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We saw how to trim a spanning set to an independent set with the same
span. How can we do the other part of that theorem: efficiently extend an
independent set to a spanning set that is still independent?

We will eventually provide a method that is equivalent to solving a system
of equations. But we already have the skills to do it now.

Example: Find a basis for R* that contains the vectors

and

S W N =
_— O =N

Start by reducing the following matrix to echelon form, but keep track of
the operations,

1 2 1 2
2 4 Ro—2Ry 0 0
3 0 R3—3R; 0 —6
0 1 0 1
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1 2 1 2
Ro<+rRy 0 1 R3+6R2 0 1
0 —6 0 0
0 0 0 0

Now, add two more columns that produce an invertible matrix, then
perform the reverse of each of the above EROs in the opposite order:

1 2 00 1 0 0
0100 R3—6Rs 0 1 00
0 010 0 -6 1 0
0 001 0 0 01



R2 <—>R4
—

o O O

—6
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1
0
0

0

S O =N

Now, add two more columns that produce an invertible matrix, then
perform the reverse of each of the above EROs in the opposite order:

o O o

R4 <—>R2
—

S O =N

o O O

o= O O

o O O

o= O O

R3—6R2
_—

o O = O

S W N =

o = O O

— O =N

0

= o O

o = O O

o O = O

3/1



Coordinates

Consider the following picture:

b

a
This illustrates how any point x = [

combination x = zja + a4b.

x1
Z2

] in R? can be written as a
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Coordinates

Consider the following picture:

b

a
z1
Z2
combination x = z}a + x4b. The numbers | and z}, are not the same as
x1 and xo but they are still called coordinates relative to the basis a, b.

This illustrates how any point x = [ ] in R? can be written as a
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Example: In our population example we had a basis for R? consiting of

vectors
v = 1 and vy =
1 -1 2 3
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Example: In our population example we had a basis for R? consiting of

vectors
v = 1 and vy =
1 -1 2 3

The matrix A in that example satisfied Av; = (1/2)v; and Avy = vy. If
we write any vector x in R? as av; + Bva, then v and S are the
coordinates of x relative to vi,va. Then, since Ax = (1/2)av; + fva, we
see that the coordinates of Ax are (1/2)a and (.

In terms of these special coordinates, the action of A is a whole lot
simpler: The coordinates of A"x are (1/2)"« and 5.
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The general case:

Definition

If V is a vector space and B = [v1,Va,...,V,] is an ordered basis then
every vector v in V' can be written in the form

V=cV]+cavy+---+cpvy

where the ¢; are scalars uniquely associated to v. We call the column
vector

Cn

the coordinate vector relative to 3. We denote it by [v]z.

Finding the coordinates [v]s usually requires solving some system of
equations: equate v to the linear combination and solve for the c;.
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Going the other way is easy: if we know the coordinates c¢; and the
ordered basis B we just use

V =cC1Vy+cava+ -+ CpVy

to get v.
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Going the other way is easy: if we know the coordinates c¢; and the
ordered basis B we just use

V =cC1Vy+cava+ -+ CpVy

to get v.

One use of coordinates is the following. A problem in V is converted to a
problem about the coordinates. If this is a linear algebra problem, we solve
it using matrices and column vectors. When we have the solution in R™ we
convert the column vectors to elements of V' by interpreting them as
coordinates. The population problem shows that this can be useful even
when the problem is already about matrices and column vectors: it
becomes a simpler problem with the right basis.

There are several problems associated with bases and coordinates:
Given a vector v and an ordered basis B, what is [v]|g?

Given a second basis C, what is the relationship between [v]c and [v]g?

7/1



The simplest cases are when B is one of the standard bases.
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if v= ) then v =cie; + ez + -+ cpey.
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The simplest cases are when B is one of the standard bases.

If £ =[e1,e2,...,e,] in R™ (interpreted as the space of column vectors)
then [v]g = v. This is because

C1
2

if v= ) then v =cie; + ey +---+cpen,.

Cn
If R™ is interpreted as the space of 1 X n row vectors, and
£ = [€1,€y,...,€,], where €; is the row vector with all zeros except a 1 in

position 7, then [V]g¢ = ¥!. This is because

if v= ( cp ¢y - cn] then V =c¢1€1 + 969 + -+ ¢,6,.
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If € =[1,2,2% in P; then [a + bz + cz?]e =
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If £ =[1,2,2% in P; then [a + bz + cz?]¢ ]
b
d

If & = [Ell,ElQ,EQl,EQQ] in R2*2 and A = (Z then

A =aFq1 +bFE9 + cEy + dEy so [A]g =

QU O o



If £ =[1,2,2% in P; then [a + bz + cz?]¢ ]
b
d

If & = [EH, FEio, E21,E22] in R2*2 and A = (CZ then
a

b

A= GEH + bE12 + CE21 + dE22 SO [A]g = c

d

Suppose, in R™ we have another ordered basis B = [vy, vo,...,

finding [v]p amounts to solving
c1
C2

avit+ceve+ - vy =v = [V]g =

Cn

vy,]. Then
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The left side of this is the same as

(Vl V2

Cn
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The left side of this is the same as
C2

By the properties of a basis, this system has a solution for every choice of
v, which means this matrix

S = ( Vi Vg -V ] is invertible.
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The left side of this is the same as
C1
C2
Cn

By the properties of a basis, this system has a solution for every choice of
v, which means this matrix

S = ( Vi Vg -V ] is invertible.
So if we find the inverse S~! we can multiply it times S[v]z = v to get
[v]g = S~1v.

We call S—! the transition matrix from £ to B. Another trem used is
change of basis matrix.
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Definition
If B and C are ordered bases for a vector space V' with dimension n, and if
U is an n X n matrix that satisfies

Ulvls = [vle

then we call U the transition or change of basis matrix from B to C.
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Definition
If B and C are ordered bases for a vector space V with dimension n, and if
U is an n X n matrix that satisfies

then we call U the transition or change of basis matrix from B to C.

The standard basis £ in R” satisfies v = [v]g. From the equations we
obtained earlier: S[v]s = [v]¢ and [v]g = S~![v]e we see that S is the
transition matrix from B to £ while S~ is the transition matrix from & to

B.

Time for an example: Consider the basis B = [v1, v2| where

vy = [ _1 ] and vy = [ ?, ] Then the transition matrix from B to

. 1 2
E=le,esis S = [ 1 3]
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Definition
If B and C are ordered bases for a vector space V with dimension n, and if
U is an n X n matrix that satisfies

Ulvls = [vle
then we call U the transition or change of basis matrix from B to C.

The standard basis £ in R” satisfies v = [v]g. From the equations we
obtained earlier: S[v]s = [v]¢ and [v]g = S~![v]e we see that S is the
transition matrix from B to £ while S~ is the transition matrix from & to

B.

Time for an example: Consider the basis B = [v1, v2| where
Vi = [ _1 ] and vy = [ § ] Then the transition matrix from B to

. 1
E=le,esis S = [ 1 3

s ()

] and the transition matrix from & to B is
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8000
2000

() (3 22) (30 ) - [ 40)

Thus, if v = [ ] then v = ¢y v] + covy where
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