mathbf{0}$. This is a subspace of \mathbb{R}^{k} and consists of column vectors. We denote this $\mathcal{N}(A)$.

Three vector spaces associated with a matrix

Definition

If A is an $n \times k$ matrix then

1. The null space of A is the set of vectors \mathbf{x} that satisfy $A \mathbf{x}=\mathbf{0}$. This is a subspace of \mathbb{R}^{k} and consists of column vectors. We denote this $\mathcal{N}(A)$.
2. The column space of A is the span of the columns of A. This is a subspace of \mathbb{R}^{n} and consists of column vectors. (Later we will denote this by $\mathcal{R}(A)$, but it would be confusing to do that now.)

Three vector spaces associated with a matrix

Definition

If A is an $n \times k$ matrix then

1. The null space of A is the set of vectors \mathbf{x} that satisfy $A \mathbf{x}=\mathbf{0}$. This is a subspace of \mathbb{R}^{k} and consists of column vectors. We denote this $\mathcal{N}(A)$.
2. The column space of A is the span of the columns of A. This is a subspace of \mathbb{R}^{n} and consists of column vectors. (Later we will denote this by $\mathcal{R}(A)$, but it would be confusing to do that now.)
3. The row space of A is the span of the rows of A. It is a subspace of \mathbb{R}^{k} (interpreted as all $1 \times k$ row matrices). We don't have any special notation for this.

Finding a basis of each of these spaces

Finding a basis of each of these spaces

For the null space, we solve the system $A \mathbf{x}=\mathbf{0}$. The usual method almost produces the set of solutions as a span. And the vectors involved are the basis.

Finding a basis of each of these spaces

For the null space, we solve the system $A \mathbf{x}=\mathbf{0}$. The usual method almost produces the set of solutions as a span. And the vectors involved are the basis.
Example: Find a basis of $\mathcal{N}(A)$ when $A=\left(\begin{array}{rrrr}0 & 2 & -2 & 4 \\ -1 & -1 & -1 & 2 \\ 1 & 3 & -1 & 2\end{array}\right)$

Finding a basis of each of these spaces

For the null space, we solve the system $A \mathbf{x}=\mathbf{0}$. The usual method almost produces the set of solutions as a span. And the vectors involved are the basis.
Example: Find a basis of $\mathcal{N}(A)$ when $A=\left(\begin{array}{rrrr}0 & 2 & -2 & 4 \\ -1 & -1 & -1 & 2 \\ 1 & 3 & -1 & 2\end{array}\right)$
$\xrightarrow{R_{1} \leftrightarrow R_{3}}\left(\begin{array}{rrrr}1 & 3 & -1 & 2 \\ -1 & -1 & -1 & 2 \\ 0 & 2 & -2 & 4\end{array}\right)$

Finding a basis of each of these spaces

For the null space, we solve the system $A \mathbf{x}=\mathbf{0}$. The usual method almost produces the set of solutions as a span. And the vectors involved are the basis.
Example: Find a basis of $\mathcal{N}(A)$ when $A=\left(\begin{array}{rrrr}0 & 2 & -2 & 4 \\ -1 & -1 & -1 & 2 \\ 1 & 3 & -1 & 2\end{array}\right)$
$\xrightarrow{R_{1} \leftrightarrow R_{3}}\left(\begin{array}{rrrr}1 & 3 & -1 & 2 \\ -1 & -1 & -1 & 2 \\ 0 & 2 & -2 & 4\end{array}\right) \xrightarrow{R_{3}+R_{1}}\left(\begin{array}{llll}1 & 3 & -1 & 2 \\ 0 & 2 & -2 & 4 \\ 0 & 2 & -2 & 4\end{array}\right)$
$\xrightarrow[(1 / 2) R_{2}]{R_{3}-R_{2}}\left(\begin{array}{llrr}1 & 3 & -1 & 2 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0\end{array}\right)$

