Basis and Dimension

D. H. Luecking

26 Feb 2024

We saw how to trim a spanning set to an independent set with the same span.

We saw how to trim a spanning set to an independent set with the same span. How can we do the other part of that theorem: efficiently extend an independent set to a spanning set that is still independent?

We saw how to trim a spanning set to an independent set with the same span. How can we do the other part of that theorem: efficiently extend an independent set to a spanning set that is still independent?
We will eventually provide a method that is equivalent to solving a system of equations.

We saw how to trim a spanning set to an independent set with the same span. How can we do the other part of that theorem: efficiently extend an independent set to a spanning set that is still independent?
We will eventually provide a method that is equivalent to solving a system of equations. But we already have the skills to do it now.

We saw how to trim a spanning set to an independent set with the same span. How can we do the other part of that theorem: efficiently extend an independent set to a spanning set that is still independent?
We will eventually provide a method that is equivalent to solving a system of equations. But we already have the skills to do it now.
Example: Find a basis for \mathbb{R}^{4} that contains the vectors

$$
\left(\begin{array}{l}
1 \\
2 \\
3 \\
0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{l}
2 \\
4 \\
0 \\
1
\end{array}\right)
$$

We saw how to trim a spanning set to an independent set with the same span. How can we do the other part of that theorem: efficiently extend an independent set to a spanning set that is still independent?
We will eventually provide a method that is equivalent to solving a system of equations. But we already have the skills to do it now.
Example: Find a basis for \mathbb{R}^{4} that contains the vectors

$$
\left(\begin{array}{l}
1 \\
2 \\
3 \\
0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{l}
2 \\
4 \\
0 \\
1
\end{array}\right)
$$

Start by reducing the following matrix to echelon form, but keep track of the operations,

$$
\left(\begin{array}{ll}
1 & 2 \\
2 & 4 \\
3 & 0 \\
0 & 1
\end{array}\right) \xrightarrow[R_{3}-3 R_{1}]{R_{2}-2 R_{1}}\left(\begin{array}{rr}
1 & 2 \\
0 & 0 \\
0 & -6 \\
0 & 1
\end{array}\right)
$$

$$
\xrightarrow{R_{2} \leftrightarrow R_{4}}\left(\begin{array}{rr}
1 & 2 \\
0 & 1 \\
0 & -6 \\
0 & 0
\end{array}\right) \xrightarrow{R_{3}+6 R_{2}}\left(\begin{array}{ll}
1 & 2 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right)
$$

$$
\xrightarrow{R_{2} \leftrightarrow R_{4}}\left(\begin{array}{rr}
1 & 2 \\
0 & 1 \\
0 & -6 \\
0 & 0
\end{array}\right) \xrightarrow{R_{3}+6 R_{2}}\left(\begin{array}{ll}
1 & 2 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right)
$$

Now, add two more columns that produce an invertible matrix, then perform the reverse of each of the above EROs in the opposite order:

$$
\left(\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \xrightarrow{R_{3}-6 R_{2}}\left(\begin{array}{rrrr}
1 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -6 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
\xrightarrow{R_{2} \leftrightarrow R_{4}}\left(\begin{array}{rr}
1 & 2 \\
0 & 1 \\
0 & -6 \\
0 & 0
\end{array}\right) \xrightarrow{R_{3}+6 R_{2}}\left(\begin{array}{ll}
1 & 2 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right)
$$

Now, add two more columns that produce an invertible matrix, then perform the reverse of each of the above EROs in the opposite order:

$$
\begin{gathered}
\left(\begin{array}{rrrr}
1 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \xrightarrow{R_{3}-6 R_{2}}\left(\begin{array}{rrrr}
1 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -6 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
\xrightarrow{R_{4} \leftrightarrow R_{2}}\left(\begin{array}{rrrr}
1 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & -6 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \xrightarrow[R_{2}+2 R_{1}]{R_{3}+3 R_{1}}\left(\begin{array}{llll}
1 & 2 & 0 & 0 \\
2 & 4 & 0 & 1 \\
3 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Coordinates

Consider the following picture:

This illustrates how any point $\mathbf{x}=\binom{x_{1}}{x_{2}}$ in \mathbb{R}^{2} can be written as a combination $\mathbf{x}=x_{1}^{\prime} \mathbf{a}+x_{2}^{\prime} \mathbf{b}$.

