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Another example:

Let B = [v1,v2,v3] where

v1 =


1
1
0

 , v2 =


1
0
2

 , and v3 =


1
0
1



We let S =
 v1 v2 v3

 and compute its inverse:
1 1 1 1 0 0
1 0 0 0 1 0
0 2 1 0 0 1

 6 or 7 EROs−−−−−−−→


1 0 0 0 1 0
0 1 0 −1 1 1
0 0 1 2 −2 −1


This means, to find the coordinates of v relative to B we need to multiply
v by S−1 for example,

if v =


−1
4
2

 then [v]B =


0 1 0

−1 1 1
2 −2 −1




−1
4
2

 =


4
7

−12


and this means that

v = 4v1 + 7v2 − 12v3.
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Now, suppose we have another basis, C = [u1,u2,u3] where

u1 =


1
0
0

 , u2 =


1
1
0

 , and u3 =


1
1
1



Here, we let

T =


1 1 1
0 1 1
0 0 1

 with inverse T−1 =


1 −1 0
0 1 −1
0 0 1


Then T is the transition matrix from C to E , and T−1 is the transition
matrix from E to C.
We can multiply the appropriate transition matrices to get the transition
matrix from (for example) B to C:

Since [x]C = T−1[x]E and [x]E = S[x]B we have [x]C = T−1S[x]B.
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Here’s an example in P3. Consider the bases

E = [1, x, x2] and B = [x2, (x+ 1)2, (x− 1)2]

Now we don’t have actual column vectors, but if we express all
polynomials in terms of their coordinates with respect to E , we can do
much that same thing as before. The vectors in B:

[x2]E =


0
0
1

 , [(x+ 1)2]E =


1
2
1

 , [(x− 1)2]E =


1

−2
1

 ,

I claim that the transition matrix from B to E is

U =


0 1 1
0 2 −2
1 1 1


and the transition matrix from E to B is its inverse:

U−1 =


−1 0 1
1/2 1/4 0
1/2 −1/4 0


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This means if (for example) we want [p(x)]B for the polynomial
p(x) = 1 + 2x− 4x2, we have

= [p(x)]B = U−1[p(x)]E =


−1 0 1
1/2 1/4 0
1/2 −1/4 0




1
2
−4

 =


−5
1
0


How do we verify that claim? The easiest way is to observe that the
addition and scalar multiplication of vectors matches the addition and
scalar multiplication of the coordinate vectors.

That is,

[αx+ βy]B = α[x]B + β[y]B

Suppose B = [v1,v2,v3] is a basis and we want transition between it and
another basis E . Let v be some vector and suppose its coordinates relative
to B are c1, c2, c3. Then

[v]E = [c1v1 + c2v2 + c3v3]E = c1[v1]E + c2[v2]E + c3[v3]E

=
 [v1]E [v2]E [v3]E


c1
c2
c3


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another basis E . Let v be some vector and suppose its coordinates relative
to B are c1, c2, c3. Then

[v]E = [c1v1 + c2v2 + c3v3]E = c1[v1]E + c2[v2]E + c3[v3]E

=
 [v1]E [v2]E [v3]E


c1
c2
c3


5 / 7



That last equation gives us a matrix

U =
 [v1]E [v2]E [v3]E


such that [v]E = U [v]B.

This is just what we did in R3.

Of course, multiplication by U−1 gives [v]B = U−1[v]E , so U−1 is the
transition matrix from E to B.

Theorem

Let B = [v1,v2, . . . ,vn] and C = [u1,u2, . . . ,un] be bases for a vector
space V . The transition matrix from B to C is

U =
 [v1]C [v2]C · · · [vn]C

 and the transition matrix from C to

B is U−1 =
 [u1]B [u2]B · · · [un]B

. If E is another basis and if S

is the transition matrix from B to E while T is the transition matrix fron C
to E , then the transition matrix from B to C is T−1S and the transition
matrix from C to B is S−1T
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The best way to remember the proper order of the matrix product is to
remember:

1. “S transitions from B to E” means “S[v]B = [v]E”.

2. “T transitions from C to E” means “T [v]C = [v]E”.

3. Equating these two versions of [v]E gives S[v]B = T [v]C , and then
multiplying by S−1 gives [v]B = S−1T [v]C , so S−1T transitions from
C to B. Inverting S−1T gives the transition the other way.

Here is a quick to do this in Rn: Take the vectors in B and make a matrix
S. Take the vectors in C and make a matrix T . Put these together in a

single partitioned matrix
S | T

. Then the transition matrix S−1T from

C to B is gotten by row reduction:S | T
 −→

I | S−1T

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