Basis and Dimension

D. H. Luecking

23 Feb 2024

Spanning and independent

Definition

If a set of vectors in a vector space V is both spanning and independent, we say it is a basis for V.

Spanning and independent

Definition

If a set of vectors in a vector space V is both spanning and independent, we say it is a basis for V.

If a set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is spanning, that means any vector \mathbf{w} can be written as

$$
\mathbf{w}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{n} \mathbf{v}_{n}
$$

Spanning and independent

Definition

If a set of vectors in a vector space V is both spanning and independent, we say it is a basis for V.

If a set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is spanning, that means any vector \mathbf{w} can be written as

$$
\mathbf{w}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{n} \mathbf{v}_{n}
$$

If the set is also independent, then there is only one choice of coefficients that will produce \mathbf{w}.

Spanning and independent

Definition

If a set of vectors in a vector space V is both spanning and independent, we say it is a basis for V.

If a set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is spanning, that means any vector \mathbf{w} can be written as

$$
\mathbf{w}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{n} \mathbf{v}_{n}
$$

If the set is also independent, then there is only one choice of coefficients that will produce \mathbf{w}. To see why, suppose we also had

$$
\mathbf{w}=\beta_{1} \mathbf{v}_{1}+\beta_{2} \mathbf{v}_{2}+\cdots+\beta_{n} \mathbf{v}_{n}
$$

Spanning and independent

Definition

If a set of vectors in a vector space V is both spanning and independent, we say it is a basis for V.

If a set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is spanning, that means any vector \mathbf{w} can be written as

$$
\mathbf{w}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{n} \mathbf{v}_{n}
$$

If the set is also independent, then there is only one choice of coefficients that will produce \mathbf{w}. To see why, suppose we also had

$$
\mathbf{w}=\beta_{1} \mathbf{v}_{1}+\beta_{2} \mathbf{v}_{2}+\cdots+\beta_{n} \mathbf{v}_{n}
$$

Then, after subtraction, we would have

$$
\mathbf{0}=\left(\alpha_{1}-\beta_{1}\right) \mathbf{v}_{1}+\left(\alpha_{2}-\beta_{2}\right) \mathbf{v}_{2}+\cdots+\left(\alpha_{n}-\beta_{n}\right) \mathbf{v}_{n}
$$

Spanning and independent

Definition

If a set of vectors in a vector space V is both spanning and independent, we say it is a basis for V.

If a set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is spanning, that means any vector \mathbf{w} can be written as

$$
\mathbf{w}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{n} \mathbf{v}_{n}
$$

If the set is also independent, then there is only one choice of coefficients that will produce \mathbf{w}. To see why, suppose we also had

$$
\mathbf{w}=\beta_{1} \mathbf{v}_{1}+\beta_{2} \mathbf{v}_{2}+\cdots+\beta_{n} \mathbf{v}_{n}
$$

Then, after subtraction, we would have

$$
\mathbf{0}=\left(\alpha_{1}-\beta_{1}\right) \mathbf{v}_{1}+\left(\alpha_{2}-\beta_{2}\right) \mathbf{v}_{2}+\cdots+\left(\alpha_{n}-\beta_{n}\right) \mathbf{v}_{n}
$$

Because $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is independent, this can only happen if

$$
\alpha_{1}-\beta_{1}=0, \quad \alpha_{2}-\beta_{2}=0, \ldots, \alpha_{n}-\beta_{n}=0
$$

Recall the example of the population of women in a town.

Recall the example of the population of women in a town. We had a matrix $A=\left(\begin{array}{cc}0.7 & 0.2 \\ 0.3 & 0.8\end{array}\right)$ that determined the transition between married and single in the following way:

Recall the example of the population of women in a town. We had a matrix $A=\left(\begin{array}{ll}0.7 & 0.2 \\ 0.3 & 0.8\end{array}\right)$ that determined the transition between married and single in the following way: If there are 8000 married women and 2000 single women, then after one year

$$
\left(\begin{array}{ll}
0.7 & 0.2 \\
0.3 & 0.8
\end{array}\right)\binom{8000}{2000}=\binom{6000}{4000}
$$

Recall the example of the population of women in a town. We had a matrix $A=\left(\begin{array}{ll}0.7 & 0.2 \\ 0.3 & 0.8\end{array}\right)$ that determined the transition between married and single in the following way: If there are 8000 married women and 2000 single women, then after one year

$$
\left(\begin{array}{ll}
0.7 & 0.2 \\
0.3 & 0.8
\end{array}\right)\binom{8000}{2000}=\binom{6000}{4000}
$$

indicating there are then 6000 married and 4000 single.