Finding a basis of each of these spaces

For the null space, we solve the system $A \mathbf{x}=\mathbf{0}$. The usual method almost produces the set of solutions as a span. And the vectors involved are the basis.
Example: Find a basis of $\mathcal{N}(A)$ when $A=\left(\begin{array}{rrrr}0 & 2 & -2 & 4 \\ -1 & -1 & -1 & 2 \\ 1 & 3 & -1 & 2\end{array}\right)$
$\xrightarrow{R_{1} \leftrightarrow R_{3}}\left(\begin{array}{rrrr}1 & 3 & -1 & 2 \\ -1 & -1 & -1 & 2 \\ 0 & 2 & -2 & 4\end{array}\right) \xrightarrow{R_{3}+R_{1}}\left(\begin{array}{llll}1 & 3 & -1 & 2 \\ 0 & 2 & -2 & 4 \\ 0 & 2 & -2 & 4\end{array}\right)$
$\xrightarrow[(1 / 2) R_{2}]{R_{3}-R_{2}}\left(\begin{array}{rrrr}1 & 3 & -1 & 2 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0\end{array}\right) \xrightarrow{R_{1}-3 R_{2}}\left(\begin{array}{rrrr}1 & 0 & 2 & -4 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0\end{array}\right)$

This gives us the system

$$
\left.x_{1} \begin{array}{r}
+2 x_{3}-4 x_{4}=0 \\
x_{2}-x_{3}+2 x_{4}=0
\end{array}\right\} \text { or }\left\{\begin{array}{l}
x_{1}=-2 x_{3}+4 x_{4} \\
x_{2}=x_{3}-2 x_{4}
\end{array}\right.
$$

This gives us the system

$$
\left.x_{1} \begin{array}{r}
+2 x_{3}-4 x_{4}=0 \\
x_{2}-x_{3}+2 x_{4}=0
\end{array}\right\} \text { or }\left\{\begin{array}{l}
x_{1}=-2 x_{3}+4 x_{4} \\
x_{2}=x_{3}-2 x_{4}
\end{array}\right.
$$

Setting $x_{3}=\alpha$ and $x_{4}=\beta$ we get

$$
\mathcal{N}(A)=\left\{\left.\left(\begin{array}{c}
-2 \alpha+4 \beta \\
\alpha-2 \beta \\
\alpha \\
\beta
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\}=\operatorname{Span}\left(\left(\begin{array}{r}
-2 \\
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{r}
4 \\
-2 \\
0 \\
1
\end{array}\right)\right)
$$

This gives us the system

$$
\left.x_{1} \begin{array}{r}
+2 x_{3}-4 x_{4}=0 \\
x_{2}-x_{3}+2 x_{4}=0
\end{array}\right\} \text { or }\left\{\begin{array}{l}
x_{1}=-2 x_{3}+4 x_{4} \\
x_{2}=x_{3}-2 x_{4}
\end{array}\right.
$$

Setting $x_{3}=\alpha$ and $x_{4}=\beta$ we get

$$
\mathcal{N}(A)=\left\{\left.\left(\begin{array}{c}
-2 \alpha+4 \beta \\
\alpha-2 \beta \\
\alpha \\
\beta
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\}=\operatorname{Span}\left(\left(\begin{array}{r}
-2 \\
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{r}
4 \\
-2 \\
0 \\
1
\end{array}\right)\right)
$$

Those vectors are actually guaranteed to be independent and span $\mathcal{N}(A)$.

This gives us the system

$$
\left.x_{1} \begin{array}{r}
+2 x_{3}-4 x_{4}=0 \\
x_{2}-x_{3}+2 x_{4}=0
\end{array}\right\} \text { or }\left\{\begin{array}{l}
x_{1}=-2 x_{3}+4 x_{4} \\
x_{2}=x_{3}-2 x_{4}
\end{array}\right.
$$

Setting $x_{3}=\alpha$ and $x_{4}=\beta$ we get

$$
\mathcal{N}(A)=\left\{\left.\left(\begin{array}{c}
-2 \alpha+4 \beta \\
\alpha-2 \beta \\
\alpha \\
\beta
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\}=\operatorname{Span}\left(\left(\begin{array}{r}
-2 \\
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{r}
4 \\
-2 \\
0 \\
1
\end{array}\right)\right)
$$

Those vectors are actually guaranteed to be independent and span $\mathcal{N}(A)$. The first comes from setting $\alpha=1$ and $\beta=0$, while the second comes from setting $\alpha=0$ and $\beta=1$.