Coordinates

Consider the following picture:

This illustrates how any point $\mathbf{x}=\binom{x_{1}}{x_{2}}$ in \mathbb{R}^{2} can be written as a combination $\mathbf{x}=x_{1}^{\prime} \mathbf{a}+x_{2}^{\prime} \mathbf{b}$. The numbers x_{1}^{\prime} and x_{2}^{\prime} are not the same as x_{1} and x_{2} but they are still called coordinates relative to the basis \mathbf{a}, \mathbf{b}.

Example: In our population example we had a basis for \mathbb{R}^{2} consiting of vectors

$$
\mathbf{v}_{1}=\binom{1}{-1} \quad \text { and } \quad \mathbf{v}_{2}=\binom{2}{3}
$$

Example: In our population example we had a basis for \mathbb{R}^{2} consiting of vectors

$$
\mathbf{v}_{1}=\binom{1}{-1} \quad \text { and } \quad \mathbf{v}_{2}=\binom{2}{3}
$$

The matrix A in that example satisfied $A \mathbf{v}_{1}=(1 / 2) \mathbf{v}_{1}$ and $A \mathbf{v}_{2}=\mathbf{v}_{2}$.

Example: In our population example we had a basis for \mathbb{R}^{2} consiting of vectors

$$
\mathbf{v}_{1}=\binom{1}{-1} \quad \text { and } \quad \mathbf{v}_{2}=\binom{2}{3}
$$

The matrix A in that example satisfied $A \mathbf{v}_{1}=(1 / 2) \mathbf{v}_{1}$ and $A \mathbf{v}_{2}=\mathbf{v}_{2}$. If we write any vector \mathbf{x} in \mathbb{R}^{2} as $\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}$, then α and β are the coordinates of \mathbf{x} relative to $\mathbf{v}_{1}, \mathbf{v}_{2}$.

Example: In our population example we had a basis for \mathbb{R}^{2} consiting of vectors

$$
\mathbf{v}_{1}=\binom{1}{-1} \quad \text { and } \quad \mathbf{v}_{2}=\binom{2}{3}
$$

The matrix A in that example satisfied $A \mathbf{v}_{1}=(1 / 2) \mathbf{v}_{1}$ and $A \mathbf{v}_{2}=\mathbf{v}_{2}$. If we write any vector \mathbf{x} in \mathbb{R}^{2} as $\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}$, then α and β are the coordinates of \mathbf{x} relative to $\mathbf{v}_{1}, \mathbf{v}_{2}$. Then, since $A \mathbf{x}=(1 / 2) \alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}$, we see that the coordinates of $A \mathbf{x}$ are $(1 / 2) \alpha$ and β.

Example: In our population example we had a basis for \mathbb{R}^{2} consiting of vectors

$$
\mathbf{v}_{1}=\binom{1}{-1} \quad \text { and } \quad \mathbf{v}_{2}=\binom{2}{3}
$$

The matrix A in that example satisfied $A \mathbf{v}_{1}=(1 / 2) \mathbf{v}_{1}$ and $A \mathbf{v}_{2}=\mathbf{v}_{2}$. If we write any vector \mathbf{x} in \mathbb{R}^{2} as $\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}$, then α and β are the coordinates of \mathbf{x} relative to $\mathbf{v}_{1}, \mathbf{v}_{2}$. Then, since $A \mathbf{x}=(1 / 2) \alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}$, we see that the coordinates of $A \mathbf{x}$ are $(1 / 2) \alpha$ and β.
In terms of these special coordinates, the action of A is a whole lot simpler: The coordinates of $A^{n} \mathbf{x}$ are $(1 / 2)^{n} \alpha$ and β.

The general case:

Definition

If V is a vector space and $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right]$ is an ordered basis

The general case:

Definition

If V is a vector space and $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right]$ is an ordered basis then every vector \mathbf{v} in V can be written in the form

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}
$$

where the c_{j} are scalars uniquely associated to \mathbf{v}.

The general case:

Definition

If V is a vector space and $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right]$ is an ordered basis then every vector \mathbf{v} in V can be written in the form

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}
$$

where the c_{j} are scalars uniquely associated to \mathbf{v}. We call the column vector

$$
\mathbf{c}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)
$$

the coordinate vector relative to \mathcal{B}. We denote it by $[\mathbf{v}]_{\mathcal{B}}$.

