# **Basis and Dimension**

D. H. Luecking

26 Feb 2024

We saw how to trim a spanning set to an independent set with the same span.

We will eventually provide a method that is equivalent to solving a system of equations.

We will eventually provide a method that is equivalent to solving a system of equations. But we already have the skills to do it now.

We will eventually provide a method that is equivalent to solving a system of equations. But we already have the skills to do it now.

Example: Find a basis for  $\mathbb{R}^4$  that contains the vectors

$$\begin{pmatrix} 1\\2\\3\\0 \end{pmatrix} \text{ and } \begin{pmatrix} 2\\4\\0\\1 \end{pmatrix}$$

We will eventually provide a method that is equivalent to solving a system of equations. But we already have the skills to do it now.

Example: Find a basis for  $\mathbb{R}^4$  that contains the vectors

$$\begin{pmatrix} 1\\2\\3\\0 \end{pmatrix} \text{ and } \begin{pmatrix} 2\\4\\0\\1 \end{pmatrix}$$

Start by reducing the following matrix to echelon form, but keep track of the operations,

$$\begin{pmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 0 \\ 0 & 1 \end{pmatrix} \xrightarrow{R_2 - 2R_1}_{R_3 - 3R_1} \begin{pmatrix} 1 & 2 \\ 0 & 0 \\ 0 & -6 \\ 0 & 1 \end{pmatrix}$$

$$\xrightarrow{R_2 \leftrightarrow R_4} \left( \begin{array}{ccc} 1 & 2 \\ 0 & 1 \\ 0 & -6 \\ 0 & 0 \end{array} \right) \xrightarrow{R_3 + 6R_2} \left( \begin{array}{ccc} 1 & 2 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array} \right)$$

$$\xrightarrow{R_2 \leftrightarrow R_4} \left( \begin{array}{ccc} 1 & 2 \\ 0 & 1 \\ 0 & -6 \\ 0 & 0 \end{array} \right) \xrightarrow{R_3 + 6R_2} \left( \begin{array}{ccc} 1 & 2 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array} \right)$$

Now, add two more columns that produce an invertible matrix, then perform the reverse of each of the above EROs in the opposite order:

$$\left(\begin{array}{rrrrr} 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) \xrightarrow{R_3 - 6R_2} \left(\begin{array}{rrrrr} 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -6 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

$$\xrightarrow{R_2 \leftrightarrow R_4} \left( \begin{array}{ccc} 1 & 2 \\ 0 & 1 \\ 0 & -6 \\ 0 & 0 \end{array} \right) \xrightarrow{R_3 + 6R_2} \left( \begin{array}{ccc} 1 & 2 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array} \right)$$

Now, add two more columns that produce an invertible matrix, then perform the reverse of each of the above EROs in the opposite order:

$$\begin{pmatrix}
1 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \xrightarrow{R_3 - 6R_2} \begin{pmatrix}
1 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -6 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & -6 & 1 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix} \xrightarrow{R_3 + 3R_1} \begin{pmatrix}
1 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 \\
3 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}$$

#### Coordinates

Consider the following picture:



#### Coordinates

Consider the following picture:



This illustrates how any point  $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$  in  $\mathbb{R}^2$  can be written as a combination  $\mathbf{x} = x'_1 \mathbf{a} + x'_2 \mathbf{b}$ . The numbers  $x'_1$  and  $x'_2$  are not the same as  $x_1$  and  $x_2$  but they are still called *coordinates relative to the basis*  $\mathbf{a}, \mathbf{b}$ .

$$\mathbf{v}_1=\left(egin{array}{c}1\\-1\end{array}
ight)$$
 and  $\mathbf{v}_2=\left(egin{array}{c}2\\3\end{array}
ight)$ 

$$\mathbf{v}_1=\left(egin{array}{c}1\\-1\end{array}
ight)$$
 and  $\mathbf{v}_2=\left(egin{array}{c}2\\3\end{array}
ight)$ 

The matrix A in that example satisfied  $A\mathbf{v}_1 = (1/2)\mathbf{v}_1$  and  $A\mathbf{v}_2 = \mathbf{v}_2$ .