This gives us the system

$$
\left.x_{1} \begin{array}{r}
+2 x_{3}-4 x_{4}=0 \\
x_{2}-x_{3}+2 x_{4}=0
\end{array}\right\} \text { or }\left\{\begin{array}{l}
x_{1}=-2 x_{3}+4 x_{4} \\
x_{2}=x_{3}-2 x_{4}
\end{array}\right.
$$

Setting $x_{3}=\alpha$ and $x_{4}=\beta$ we get

$$
\mathcal{N}(A)=\left\{\left.\left(\begin{array}{c}
-2 \alpha+4 \beta \\
\alpha-2 \beta \\
\alpha \\
\beta
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\}=\operatorname{Span}\left(\left(\begin{array}{r}
-2 \\
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{r}
4 \\
-2 \\
0 \\
1
\end{array}\right)\right)
$$

Those vectors are actually guaranteed to be independent and span $\mathcal{N}(A)$. The first comes from setting $\alpha=1$ and $\beta=0$, while the second comes from setting $\alpha=0$ and $\beta=1$.
Notice that we get one element of the basis for each separate parameter.

This gives us the system

$$
\left.x_{1} \begin{array}{r}
+2 x_{3}-4 x_{4}=0 \\
x_{2}-x_{3}+2 x_{4}=0
\end{array}\right\} \text { or }\left\{\begin{array}{l}
x_{1}=-2 x_{3}+4 x_{4} \\
x_{2}=x_{3}-2 x_{4}
\end{array}\right.
$$

Setting $x_{3}=\alpha$ and $x_{4}=\beta$ we get

$$
\mathcal{N}(A)=\left\{\left.\left(\begin{array}{c}
-2 \alpha+4 \beta \\
\alpha-2 \beta \\
\alpha \\
\beta
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\}=\operatorname{Span}\left(\left(\begin{array}{r}
-2 \\
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{r}
4 \\
-2 \\
0 \\
1
\end{array}\right)\right)
$$

Those vectors are actually guaranteed to be independent and span $\mathcal{N}(A)$. The first comes from setting $\alpha=1$ and $\beta=0$, while the second comes from setting $\alpha=0$ and $\beta=1$.
Notice that we get one element of the basis for each separate parameter. Thus, the dimension of $\mathcal{N}(A)$ (the size of a basis) is the number of free variables.

This gives us the system

$$
\left.x_{1} \begin{array}{r}
+2 x_{3}-4 x_{4}=0 \\
x_{2}-x_{3}+2 x_{4}=0
\end{array}\right\} \text { or }\left\{\begin{array}{l}
x_{1}=-2 x_{3}+4 x_{4} \\
x_{2}=x_{3}-2 x_{4}
\end{array}\right.
$$

Setting $x_{3}=\alpha$ and $x_{4}=\beta$ we get

$$
\mathcal{N}(A)=\left\{\left.\left(\begin{array}{c}
-2 \alpha+4 \beta \\
\alpha-2 \beta \\
\alpha \\
\beta
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\}=\operatorname{Span}\left(\left(\begin{array}{r}
-2 \\
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{r}
4 \\
-2 \\
0 \\
1
\end{array}\right)\right)
$$

Those vectors are actually guaranteed to be independent and span $\mathcal{N}(A)$. The first comes from setting $\alpha=1$ and $\beta=0$, while the second comes from setting $\alpha=0$ and $\beta=1$.
Notice that we get one element of the basis for each separate parameter. Thus, the dimension of $\mathcal{N}(A)$ (the size of a basis) is the number of free variables. That is the same as the number of columns without a leading 1 in the echelon form.

Now let's find a basis for the column space. Since the set of columns span the column space, we only need to trim that set down to an independent set.

Now let's find a basis for the column space. Since the set of columns span the column space, we only need to trim that set down to an independent set. We do that by putting them in a matrix (getting the same matrix A !) and reducing it to echelon form.