The general case:

Definition

If V is a vector space and $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right]$ is an ordered basis then every vector \mathbf{v} in V can be written in the form

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}
$$

where the c_{j} are scalars uniquely associated to \mathbf{v}. We call the column vector

$$
\mathbf{c}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)
$$

the coordinate vector relative to \mathcal{B}. We denote it by $[\mathbf{v}]_{\mathcal{B}}$.
Finding the coordinates $[\mathbf{v}]_{\mathcal{B}}$ usually requires solving some system of equations: equate \mathbf{v} to the linear combination and solve for the c_{j}.

Going the other way is easy: if we know the coordinates c_{j} and the ordered basis \mathcal{B} we just use

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}
$$

to get \mathbf{v}.

Going the other way is easy: if we know the coordinates c_{j} and the ordered basis \mathcal{B} we just use

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}
$$

to get \mathbf{v}.
One use of coordinates is the following. A problem in V is converted to a problem about the coordinates.

Going the other way is easy: if we know the coordinates c_{j} and the ordered basis \mathcal{B} we just use

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}
$$

to get \mathbf{v}.
One use of coordinates is the following. A problem in V is converted to a problem about the coordinates. If this is a linear algebra problem, we solve it using matrices and column vectors.

Going the other way is easy: if we know the coordinates c_{j} and the ordered basis \mathcal{B} we just use

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}
$$

to get \mathbf{v}.
One use of coordinates is the following. A problem in V is converted to a problem about the coordinates. If this is a linear algebra problem, we solve it using matrices and column vectors. When we have the solution in \mathbb{R}^{n} we convert the column vectors to elements of V by interpreting them as coordinates.

Going the other way is easy: if we know the coordinates c_{j} and the ordered basis \mathcal{B} we just use

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}
$$

to get \mathbf{v}.
One use of coordinates is the following. A problem in V is converted to a problem about the coordinates. If this is a linear algebra problem, we solve it using matrices and column vectors. When we have the solution in \mathbb{R}^{n} we convert the column vectors to elements of V by interpreting them as coordinates. The population problem shows that this can be useful even when the problem is already about matrices and column vectors: it becomes a simpler problem with the right basis.

Going the other way is easy: if we know the coordinates c_{j} and the ordered basis \mathcal{B} we just use

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}
$$

to get \mathbf{v}.
One use of coordinates is the following. A problem in V is converted to a problem about the coordinates. If this is a linear algebra problem, we solve it using matrices and column vectors. When we have the solution in \mathbb{R}^{n} we convert the column vectors to elements of V by interpreting them as coordinates. The population problem shows that this can be useful even when the problem is already about matrices and column vectors: it becomes a simpler problem with the right basis.
There are several problems associated with bases and coordinates:

Going the other way is easy: if we know the coordinates c_{j} and the ordered basis \mathcal{B} we just use

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}
$$

to get \mathbf{v}.
One use of coordinates is the following. A problem in V is converted to a problem about the coordinates. If this is a linear algebra problem, we solve it using matrices and column vectors. When we have the solution in \mathbb{R}^{n} we convert the column vectors to elements of V by interpreting them as coordinates. The population problem shows that this can be useful even when the problem is already about matrices and column vectors: it becomes a simpler problem with the right basis.
There are several problems associated with bases and coordinates:
Given a vector \mathbf{v} and an ordered basis \mathcal{B}, what is $[\mathbf{v}]_{\mathcal{B}}$?

Going the other way is easy: if we know the coordinates c_{j} and the ordered basis \mathcal{B} we just use

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}
$$

to get \mathbf{v}.
One use of coordinates is the following. A problem in V is converted to a problem about the coordinates. If this is a linear algebra problem, we solve it using matrices and column vectors. When we have the solution in \mathbb{R}^{n} we convert the column vectors to elements of V by interpreting them as coordinates. The population problem shows that this can be useful even when the problem is already about matrices and column vectors: it becomes a simpler problem with the right basis.
There are several problems associated with bases and coordinates:
Given a vector \mathbf{v} and an ordered basis \mathcal{B}, what is $[\mathbf{v}]_{\mathcal{B}}$?
Given a second basis \mathcal{C}, what is the relationship between $[\mathbf{v}]_{\mathcal{C}}$ and $[\mathbf{v}]_{\mathcal{B}}$?

The simplest cases are when \mathcal{B} is one of the standard bases.