$$\mathbf{v}_1=\left(egin{array}{c}1\\-1\end{array}
ight)$$
 and  $\mathbf{v}_2=\left(egin{array}{c}2\\3\end{array}
ight)$ 

The matrix A in that example satisfied  $A\mathbf{v}_1 = (1/2)\mathbf{v}_1$  and  $A\mathbf{v}_2 = \mathbf{v}_2$ . If we write any vector  $\mathbf{x}$  in  $\mathbb{R}^2$  as  $\alpha \mathbf{v}_1 + \beta \mathbf{v}_2$ , then  $\alpha$  and  $\beta$  are the coordinates of  $\mathbf{x}$  relative to  $\mathbf{v}_1, \mathbf{v}_2$ .

$$\mathbf{v}_1=\left(egin{array}{c}1\\-1\end{array}
ight)$$
 and  $\mathbf{v}_2=\left(egin{array}{c}2\\3\end{array}
ight)$ 

The matrix A in that example satisfied  $A\mathbf{v}_1 = (1/2)\mathbf{v}_1$  and  $A\mathbf{v}_2 = \mathbf{v}_2$ . If we write any vector  $\mathbf{x}$  in  $\mathbb{R}^2$  as  $\alpha \mathbf{v}_1 + \beta \mathbf{v}_2$ , then  $\alpha$  and  $\beta$  are the coordinates of  $\mathbf{x}$  relative to  $\mathbf{v}_1, \mathbf{v}_2$ . Then, since  $A\mathbf{x} = (1/2)\alpha \mathbf{v}_1 + \beta \mathbf{v}_2$ , we see that the coordinates of  $A\mathbf{x}$  are  $(1/2)\alpha$  and  $\beta$ .

$$\mathbf{v}_1 = \left( egin{array}{c} 1 \\ -1 \end{array} 
ight)$$
 and  $\mathbf{v}_2 = \left( egin{array}{c} 2 \\ 3 \end{array} 
ight)$ 

The matrix A in that example satisfied  $A\mathbf{v}_1 = (1/2)\mathbf{v}_1$  and  $A\mathbf{v}_2 = \mathbf{v}_2$ . If we write any vector  $\mathbf{x}$  in  $\mathbb{R}^2$  as  $\alpha \mathbf{v}_1 + \beta \mathbf{v}_2$ , then  $\alpha$  and  $\beta$  are the coordinates of  $\mathbf{x}$  relative to  $\mathbf{v}_1, \mathbf{v}_2$ . Then, since  $A\mathbf{x} = (1/2)\alpha \mathbf{v}_1 + \beta \mathbf{v}_2$ , we see that the coordinates of  $A\mathbf{x}$  are  $(1/2)\alpha$  and  $\beta$ .

In terms of these special coordinates, the action of A is a whole lot simpler: The coordinates of  $A^n \mathbf{x}$  are  $(1/2)^n \alpha$  and  $\beta$ .

## Definition

If V is a vector space and  $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$  is an *ordered basis* 

## Definition

If V is a vector space and  $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$  is an *ordered basis* then every vector  $\mathbf{v}$  in V can be written in the form

```
\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n
```

where the  $c_i$  are scalars uniquely associated to  $\mathbf{v}$ .

## Definition

If V is a vector space and  $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$  is an *ordered basis* then every vector  $\mathbf{v}$  in V can be written in the form

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

where the  $c_j$  are scalars uniquely associated to  $\mathbf{v}.$  We call the column vector

$$\mathbf{c} = \left(\begin{array}{c} c_1 \\ c_2 \\ \vdots \\ c_n \end{array}\right)$$

the coordinate vector relative to  $\mathcal{B}$ . We denote it by  $[\mathbf{v}]_{\mathcal{B}}$ .

## Definition

If V is a vector space and  $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$  is an *ordered basis* then every vector  $\mathbf{v}$  in V can be written in the form

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

where the  $c_j$  are scalars uniquely associated to  $\mathbf{v}$ . We call the column vector

$$\mathbf{c} = \left(\begin{array}{c} c_1 \\ c_2 \\ \vdots \\ c_n \end{array}\right)$$

the coordinate vector relative to  $\mathcal{B}$ . We denote it by  $[\mathbf{v}]_{\mathcal{B}}$ .