Now let's find a basis for the column space. Since the set of columns span the column space, we only need to trim that set down to an independent set. We do that by putting them in a matrix (getting the same matrix A !) and reducing it to echelon form. Happily, we have already done that:

$$
\left(\begin{array}{rrrr}
0 & 2 & -2 & 4 \\
1 & 3 & -1 & 2 \\
-1 & -1 & -1 & 2
\end{array}\right) \xrightarrow{6 \mathrm{ERO}}\left(\begin{array}{rrrr}
1 & 0 & 2 & -4 \\
0 & 1 & -1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Now let's find a basis for the column space. Since the set of columns span the column space, we only need to trim that set down to an independent set. We do that by putting them in a matrix (getting the same matrix A !) and reducing it to echelon form. Happily, we have already done that:

$$
\left(\begin{array}{rrrr}
0 & 2 & -2 & 4 \\
1 & 3 & -1 & 2 \\
-1 & -1 & -1 & 2
\end{array}\right) \xrightarrow{6 \mathrm{ERO}}\left(\begin{array}{rrrr}
1 & 0 & 2 & -4 \\
0 & 1 & -1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

This tells us that columns 3 and 4 depend on columns 1 and 2 and the first two columns are independent.

Now let's find a basis for the column space. Since the set of columns span the column space, we only need to trim that set down to an independent set. We do that by putting them in a matrix (getting the same matrix $A!$) and reducing it to echelon form. Happily, we have already done that:

$$
\left(\begin{array}{rrrr}
0 & 2 & -2 & 4 \\
1 & 3 & -1 & 2 \\
-1 & -1 & -1 & 2
\end{array}\right) \xrightarrow{6 \mathrm{ERO}}\left(\begin{array}{rrrr}
1 & 0 & 2 & -4 \\
0 & 1 & -1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

This tells us that columns 3 and 4 depend on columns 1 and 2 and the first two columns are independent. That means the span of all 4 columns is the same as the span of the first two:

$$
\text { Column space of } A=\operatorname{Span}\left(\left(\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right)\left(\begin{array}{r}
2 \\
3 \\
-1
\end{array}\right)\right)
$$

Now let's find a basis for the column space. Since the set of columns span the column space, we only need to trim that set down to an independent set. We do that by putting them in a matrix (getting the same matrix $A!$) and reducing it to echelon form. Happily, we have already done that:

$$
\left(\begin{array}{rrrr}
0 & 2 & -2 & 4 \\
1 & 3 & -1 & 2 \\
-1 & -1 & -1 & 2
\end{array}\right) \xrightarrow{6 \mathrm{ERO}}\left(\begin{array}{rrrr}
1 & 0 & 2 & -4 \\
0 & 1 & -1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

This tells us that columns 3 and 4 depend on columns 1 and 2 and the first two columns are independent. That means the span of all 4 columns is the same as the span of the first two:

$$
\text { Column space of } A=\operatorname{Span}\left(\left(\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right)\left(\begin{array}{r}
2 \\
3 \\
-1
\end{array}\right)\right)
$$

Since they are independent, $(0,1,-1)^{T}$ and $(2,3,-1)^{T}$ is a basis for the column space.

Now let's find a basis for the column space. Since the set of columns span the column space, we only need to trim that set down to an independent set. We do that by putting them in a matrix (getting the same matrix $A!$) and reducing it to echelon form. Happily, we have already done that:

$$
\left(\begin{array}{rrrr}
0 & 2 & -2 & 4 \\
1 & 3 & -1 & 2 \\
-1 & -1 & -1 & 2
\end{array}\right) \xrightarrow{6 \mathrm{ERO}}\left(\begin{array}{rrrr}
1 & 0 & 2 & -4 \\
0 & 1 & -1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

This tells us that columns 3 and 4 depend on columns 1 and 2 and the first two columns are independent. That means the span of all 4 columns is the same as the span of the first two:

$$
\text { Column space of } A=\operatorname{Span}\left(\left(\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right)\left(\begin{array}{r}
2 \\
3 \\
-1
\end{array}\right)\right)
$$

Since they are independent, $(0,1,-1)^{T}$ and $(2,3,-1)^{T}$ is a basis for the column space.
Notice that the dimension of the column space is the same as the number of columns with leading ones.

There are two different ways to get a basis for the row space.

There are two different ways to get a basis for the row space.
One is to transpose the matrix (i.e., turn the the rows into columns) then find a basis tor the column space of A^{T}, then transpose those columns back into rows.