The simplest cases are when \mathcal{B} is one of the standard bases.
If $\mathcal{E}=\left[\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right]$ in \mathbb{R}^{n} (interpreted as the space of column vectors) then $[\mathbf{v}]_{\mathcal{E}}=\mathbf{v}$.

The simplest cases are when \mathcal{B} is one of the standard bases.
If $\mathcal{E}=\left[\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right]$ in \mathbb{R}^{n} (interpreted as the space of column vectors) then $[\mathbf{v}]_{\mathcal{E}}=\mathbf{v}$. This is because

$$
\text { if } \mathbf{v}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right) \text { then } \mathbf{v}=c_{1} \mathbf{e}_{1}+c_{2} \mathbf{e}_{2}+\cdots+c_{n} \mathbf{e}_{n}
$$

The simplest cases are when \mathcal{B} is one of the standard bases.
If $\mathcal{E}=\left[\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right]$ in \mathbb{R}^{n} (interpreted as the space of column vectors) then $[\mathbf{v}]_{\mathcal{E}}=\mathbf{v}$. This is because

$$
\text { if } \mathbf{v}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right) \text { then } \mathbf{v}=c_{1} \mathbf{e}_{1}+c_{2} \mathbf{e}_{2}+\cdots+c_{n} \mathbf{e}_{n}
$$

If \mathbb{R}^{n} is interpreted as the space of $1 \times n$ row vectors,

The simplest cases are when \mathcal{B} is one of the standard bases.
If $\mathcal{E}=\left[\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right]$ in \mathbb{R}^{n} (interpreted as the space of column vectors) then $[\mathbf{v}]_{\mathcal{E}}=\mathbf{v}$. This is because

$$
\text { if } \mathbf{v}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right) \text { then } \mathbf{v}=c_{1} \mathbf{e}_{1}+c_{2} \mathbf{e}_{2}+\cdots+c_{n} \mathbf{e}_{n}
$$

If \mathbb{R}^{n} is interpreted as the space of $1 \times n$ row vectors, and $\mathcal{E}=\left[\overrightarrow{\mathbf{e}}_{1}, \overrightarrow{\mathbf{e}}_{2}, \ldots, \overrightarrow{\mathbf{e}}_{n}\right]$, where $\overrightarrow{\mathbf{e}}_{j}$ is the row vector with all zeros except a 1 in position j, then $[\overrightarrow{\mathbf{v}}]_{\mathcal{E}}=\overrightarrow{\mathbf{v}}^{T}$.

The simplest cases are when \mathcal{B} is one of the standard bases.
If $\mathcal{E}=\left[\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right]$ in \mathbb{R}^{n} (interpreted as the space of column vectors) then $[\mathbf{v}]_{\mathcal{E}}=\mathbf{v}$. This is because

$$
\text { if } \mathbf{v}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right) \text { then } \mathbf{v}=c_{1} \mathbf{e}_{1}+c_{2} \mathbf{e}_{2}+\cdots+c_{n} \mathbf{e}_{n}
$$

If \mathbb{R}^{n} is interpreted as the space of $1 \times n$ row vectors, and $\mathcal{E}=\left[\overrightarrow{\mathbf{e}}_{1}, \overrightarrow{\mathbf{e}}_{2}, \ldots, \overrightarrow{\mathbf{e}}_{n}\right]$, where $\overrightarrow{\mathbf{e}}_{j}$ is the row vector with all zeros except a 1 in position j, then $[\overrightarrow{\mathbf{v}}]_{\mathcal{E}}=\overrightarrow{\mathbf{v}}^{T}$. This is because

$$
\text { if } \overrightarrow{\mathbf{v}}=\left(\begin{array}{llll}
c_{1} & c_{2} & \cdots & c_{n}
\end{array}\right) \text { then } \overrightarrow{\mathbf{v}}=c_{1} \overrightarrow{\mathbf{e}}_{1}+c_{2} \overrightarrow{\mathbf{e}}_{2}+\cdots+c_{n} \overrightarrow{\mathbf{e}}_{n} .
$$

$$
\text { If } \mathcal{E}=\left[1, x, x^{2}\right] \text { in } \mathcal{P}_{3} \text { then }\left[a+b x+c x^{2}\right]_{\mathcal{E}}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