Finding the coordinates  $[\mathbf{v}]_{\mathcal{B}}$  usually requires solving some system of equations: equate  $\mathbf{v}$  to the linear combination and solve for the  $c_j$ .

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

to get  $\mathbf{v}$ .

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

to get v.

One use of coordinates is the following. A problem in  ${\cal V}$  is converted to a problem about the coordinates.

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

to get  $\mathbf{v}$ .

One use of coordinates is the following. A problem in V is converted to a problem about the coordinates. If this is a linear algebra problem, we solve it using matrices and column vectors.

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

to get  $\mathbf{v}$ .

One use of coordinates is the following. A problem in V is converted to a problem about the coordinates. If this is a linear algebra problem, we solve it using matrices and column vectors. When we have the solution in  $\mathbb{R}^n$  we convert the column vectors to elements of V by interpreting them as coordinates.

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

to get  $\mathbf{v}$ .

One use of coordinates is the following. A problem in V is converted to a problem about the coordinates. If this is a linear algebra problem, we solve it using matrices and column vectors. When we have the solution in  $\mathbb{R}^n$  we convert the column vectors to elements of V by interpreting them as coordinates. The population problem shows that this can be useful even when the problem is already about matrices and column vectors: it becomes a simpler problem with the right basis.

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

to get  $\mathbf{v}$ .

One use of coordinates is the following. A problem in V is converted to a problem about the coordinates. If this is a linear algebra problem, we solve it using matrices and column vectors. When we have the solution in  $\mathbb{R}^n$  we convert the column vectors to elements of V by interpreting them as coordinates. The population problem shows that this can be useful even when the problem is already about matrices and column vectors: it becomes a simpler problem with the right basis.

There are several problems associated with bases and coordinates:

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

to get v.

One use of coordinates is the following. A problem in V is converted to a problem about the coordinates. If this is a linear algebra problem, we solve it using matrices and column vectors. When we have the solution in  $\mathbb{R}^n$  we convert the column vectors to elements of V by interpreting them as coordinates. The population problem shows that this can be useful even when the problem is already about matrices and column vectors: it becomes a simpler problem with the right basis.

There are several problems associated with bases and coordinates: Given a vector  $\mathbf{v}$  and an ordered basis  $\mathcal{B}$ , what is  $[\mathbf{v}]_{\mathcal{B}}$ ?

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

to get  $\mathbf{v}$ .

One use of coordinates is the following. A problem in V is converted to a problem about the coordinates. If this is a linear algebra problem, we solve it using matrices and column vectors. When we have the solution in  $\mathbb{R}^n$  we convert the column vectors to elements of V by interpreting them as coordinates. The population problem shows that this can be useful even when the problem is already about matrices and column vectors: it becomes a simpler problem with the right basis.

There are several problems associated with bases and coordinates:

Given a vector  $\mathbf{v}$  and an ordered basis  $\mathcal{B}$ , what is  $[\mathbf{v}]_{\mathcal{B}}$ ?

Given a second basis  $\mathcal C$ , what is the relationship between  $[\mathbf v]_{\mathcal C}$  and  $[\mathbf v]_{\mathcal B}?$ 

The simplest cases are when  $\ensuremath{\mathcal{B}}$  is one of the standard bases.

If  $\mathcal{E} = [\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n]$  in  $\mathbb{R}^n$  (interpreted as the space of column vectors) then  $[\mathbf{v}]_{\mathcal{E}} = \mathbf{v}$ .

If  $\mathcal{E} = [\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n]$  in  $\mathbb{R}^n$  (interpreted as the space of column vectors) then  $[\mathbf{v}]_{\mathcal{E}} = \mathbf{v}$ . This is because

if 
$$\mathbf{v} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$
 then  $\mathbf{v} = c_1 \mathbf{e}_1 + c_2 \mathbf{e}_2 + \dots + c_n \mathbf{e}_n$ .