There are two different ways to get a basis for the row space.
One is to transpose the matrix (i.e., turn the the rows into columns) then find a basis tor the column space of A^{T}, then transpose those columns back into rows.

The other is a bit easier and makes use of the fact that EROs do not change the row space: Every ERO does one of the following:

1. Exchange 2 rows. The new matrix has the same rows so their span is the same.

There are two different ways to get a basis for the row space.
One is to transpose the matrix (i.e., turn the the rows into columns) then find a basis tor the column space of A^{T}, then transpose those columns back into rows.

The other is a bit easier and makes use of the fact that EROs do not change the row space: Every ERO does one of the following:

1. Exchange 2 rows. The new matrix has the same rows so their span is the same.
2. Multiply a row times a nonzero number α. One row, say R_{1}, is now $R_{1}^{\prime}=\alpha R_{1}$. But any linear combination that includes $R_{1}^{\prime}: c_{1} R_{1}^{\prime}+\cdots$, could be rewritten as $\left(\alpha c_{1}\right) R_{1}+\cdots$.

There are two different ways to get a basis for the row space.
One is to transpose the matrix (i.e., turn the the rows into columns) then find a basis tor the column space of A^{T}, then transpose those columns back into rows.

The other is a bit easier and makes use of the fact that EROs do not change the row space: Every ERO does one of the following:

1. Exchange 2 rows. The new matrix has the same rows so their span is the same.
2. Multiply a row times a nonzero number α. One row, say R_{1}, is now $R_{1}^{\prime}=\alpha R_{1}$. But any linear combination that includes $R_{1}^{\prime}: c_{1} R_{1}^{\prime}+\cdots$, could be rewritten as $\left(\alpha c_{1}\right) R_{1}+\cdots$.
3. Add a multiple of one row to another row. Suppose the new row is $R_{2}^{\prime}=R_{2}+\alpha R_{1}$. Then a linear combination that includes the new row: $c_{1} R_{1}+c_{2} R_{2}^{\prime}+\cdots$, can be written with the old row: $\left(c_{1}+\alpha c_{2}\right) R_{1}+c_{2} R_{2}+\cdots$.

There are two different ways to get a basis for the row space.
One is to transpose the matrix (i.e., turn the the rows into columns) then find a basis tor the column space of A^{T}, then transpose those columns back into rows.

The other is a bit easier and makes use of the fact that EROs do not change the row space: Every ERO does one of the following:

1. Exchange 2 rows. The new matrix has the same rows so their span is the same.
2. Multiply a row times a nonzero number α. One row, say R_{1}, is now $R_{1}^{\prime}=\alpha R_{1}$. But any linear combination that includes $R_{1}^{\prime}: c_{1} R_{1}^{\prime}+\cdots$, could be rewritten as $\left(\alpha c_{1}\right) R_{1}+\cdots$.
3. Add a multiple of one row to another row. Suppose the new row is $R_{2}^{\prime}=R_{2}+\alpha R_{1}$. Then a linear combination that includes the new row: $c_{1} R_{1}+c_{2} R_{2}^{\prime}+\cdots$, can be written with the old row: $\left(c_{1}+\alpha c_{2}\right) R_{1}+c_{2} R_{2}+\cdots$.

That means that if we reduce the matrix to echelon form the echelon form has the same row space.

For our example matrix, the matrix A and its reduced echelon form B are:

$$
A=\left(\begin{array}{rrrr}
0 & 2 & -2 & 4 \\
1 & 3 & -1 & 2 \\
-1 & -1 & -1 & 2
\end{array}\right) \quad \text { and } B=\left(\begin{array}{rrrr}
1 & 0 & 2 & -4 \\
0 & 1 & -1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

For our example matrix, the matrix A and its reduced echelon form B are:

$$
A=\left(\begin{array}{rrrr}
0 & 2 & -2 & 4 \\
1 & 3 & -1 & 2 \\
-1 & -1 & -1 & 2
\end{array}\right) \quad \text { and } B=\left(\begin{array}{rrrr}
1 & 0 & 2 & -4 \\
0 & 1 & -1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The nonzero rows of echelon form are always independent. Why?