If $\mathcal{E}=\left[1, x, x^{2}\right]$ in \mathcal{P}_{3} then $\left[a+b x+c x^{2}\right]_{\mathcal{E}}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$.
If $\mathcal{E}=\left[E_{11}, E_{12}, E_{21}, E_{22}\right]$ in $\mathbb{R}^{2 \times 2}$ and $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ then

$$
A=a E_{11}+b E_{12}+c E_{21}+d E_{22} \text { so }[A]_{\mathcal{E}}=\left(\begin{array}{c}
a \\
b \\
c \\
d
\end{array}\right)
$$

If $\mathcal{E}=\left[1, x, x^{2}\right]$ in \mathcal{P}_{3} then $\left[a+b x+c x^{2}\right]_{\mathcal{E}}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$.
If $\mathcal{E}=\left[E_{11}, E_{12}, E_{21}, E_{22}\right]$ in $\mathbb{R}^{2 \times 2}$ and $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ then

$$
A=a E_{11}+b E_{12}+c E_{21}+d E_{22} \text { so }[A]_{\mathcal{E}}=\left(\begin{array}{c}
a \\
b \\
c \\
d
\end{array}\right)
$$

Suppose, in \mathbb{R}^{n} we have another ordered basis $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right]$. Then finding $[\mathbf{v}]_{\mathcal{B}}$ amounts to solving

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{v} \Longrightarrow[\mathbf{v}]_{\mathcal{B}}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)
$$

The left side of this is the same as

$$
\left(\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=\mathbf{v}
$$

The left side of this is the same as

$$
\left(\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=\mathbf{v}
$$

By the properties of a basis, this system has a solution for every choice of \mathbf{v}, which means this matrix

$$
S=\left(\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right) \quad \text { is invertible. }
$$

The left side of this is the same as

$$
\left(\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=\mathbf{v}
$$

By the properties of a basis, this system has a solution for every choice of \mathbf{v}, which means this matrix

$$
S=\left(\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right) \quad \text { is invertible. }
$$

So if we find the inverse S^{-1} we can multiply it times $S[\mathbf{v}]_{\mathcal{B}}=\mathbf{v}$ to get $[\mathbf{v}]_{\mathcal{B}}=S^{-1} \mathbf{v}$.

The left side of this is the same as

$$
\left(\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=\mathbf{v}
$$

By the properties of a basis, this system has a solution for every choice of \mathbf{v}, which means this matrix

$$
S=\left(\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right) \quad \text { is invertible. }
$$

So if we find the inverse S^{-1} we can multiply it times $S[\mathbf{v}]_{\mathcal{B}}=\mathbf{v}$ to get $[\mathbf{v}]_{\mathcal{B}}=S^{-1} \mathbf{v}$.
We call S^{-1} the transition matrix from \mathcal{E} to \mathcal{B}. Another trem used is change of basis matrix.

Definition

If \mathcal{B} and \mathcal{C} are ordered bases for a vector space V with dimension n, and if U is an $n \times n$ matrix that satisfies

$$
U[\mathbf{v}]_{\mathcal{B}}=[\mathbf{v}]_{\mathcal{C}}
$$

then we call U the transition or change of basis matrix from \mathcal{B} to \mathcal{C}.

Definition

If \mathcal{B} and \mathcal{C} are ordered bases for a vector space V with dimension n, and if U is an $n \times n$ matrix that satisfies

$$
U[\mathbf{v}]_{\mathcal{B}}=[\mathbf{v}]_{\mathcal{C}}
$$

then we call U the transition or change of basis matrix from \mathcal{B} to \mathcal{C}.
The standard basis \mathcal{E} in \mathbb{R}^{n} satisfies $\mathbf{v}=[\mathbf{v}]_{\mathcal{E}}$.

Definition

If \mathcal{B} and \mathcal{C} are ordered bases for a vector space V with dimension n, and if U is an $n \times n$ matrix that satisfies

$$
U[\mathbf{v}]_{\mathcal{B}}=[\mathbf{v}]_{\mathcal{C}}
$$

then we call U the transition or change of basis matrix from \mathcal{B} to \mathcal{C}.
The standard basis \mathcal{E} in \mathbb{R}^{n} satisfies $\mathbf{v}=[\mathbf{v}]_{\mathcal{E}}$. From the equations we obtained earlier: $S[\mathbf{v}]_{\mathcal{B}}=[\mathbf{v}]_{\mathcal{E}}$ and $[\mathbf{v}]_{\mathcal{B}}=S^{-1}[\mathbf{v}]_{\mathcal{E}}$ we see that S is the transition matrix from \mathcal{B} to \mathcal{E}