If  $\mathcal{E} = [\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n]$  in  $\mathbb{R}^n$  (interpreted as the space of column vectors) then  $[\mathbf{v}]_{\mathcal{E}} = \mathbf{v}$ . This is because

if 
$$\mathbf{v} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$
 then  $\mathbf{v} = c_1 \mathbf{e}_1 + c_2 \mathbf{e}_2 + \dots + c_n \mathbf{e}_n$ .

If  $\mathbb{R}^n$  is interpreted as the space of  $1 \times n$  row vectors,

If  $\mathcal{E} = [\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n]$  in  $\mathbb{R}^n$  (interpreted as the space of column vectors) then  $[\mathbf{v}]_{\mathcal{E}} = \mathbf{v}$ . This is because

if 
$$\mathbf{v} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$
 then  $\mathbf{v} = c_1 \mathbf{e}_1 + c_2 \mathbf{e}_2 + \dots + c_n \mathbf{e}_n$ .

If  $\mathbb{R}^n$  is interpreted as the space of  $1 \times n$  row vectors, and  $\mathcal{E} = [\vec{\mathbf{e}}_1, \vec{\mathbf{e}}_2, \dots, \vec{\mathbf{e}}_n]$ , where  $\vec{\mathbf{e}}_j$  is the row vector with all zeros except a 1 in position j, then  $[\vec{\mathbf{v}}]_{\mathcal{E}} = \vec{\mathbf{v}}^T$ .

If  $\mathcal{E} = [\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n]$  in  $\mathbb{R}^n$  (interpreted as the space of column vectors) then  $[\mathbf{v}]_{\mathcal{E}} = \mathbf{v}$ . This is because

if 
$$\mathbf{v} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$
 then  $\mathbf{v} = c_1 \mathbf{e}_1 + c_2 \mathbf{e}_2 + \dots + c_n \mathbf{e}_n$ .

If  $\mathbb{R}^n$  is interpreted as the space of  $1 \times n$  row vectors, and  $\mathcal{E} = [\vec{\mathbf{e}}_1, \vec{\mathbf{e}}_2, \dots, \vec{\mathbf{e}}_n]$ , where  $\vec{\mathbf{e}}_j$  is the row vector with all zeros except a 1 in position j, then  $[\vec{\mathbf{v}}]_{\mathcal{E}} = \vec{\mathbf{v}}^T$ . This is because

if 
$$\vec{\mathbf{v}} = \begin{pmatrix} c_1 & c_2 & \cdots & c_n \end{pmatrix}$$
 then  $\vec{\mathbf{v}} = c_1 \vec{\mathbf{e}}_1 + c_2 \vec{\mathbf{e}}_2 + \cdots + c_n \vec{\mathbf{e}}_n$ .

If 
$$\mathcal{E} = [1, x, x^2]$$
 in  $\mathcal{P}_3$  then  $[a + bx + cx^2]_{\mathcal{E}} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ .

If 
$$\mathcal{E} = [1, x, x^2]$$
 in  $\mathcal{P}_3$  then  $[a + bx + cx^2]_{\mathcal{E}} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ .  
If  $\mathcal{E} = [E_{11}, E_{12}, E_{21}, E_{22}]$  in  $\mathbb{R}^{2 \times 2}$  and  $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$  then  
 $A = aE_{11} + bE_{12} + cE_{21} + dE_{22}$  so  $[A]_{\mathcal{E}} = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$ 

If 
$$\mathcal{E} = [1, x, x^2]$$
 in  $\mathcal{P}_3$  then  $[a + bx + cx^2]_{\mathcal{E}} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ .  
If  $\mathcal{E} = [E_{11}, E_{12}, E_{21}, E_{22}]$  in  $\mathbb{R}^{2 \times 2}$  and  $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$  then
$$A = aE_{11} + bE_{12} + cE_{21} + dE_{22} \text{ so } [A]_{\mathcal{E}} = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$$

Suppose, in  $\mathbb{R}^n$  we have another ordered basis  $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$ . Then finding  $[\mathbf{v}]_{\mathcal{B}}$  amounts to solving