For our example matrix, the matrix A and its reduced echelon form B are:

$$
A=\left(\begin{array}{rrrr}
0 & 2 & -2 & 4 \\
1 & 3 & -1 & 2 \\
-1 & -1 & -1 & 2
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rrrr}
1 & 0 & 2 & -4 \\
0 & 1 & -1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The nonzero rows of echelon form are always independent. Why? Well, in this example

$$
c_{1} R_{1}+c_{2} R_{2}=\left(\begin{array}{cccc}
c_{1} & c_{2} & 2 c_{1}-c_{2} & -4 c_{1}+2 c_{2}
\end{array}\right)
$$

This can only equal $\left(\begin{array}{cccc}0 & 0 & 0 & 0\end{array}\right)$ if $c_{1}=0$ and $c_{2}=0$.

For our example matrix, the matrix A and its reduced echelon form B are:

$$
A=\left(\begin{array}{rrrr}
0 & 2 & -2 & 4 \\
1 & 3 & -1 & 2 \\
-1 & -1 & -1 & 2
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rrrr}
1 & 0 & 2 & -4 \\
0 & 1 & -1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The nonzero rows of echelon form are always independent. Why? Well, in this example

$$
c_{1} R_{1}+c_{2} R_{2}=\left(\begin{array}{cccc}
c_{1} & c_{2} & 2 c_{1}-c_{2} & -4 c_{1}+2 c_{2}
\end{array}\right)
$$

This can only equal $\left(\begin{array}{cccc}0 & 0 & 0 & 0\end{array}\right)$ if $c_{1}=0$ and $c_{2}=0$. A similar phenomenon holds for any matrix in echelon form.

For our example matrix, the matrix A and its reduced echelon form B are:

$$
A=\left(\begin{array}{rrrr}
0 & 2 & -2 & 4 \\
1 & 3 & -1 & 2 \\
-1 & -1 & -1 & 2
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rrrr}
1 & 0 & 2 & -4 \\
0 & 1 & -1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The nonzero rows of echelon form are always independent. Why? Well, in this example

$$
c_{1} R_{1}+c_{2} R_{2}=\left(\begin{array}{cccc}
c_{1} & c_{2} & 2 c_{1}-c_{2} & -4 c_{1}+2 c_{2}
\end{array}\right)
$$

This can only equal $\left(\begin{array}{cccc}0 & 0 & 0 & 0\end{array}\right)$ if $c_{1}=0$ and $c_{2}=0$. A similar phenomenon holds for any matrix in echelon form. So, for this example, a basis for the row space is

$$
\left(\begin{array}{llll}
1 & 0 & 2 & -4
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & -1 & 2
\end{array}\right)
$$

One disadvantage of this method is that this set, while it is a basis of, the row space, it does not consist of any of the original rows.

One disadvantage of this method is that this set, while it is a basis of, the row space, it does not consist of any of the original rows. That may or may not be a problem. If it is, one can always find a basis for the column space of A^{T} and transpose those vectors.

One disadvantage of this method is that this set, while it is a basis of, the row space, it does not consist of any of the original rows. That may or may not be a problem. If it is, one can always find a basis for the column space of A^{T} and transpose those vectors. If we did that in this example, we'd end up with first two rows of A.

One disadvantage of this method is that this set, while it is a basis of, the row space, it does not consist of any of the original rows. That may or may not be a problem. If it is, one can always find a basis for the column space of A^{T} and transpose those vectors. If we did that in this example, we'd end up with first two rows of A.
We could also find a basis for the column space of A by getting a basis for the row space of A^{T} and turning them back into columns.

One disadvantage of this method is that this set, while it is a basis of, the row space, it does not consist of any of the original rows. That may or may not be a problem. If it is, one can always find a basis for the column space of A^{T} and transpose those vectors. If we did that in this example, we'd end up with first two rows of A.
We could also find a basis for the column space of A by getting a basis for the row space of A^{T} and turning them back into columns.
Let's summarize what these calculations gave us. Let A be a matrix and let B be its echelon form.

1. To find a basis for the null space of A, solve the system $A \mathbf{x}=\mathbf{0}$ by examining the echelon form (augmented) $(B \mid \mathbf{0})$.