Definition

If \mathcal{B} and \mathcal{C} are ordered bases for a vector space V with dimension n, and if U is an $n \times n$ matrix that satisfies

$$
U[\mathbf{v}]_{\mathcal{B}}=[\mathbf{v}]_{\mathcal{C}}
$$

then we call U the transition or change of basis matrix from \mathcal{B} to \mathcal{C}.
The standard basis \mathcal{E} in \mathbb{R}^{n} satisfies $\mathbf{v}=[\mathbf{v}]_{\mathcal{E}}$. From the equations we obtained earlier: $S[\mathbf{v}]_{\mathcal{B}}=[\mathbf{v}]_{\mathcal{E}}$ and $[\mathbf{v}]_{\mathcal{B}}=S^{-1}[\mathbf{v}]_{\mathcal{E}}$ we see that S is the transition matrix from \mathcal{B} to \mathcal{E} while S^{-1} is the transition matrix from \mathcal{E} to \mathcal{B}.

Definition

If \mathcal{B} and \mathcal{C} are ordered bases for a vector space V with dimension n, and if U is an $n \times n$ matrix that satisfies

$$
U[\mathbf{v}]_{\mathcal{B}}=[\mathbf{v}]_{\mathcal{C}}
$$

then we call U the transition or change of basis matrix from \mathcal{B} to \mathcal{C}.
The standard basis \mathcal{E} in \mathbb{R}^{n} satisfies $\mathbf{v}=[\mathbf{v}]_{\mathcal{E}}$. From the equations we obtained earlier: $S[\mathbf{v}]_{\mathcal{B}}=[\mathbf{v}]_{\mathcal{E}}$ and $[\mathbf{v}]_{\mathcal{B}}=S^{-1}[\mathbf{v}]_{\mathcal{E}}$ we see that S is the transition matrix from \mathcal{B} to \mathcal{E} while S^{-1} is the transition matrix from \mathcal{E} to \mathcal{B}.
Time for an example: Consider the basis $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]$ where
$\mathbf{v}_{1}=\binom{1}{-1}$ and $\mathbf{v}_{2}=\binom{2}{3}$ Then the transition matrix from \mathcal{B} to
$\mathcal{E}=\left[\mathbf{e}_{1}, \mathbf{e}_{2}\right]$ is $S=\left(\begin{array}{rr}1 & 2 \\ -1 & 3\end{array}\right)$

Definition

If \mathcal{B} and \mathcal{C} are ordered bases for a vector space V with dimension n, and if U is an $n \times n$ matrix that satisfies

$$
U[\mathbf{v}]_{\mathcal{B}}=[\mathbf{v}]_{\mathcal{C}}
$$

then we call U the transition or change of basis matrix from \mathcal{B} to \mathcal{C}.
The standard basis \mathcal{E} in \mathbb{R}^{n} satisfies $\mathbf{v}=[\mathbf{v}]_{\mathcal{E}}$. From the equations we obtained earlier: $S[\mathbf{v}]_{\mathcal{B}}=[\mathbf{v}]_{\mathcal{E}}$ and $[\mathbf{v}]_{\mathcal{B}}=S^{-1}[\mathbf{v}]_{\mathcal{E}}$ we see that S is the transition matrix from \mathcal{B} to \mathcal{E} while S^{-1} is the transition matrix from \mathcal{E} to \mathcal{B}.
Time for an example: Consider the basis $\mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]$ where
$\mathbf{v}_{1}=\binom{1}{-1}$ and $\mathbf{v}_{2}=\binom{2}{3}$ Then the transition matrix from \mathcal{B} to
$\mathcal{E}=\left[\mathbf{e}_{1}, \mathbf{e}_{2}\right]$ is $S=\left(\begin{array}{rr}1 & 2 \\ -1 & 3\end{array}\right)$ and the transition matrix from \mathcal{E} to \mathcal{B} is
$S^{-1}=\left(\begin{array}{rr}3 / 5 & -2 / 5 \\ 1 / 5 & 1 / 5\end{array}\right)$.

Thus, if $\mathbf{v}=\binom{8000}{2000}$ then $\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}$ where

$$
\binom{c_{1}}{c_{2}}=[\mathbf{v}]_{\mathcal{B}}=\left(\begin{array}{rr}
3 / 5 & -2 / 5 \\
1 / 5 & 1 / 5
\end{array}\right)\binom{8000}{2000}=\binom{4000}{2000}
$$