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n = \mathbf{v} \implies [\mathbf{v}]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$

$$\left(\begin{array}{ccc} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{array}\right) \left(\begin{array}{c} c_1 \\ c_2 \\ \vdots \\ c_n \end{array}\right) = \mathbf{v}$$

$$\begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \mathbf{v}$$

By the properties of a basis, this system has a solution for every choice of  $\mathbf v,$  which means this matrix

$$\begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \mathbf{v}$$

By the properties of a basis, this system has a solution for every choice of  $\mathbf{v}$ , which means this matrix

$$S = \left( \begin{array}{ccc} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{array} \right)$$
 is invertible.

So if we find the inverse  $S^{-1}$  we can multiply it times  $S[\mathbf{v}]_{\mathcal{B}} = \mathbf{v}$  to get  $[\mathbf{v}]_{\mathcal{B}} = S^{-1}\mathbf{v}$ .

$$\begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \mathbf{v}$$

By the properties of a basis, this system has a solution for every choice of  $\mathbf{v}$ , which means this matrix

$$S = \left( \begin{array}{ccc} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{array} \right)$$
 is invertible.

So if we find the inverse  $S^{-1}$  we can multiply it times  $S[\mathbf{v}]_{\mathcal{B}} = \mathbf{v}$  to get  $[\mathbf{v}]_{\mathcal{B}} = S^{-1}\mathbf{v}$ .

We call  $S^{-1}$  the *transition matrix* from  $\mathcal{E}$  to  $\mathcal{B}$ . Another trem used is *change of basis matrix*.

If  $\mathcal B$  and  $\mathcal C$  are ordered bases for a vector space V with dimension n, and if U is an  $n\times n$  matrix that satisfies

$$U[\mathbf{v}]_{\mathcal{B}} = [\mathbf{v}]_{\mathcal{C}}$$

then we call U the *transition or change of basis matrix* from  $\mathcal{B}$  to  $\mathcal{C}$ .

If  $\mathcal B$  and  $\mathcal C$  are ordered bases for a vector space V with dimension n, and if U is an  $n\times n$  matrix that satisfies

$$U[\mathbf{v}]_{\mathcal{B}} = [\mathbf{v}]_{\mathcal{C}}$$

then we call U the *transition or change of basis matrix* from  $\mathcal{B}$  to  $\mathcal{C}$ .

The standard basis  $\mathcal{E}$  in  $\mathbb{R}^n$  satisfies  $\mathbf{v} = [\mathbf{v}]_{\mathcal{E}}$ .

If  $\mathcal B$  and  $\mathcal C$  are ordered bases for a vector space V with dimension n, and if U is an  $n \times n$  matrix that satisfies

$$U[\mathbf{v}]_{\mathcal{B}} = [\mathbf{v}]_{\mathcal{C}}$$

then we call U the *transition or change of basis matrix* from  $\mathcal{B}$  to  $\mathcal{C}$ .

The standard basis  $\mathcal{E}$  in  $\mathbb{R}^n$  satisfies  $\mathbf{v} = [\mathbf{v}]_{\mathcal{E}}$ . From the equations we obtained earlier:  $S[\mathbf{v}]_{\mathcal{B}} = [\mathbf{v}]_{\mathcal{E}}$  and  $[\mathbf{v}]_{\mathcal{B}} = S^{-1}[\mathbf{v}]_{\mathcal{E}}$  we see that S is the transition matrix from  $\mathcal{B}$  to  $\mathcal{E}$ 

If  $\mathcal B$  and  $\mathcal C$  are ordered bases for a vector space V with dimension n, and if U is an  $n \times n$  matrix that satisfies

$$U[\mathbf{v}]_{\mathcal{B}} = [\mathbf{v}]_{\mathcal{C}}$$

then we call U the *transition or change of basis matrix* from  $\mathcal{B}$  to  $\mathcal{C}$ .