One disadvantage of this method is that this set, while it is a basis of, the row space, it does not consist of any of the original rows. That may or may not be a problem. If it is, one can always find a basis for the column space of A^{T} and transpose those vectors. If we did that in this example, we'd end up with first two rows of A.
We could also find a basis for the column space of A by getting a basis for the row space of A^{T} and turning them back into columns.
Let's summarize what these calculations gave us. Let A be a matrix and let B be its echelon form.

1. To find a basis for the null space of A, solve the system $A \mathbf{x}=\mathbf{0}$ by examining the echelon form (augmented) $(B \mid \mathbf{0})$. For each free variable, find the solution for which that variable is 1 and the rest are zero.

One disadvantage of this method is that this set, while it is a basis of, the row space, it does not consist of any of the original rows. That may or may not be a problem. If it is, one can always find a basis for the column space of A^{T} and transpose those vectors. If we did that in this example, we'd end up with first two rows of A.
We could also find a basis for the column space of A by getting a basis for the row space of A^{T} and turning them back into columns.
Let's summarize what these calculations gave us. Let A be a matrix and let B be its echelon form.

1. To find a basis for the null space of A, solve the system $A \mathbf{x}=\mathbf{0}$ by examining the echelon form (augmented) $(B \mid \mathbf{0})$. For each free variable, find the solution for which that variable is 1 and the rest are zero. This gives a basis, where the number of vectors in the basis is the number of free variables.

One disadvantage of this method is that this set, while it is a basis of, the row space, it does not consist of any of the original rows. That may or may not be a problem. If it is, one can always find a basis for the column space of A^{T} and transpose those vectors. If we did that in this example, we'd end up with first two rows of A.
We could also find a basis for the column space of A by getting a basis for the row space of A^{T} and turning them back into columns.
Let's summarize what these calculations gave us. Let A be a matrix and let B be its echelon form.

1. To find a basis for the null space of A, solve the system $A \mathbf{x}=\mathbf{0}$ by examining the echelon form (augmented) $(B \mid \mathbf{0})$. For each free variable, find the solution for which that variable is 1 and the rest are zero. This gives a basis, where the number of vectors in the basis is the number of free variables.
2. A basis for the column space of A consists of those columns of A that correspond to columns of B with a leading 1 in them.

One disadvantage of this method is that this set, while it is a basis of, the row space, it does not consist of any of the original rows. That may or may not be a problem. If it is, one can always find a basis for the column space of A^{T} and transpose those vectors. If we did that in this example, we'd end up with first two rows of A.
We could also find a basis for the column space of A by getting a basis for the row space of A^{T} and turning them back into columns.
Let's summarize what these calculations gave us. Let A be a matrix and let B be its echelon form.

1. To find a basis for the null space of A, solve the system $A \mathbf{x}=\mathbf{0}$ by examining the echelon form (augmented) $(B \mid \mathbf{0})$. For each free variable, find the solution for which that variable is 1 and the rest are zero. This gives a basis, where the number of vectors in the basis is the number of free variables.
2. A basis for the column space of A consists of those columns of A that correspond to columns of B with a leading 1 in them.
3. A basis for the row space of A consists of the nonzero rows of B.

Note the following consequences (B is still the echelon form of A):

1. The dimension of the null space of A is the number of columns of B that do not contain a leading 1.

Note the following consequences (B is still the echelon form of A):

1. The dimension of the null space of A is the number of columns of B that do not contain a leading 1 .
2. The dimension of the column space of A is the number of columns of B that do contain a leading 1 .

Note the following consequences (B is still the echelon form of A):

1. The dimension of the null space of A is the number of columns of B that do not contain a leading 1.
2. The dimension of the column space of A is the number of columns of B that do contain a leading 1 .
3. The dimension of the rowspace of A is the number of nonzero rows in B.

Note the following consequences (B is still the echelon form of A):

1. The dimension of the null space of A is the number of columns of B that do not contain a leading 1.
2. The dimension of the column space of A is the number of columns of B that do contain a leading 1 .
3. The dimension of the rowspace of A is the number of nonzero rows in B.

