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We saw how to trim a spanning set to an independent set with the same
span.

How can we do the other part of that theorem: efficiently extend an
independent set to a spanning set that is still independent?

We will eventually provide a method that is equivalent to solving a system
of equations. But we already have the skills to do it now.

Example: Find a basis for R4 that contains the vectors
1
2
3
0

 and


2
4
0
1


Start by reducing the following matrix to echelon form, but keep track of
the operations, 

1 2
2 4
3 0
0 1

 R2−2R1−−−−−→
R3−3R1


1 2
0 0
0 −6
0 1


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R2↔R4−−−−−→


1 2
0 1
0 −6
0 0

 R3+6R2−−−−−→


1 2
0 1
0 0
0 0



Now, add two more columns that produce an invertible matrix, then
perform the reverse of each of the above EROs in the opposite order:

1 2 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 R3−6R2−−−−−→


1 2 0 0
0 1 0 0
0 −6 1 0
0 0 0 1


R4↔R2−−−−−→


1 2 0 0
0 0 0 1
0 −6 1 0
0 1 0 0

 R3+3R1−−−−−→
R2+2R1


1 2 0 0
2 4 0 1
3 0 1 0
0 1 0 0


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Coordinates

Consider the following picture:

a

b

This illustrates how any point x =

 x1
x2

 in R2 can be written as a

combination x = x′1a+ x′2b.

The numbers x′1 and x′2 are not the same as
x1 and x2 but they are still called coordinates relative to the basis a,b.
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Example: In our population example we had a basis for R2 consiting of
vectors

v1 =

 1
−1

 and v2 =

 2
3



The matrix A in that example satisfied Av1 = (1/2)v1 and Av2 = v2. If
we write any vector x in R2 as αv1 + βv2, then α and β are the
coordinates of x relative to v1,v2. Then, since Ax = (1/2)αv1 + βv2, we
see that the coordinates of Ax are (1/2)α and β.

In terms of these special coordinates, the action of A is a whole lot
simpler: The coordinates of Anx are (1/2)nα and β.
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The general case:

Definition

If V is a vector space and B = [v1,v2, . . . ,vn] is an ordered basis

then
every vector v in V can be written in the form

v = c1v1 + c2v2 + · · ·+ cnvn

where the cj are scalars uniquely associated to v. We call the column
vector

c =


c1
c2
...
cn


the coordinate vector relative to B. We denote it by [v]B.

Finding the coordinates [v]B usually requires solving some system of
equations: equate v to the linear combination and solve for the cj .
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Going the other way is easy: if we know the coordinates cj and the
ordered basis B we just use

v = c1v1 + c2v2 + · · ·+ cnvn

to get v.

One use of coordinates is the following. A problem in V is converted to a
problem about the coordinates. If this is a linear algebra problem, we solve
it using matrices and column vectors. When we have the solution in Rn we
convert the column vectors to elements of V by interpreting them as
coordinates. The population problem shows that this can be useful even
when the problem is already about matrices and column vectors: it
becomes a simpler problem with the right basis.

There are several problems associated with bases and coordinates:

Given a vector v and an ordered basis B, what is [v]B?
Given a second basis C, what is the relationship between [v]C and [v]B?
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coordinates.

The population problem shows that this can be useful even
when the problem is already about matrices and column vectors: it
becomes a simpler problem with the right basis.

There are several problems associated with bases and coordinates:

Given a vector v and an ordered basis B, what is [v]B?
Given a second basis C, what is the relationship between [v]C and [v]B?
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The simplest cases are when B is one of the standard bases.

If E = [e1, e2, . . . , en] in Rn (interpreted as the space of column vectors)
then [v]E = v. This is because

if v =


c1
c2
...
cn

 then v = c1e1 + c2e2 + · · ·+ cnen.

If Rn is interpreted as the space of 1× n row vectors, and
E = [⃗e1, e⃗2, . . . , e⃗n], where e⃗j is the row vector with all zeros except a 1 in
position j, then [v⃗]E = v⃗T . This is because

if v⃗ =
 c1 c2 · · · cn

 then v⃗ = c1e⃗1 + c2e⃗2 + · · ·+ cne⃗n.

8 / 1



The simplest cases are when B is one of the standard bases.

If E = [e1, e2, . . . , en] in Rn (interpreted as the space of column vectors)
then [v]E = v.

This is because

if v =


c1
c2
...
cn

 then v = c1e1 + c2e2 + · · ·+ cnen.

If Rn is interpreted as the space of 1× n row vectors, and
E = [⃗e1, e⃗2, . . . , e⃗n], where e⃗j is the row vector with all zeros except a 1 in
position j, then [v⃗]E = v⃗T . This is because

if v⃗ =
 c1 c2 · · · cn

 then v⃗ = c1e⃗1 + c2e⃗2 + · · ·+ cne⃗n.