The standard basis  $\mathcal{E}$  in  $\mathbb{R}^n$  satisfies  $\mathbf{v} = [\mathbf{v}]_{\mathcal{E}}$ . From the equations we obtained earlier:  $S[\mathbf{v}]_{\mathcal{B}} = [\mathbf{v}]_{\mathcal{E}}$  and  $[\mathbf{v}]_{\mathcal{B}} = S^{-1}[\mathbf{v}]_{\mathcal{E}}$  we see that S is the transition matrix from  $\mathcal{B}$  to  $\mathcal{E}$  while  $S^{-1}$  is the transition matrix from  $\mathcal{E}$  to  $\mathcal{B}$ .

If  $\mathcal B$  and  $\mathcal C$  are ordered bases for a vector space V with dimension n, and if U is an  $n \times n$  matrix that satisfies

$$U[\mathbf{v}]_{\mathcal{B}} = [\mathbf{v}]_{\mathcal{C}}$$

then we call U the *transition or change of basis matrix* from  $\mathcal{B}$  to  $\mathcal{C}$ .

The standard basis  $\mathcal{E}$  in  $\mathbb{R}^n$  satisfies  $\mathbf{v} = [\mathbf{v}]_{\mathcal{E}}$ . From the equations we obtained earlier:  $S[\mathbf{v}]_{\mathcal{B}} = [\mathbf{v}]_{\mathcal{E}}$  and  $[\mathbf{v}]_{\mathcal{B}} = S^{-1}[\mathbf{v}]_{\mathcal{E}}$  we see that S is the transition matrix from  $\mathcal{B}$  to  $\mathcal{E}$  while  $S^{-1}$  is the transition matrix from  $\mathcal{E}$  to  $\mathcal{B}$ .

Time for an example: Consider the basis  $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2]$  where

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 and  $\mathbf{v}_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$  Then the transition matrix from  $\mathcal{B}$  to  $\mathcal{E} = [\mathbf{e}_1, \mathbf{e}_2]$  is  $S = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ 

If  $\mathcal B$  and  $\mathcal C$  are ordered bases for a vector space V with dimension n, and if U is an  $n \times n$  matrix that satisfies

$$U[\mathbf{v}]_{\mathcal{B}} = [\mathbf{v}]_{\mathcal{C}}$$

then we call U the *transition or change of basis matrix* from  $\mathcal{B}$  to  $\mathcal{C}$ .

The standard basis  $\mathcal{E}$  in  $\mathbb{R}^n$  satisfies  $\mathbf{v} = [\mathbf{v}]_{\mathcal{E}}$ . From the equations we obtained earlier:  $S[\mathbf{v}]_{\mathcal{B}} = [\mathbf{v}]_{\mathcal{E}}$  and  $[\mathbf{v}]_{\mathcal{B}} = S^{-1}[\mathbf{v}]_{\mathcal{E}}$  we see that S is the transition matrix from  $\mathcal{B}$  to  $\mathcal{E}$  while  $S^{-1}$  is the transition matrix from  $\mathcal{E}$  to  $\mathcal{B}$ .

Time for an example: Consider the basis  $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2]$  where

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \text{ and } \mathbf{v}_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \text{ Then the transition matrix from } \mathcal{B} \text{ to}$$
$$\mathcal{E} = [\mathbf{e}_1, \mathbf{e}_2] \text{ is } S = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \text{ and the transition matrix from } \mathcal{E} \text{ to } \mathcal{B} \text{ is}$$
$$S^{-1} = \begin{pmatrix} 3/5 & -2/5 \\ 1/5 & 1/5 \end{pmatrix}.$$

Thus, if 
$$\mathbf{v} = \begin{pmatrix} 8000\\ 2000 \end{pmatrix}$$
 then  $\mathbf{v} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2$  where  
$$\begin{pmatrix} c_1\\ c_2 \end{pmatrix} = [\mathbf{v}]_{\mathcal{B}} = \begin{pmatrix} 3/5 & -2/5\\ 1/5 & 1/5 \end{pmatrix} \begin{pmatrix} 8000\\ 2000 \end{pmatrix} = \begin{pmatrix} 4000\\ 2000 \end{pmatrix}$$