Definition

Let A be an $n \times k$ matrix. The rank of A is the dimension of the column space of A.

Note the following consequences (B is still the echelon form of A):

1. The dimension of the null space of A is the number of columns of B that do not contain a leading 1.
2. The dimension of the column space of A is the number of columns of B that do contain a leading 1 .
3. The dimension of the rowspace of A is the number of nonzero rows in B.

Definition

Let A be an $n \times k$ matrix. The rank of A is the dimension of the column space of A. The nullity of A is the dimension of the null space of A.

Theorem
Let A be an $n \times k$ matrix.

Theorem

Let A be an $n \times k$ matrix.

1. The row space and column space of A have the same dimension.

Theorem

Let A be an $n \times k$ matrix.

1. The row space and column space of A have the same dimension.
2. The rank of A is less than or equal to n.

Theorem

Let A be an $n \times k$ matrix.

1. The row space and column space of A have the same dimension.
2. The rank of A is less than or equal to n.
3. The rank of A is less than or equal to k.

Theorem

Let A be an $n \times k$ matrix.

1. The row space and column space of A have the same dimension.
2. The rank of A is less than or equal to n.
3. The rank of A is less than or equal to k.
4. The rank of A plus the nullity of A is k, the number of columns of A.

Theorem

Let A be an $n \times k$ matrix.

1. The row space and column space of A have the same dimension.
2. The rank of A is less than or equal to n.
3. The rank of A is less than or equal to k.
4. The rank of A plus the nullity of A is k, the number of columns of A.

The first is true because in both cases the dimension is the number of leading 1 s .

Theorem

Let A be an $n \times k$ matrix.

1. The row space and column space of A have the same dimension.
2. The rank of A is less than or equal to n.
3. The rank of A is less than or equal to k.
4. The rank of A plus the nullity of A is k, the number of columns of A.

The first is true because in both cases the dimension is the number of leading 1 s .
The second is true because the number of nonzero rows of the echelon form cannot exceed the total number of rows.

Theorem

Let A be an $n \times k$ matrix.

1. The row space and column space of A have the same dimension.
2. The rank of A is less than or equal to n.
3. The rank of A is less than or equal to k.
4. The rank of A plus the nullity of A is k, the number of columns of A.

The first is true because in both cases the dimension is the number of leading 1s.

The second is true because the number of nonzero rows of the echelon form cannot exceed the total number of rows. Thus, the dimension of the row space cannot exceed n.

Theorem

Let A be an $n \times k$ matrix.

1. The row space and column space of A have the same dimension.
2. The rank of A is less than or equal to n.
3. The rank of A is less than or equal to k.
4. The rank of A plus the nullity of A is k, the number of columns of A.

The first is true because in both cases the dimension is the number of leading 1s.

The second is true because the number of nonzero rows of the echelon form cannot exceed the total number of rows. Thus, the dimension of the row space cannot exceed n.
The third is true because the number of columns that contain a leading 1 cannot exceed the total number of columns.

Theorem

Let A be an $n \times k$ matrix.

1. The row space and column space of A have the same dimension.
2. The rank of A is less than or equal to n.
3. The rank of A is less than or equal to k.
4. The rank of A plus the nullity of A is k, the number of columns of A.

The first is true because in both cases the dimension is the number of leading 1 s .
The second is true because the number of nonzero rows of the echelon form cannot exceed the total number of rows. Thus, the dimension of the row space cannot exceed n.
The third is true because the number of columns that contain a leading 1 cannot exceed the total number of columns. Thus, the dimension of the column space cannot exceed k.

Theorem

Let A be an $n \times k$ matrix.

1. The row space and column space of A have the same dimension.
2. The rank of A is less than or equal to n.
3. The rank of A is less than or equal to k.
4. The rank of A plus the nullity of A is k, the number of columns of A.

The first is true because in both cases the dimension is the number of leading 1s.

The second is true because the number of nonzero rows of the echelon form cannot exceed the total number of rows. Thus, the dimension of the row space cannot exceed n.
The third is true because the number of columns that contain a leading 1 cannot exceed the total number of columns. Thus, the dimension of the column space cannot exceed k.
The fourth is true because every column contains a leading 1 or does not.