8 / 1



The simplest cases are when B is one of the standard bases.

If E = [e1, e2, . . . , en] in Rn (interpreted as the space of column vectors)
then [v]E = v. This is because

if v =


c1
c2
...
cn

 then v = c1e1 + c2e2 + · · ·+ cnen.

If Rn is interpreted as the space of 1× n row vectors, and
E = [⃗e1, e⃗2, . . . , e⃗n], where e⃗j is the row vector with all zeros except a 1 in
position j, then [v⃗]E = v⃗T . This is because

if v⃗ =
 c1 c2 · · · cn

 then v⃗ = c1e⃗1 + c2e⃗2 + · · ·+ cne⃗n.

8 / 1



The simplest cases are when B is one of the standard bases.

If E = [e1, e2, . . . , en] in Rn (interpreted as the space of column vectors)
then [v]E = v. This is because

if v =


c1
c2
...
cn

 then v = c1e1 + c2e2 + · · ·+ cnen.

If Rn is interpreted as the space of 1× n row vectors,

and
E = [⃗e1, e⃗2, . . . , e⃗n], where e⃗j is the row vector with all zeros except a 1 in
position j, then [v⃗]E = v⃗T . This is because

if v⃗ =
 c1 c2 · · · cn

 then v⃗ = c1e⃗1 + c2e⃗2 + · · ·+ cne⃗n.

8 / 1



The simplest cases are when B is one of the standard bases.

If E = [e1, e2, . . . , en] in Rn (interpreted as the space of column vectors)
then [v]E = v. This is because

if v =


c1
c2
...
cn

 then v = c1e1 + c2e2 + · · ·+ cnen.

If Rn is interpreted as the space of 1× n row vectors, and
E = [⃗e1, e⃗2, . . . , e⃗n], where e⃗j is the row vector with all zeros except a 1 in
position j, then [v⃗]E = v⃗T .

This is because

if v⃗ =
 c1 c2 · · · cn

 then v⃗ = c1e⃗1 + c2e⃗2 + · · ·+ cne⃗n.

8 / 1



The simplest cases are when B is one of the standard bases.

If E = [e1, e2, . . . , en] in Rn (interpreted as the space of column vectors)
then [v]E = v. This is because

if v =


c1
c2
...
cn

 then v = c1e1 + c2e2 + · · ·+ cnen.

If Rn is interpreted as the space of 1× n row vectors, and
E = [⃗e1, e⃗2, . . . , e⃗n], where e⃗j is the row vector with all zeros except a 1 in
position j, then [v⃗]E = v⃗T . This is because

if v⃗ =
 c1 c2 · · · cn

 then v⃗ = c1e⃗1 + c2e⃗2 + · · ·+ cne⃗n.

8 / 1



If E = [1, x, x2] in P3 then [a+ bx+ cx2]E =


a
b
c

.

If E = [E11, E12, E21, E22] in R2×2 and A =

 a b
c d

 then

A = aE11 + bE12 + cE21 + dE22 so [A]E =


a
b
c
d


Suppose, in Rn we have another ordered basis B = [v1,v2, . . . ,vn]. Then
finding [v]B amounts to solving

c1v1 + c2v2 + · · ·+ cnvn = v =⇒ [v]B =


c1
c2
...
cn


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The left side of this is the same as

 v1 v2 · · · vn




c1
c2
...
cn

 = v

By the properties of a basis, this system has a solution for every choice of
v, which means this matrix

S =
 v1 v2 · · · vn

 is invertible.

So if we find the inverse S−1 we can multiply it times S[v]B = v to get
[v]B = S−1v.

We call S−1 the transition matrix from E to B. Another trem used is
change of basis matrix .
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Definition

If B and C are ordered bases for a vector space V with dimension n, and if
U is an n× n matrix that satisfies

U [v]B = [v]C

then we call U the transition or change of basis matrix from B to C.

The standard basis E in Rn satisfies v = [v]E . From the equations we
obtained earlier: S[v]B = [v]E and [v]B = S−1[v]E we see that S is the
transition matrix from B to E while S−1 is the transition matrix from E to
B.
Time for an example: Consider the basis B = [v1,v2] where

v1 =

 1
−1

 and v2 =

 2
3

 Then the transition matrix from B to

E = [e1, e2] is S =

 1 2
−1 3

 and the transition matrix from E to B is

S−1 =

 3/5 −2/5
1/5 1/5

.
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Thus, if v =

 8000
2000

 then v = c1v1 + c2v2 where

 c1
c2

 = [v]B =

 3/5 −2/5
1/5 1/5

 8000
2000

 =

 4000
2000


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