Recall the example of the population of women in a town. We had a matrix $A=\left(\begin{array}{ll}0.7 & 0.2 \\ 0.3 & 0.8\end{array}\right)$ that determined the transition between married and single in the following way: If there are 8000 married women and 2000 single women, then after one year

$$
\left(\begin{array}{ll}
0.7 & 0.2 \\
0.3 & 0.8
\end{array}\right)\binom{8000}{2000}=\binom{6000}{4000}
$$

indicating there are then 6000 married and 4000 single.
Consider the following set in \mathbb{R}^{2} :

$$
\mathbf{v}_{1}=\binom{1}{-1}, \quad \mathbf{v}_{2}=\binom{2}{3}
$$

Recall the example of the population of women in a town. We had a matrix $A=\left(\begin{array}{ll}0.7 & 0.2 \\ 0.3 & 0.8\end{array}\right)$ that determined the transition between married and single in the following way: If there are 8000 married women and 2000 single women, then after one year

$$
\left(\begin{array}{ll}
0.7 & 0.2 \\
0.3 & 0.8
\end{array}\right)\binom{8000}{2000}=\binom{6000}{4000}
$$

indicating there are then 6000 married and 4000 single.
Consider the following set in \mathbb{R}^{2} :

$$
\mathbf{v}_{1}=\binom{1}{-1}, \quad \mathbf{v}_{2}=\binom{2}{3}
$$

It is routine to verify that this is a basis for \mathbb{R}^{2} :

$$
\left(\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right) \xrightarrow{R_{2}+R_{1}}\left(\begin{array}{ll}
1 & 2 \\
0 & 5
\end{array}\right) \xrightarrow{(1 / 5) R_{2}}\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)
$$

Recall the example of the population of women in a town. We had a matrix $A=\left(\begin{array}{cc}0.7 & 0.2 \\ 0.3 & 0.8\end{array}\right)$ that determined the transition between married and single in the following way: If there are 8000 married women and 2000 single women, then after one year

$$
\left(\begin{array}{ll}
0.7 & 0.2 \\
0.3 & 0.8
\end{array}\right)\binom{8000}{2000}=\binom{6000}{4000}
$$

indicating there are then 6000 married and 4000 single.
Consider the following set in \mathbb{R}^{2} :

$$
\mathbf{v}_{1}=\binom{1}{-1}, \quad \mathbf{v}_{2}=\binom{2}{3}
$$

It is routine to verify that this is a basis for \mathbb{R}^{2} :

$$
\left(\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right) \xrightarrow{R_{2}+R_{1}}\left(\begin{array}{ll}
1 & 2 \\
0 & 5
\end{array}\right) \xrightarrow{(1 / 5) R_{2}}\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)
$$

So the set is both independent and spanning.

Relative to A, this basis is special: $A \mathbf{v}_{1}=(1 / 2) \mathbf{v}_{1}$ and $A \mathbf{v}_{2}=\mathbf{v}_{2}$.

Relative to A, this basis is special: $A \mathbf{v}_{1}=(1 / 2) \mathbf{v}_{1}$ and $A \mathbf{v}_{2}=\mathbf{v}_{2}$. This means if we can write a vector \mathbf{w} as $\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}$ we can compute easily:

Relative to A, this basis is special: $A \mathbf{v}_{1}=(1 / 2) \mathbf{v}_{1}$ and $A \mathbf{v}_{2}=\mathbf{v}_{2}$. This means if we can write a vector \mathbf{w} as $\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}$ we can compute easily:

$$
\begin{aligned}
& A \mathbf{w}=(1 / 2) \alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}, \quad A^{2} \mathbf{w}=(1 / 2)^{2} \alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2} \\
& \ldots, A^{n} \mathbf{w}=(1 / 2)^{n} \alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}
\end{aligned}
$$

Relative to A, this basis is special: $A \mathbf{v}_{1}=(1 / 2) \mathbf{v}_{1}$ and $A \mathbf{v}_{2}=\mathbf{v}_{2}$. This means if we can write a vector \mathbf{w} as $\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}$ we can compute easily:

$$
\begin{aligned}
& A \mathbf{w}=(1 / 2) \alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}, \quad A^{2} \mathbf{w}=(1 / 2)^{2} \alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2} \\
& \ldots, A^{n} \mathbf{w}=(1 / 2)^{n} \alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}
\end{aligned}
$$

If we do this with our population vector:

$$
\binom{8000}{2000}=4000\binom{1}{-1}+2000\binom{2}{3}
$$

Relative to A, this basis is special: $A \mathbf{v}_{1}=(1 / 2) \mathbf{v}_{1}$ and $A \mathbf{v}_{2}=\mathbf{v}_{2}$. This means if we can write a vector \mathbf{w} as $\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}$ we can compute easily:

$$
\begin{aligned}
& A \mathbf{w}=(1 / 2) \alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}, \quad A^{2} \mathbf{w}=(1 / 2)^{2} \alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2} \\
& \ldots, A^{n} \mathbf{w}=(1 / 2)^{n} \alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}
\end{aligned}
$$

If we do this with our population vector:

$$
\binom{8000}{2000}=4000\binom{1}{-1}+2000\binom{2}{3}
$$

So, we get

$$
\left(\begin{array}{ll}
0.7 & 0.2 \\
0.3 & 0.8
\end{array}\right)^{n}\binom{8000}{2000}=(1 / 2)^{n} 4000\binom{1}{-1}+2000\binom{2}{3}
$$

Standard bases

Some vector spaces have a basis so closely associated with the structure of the vectors that they are called standard bases.

Standard bases

Some vector spaces have a basis so closely associated with the structure of the vectors that they are called standard bases.
The standard basis for \mathbb{R}^{n} is the set $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$. For example, for \mathbb{R}^{3} this basis is

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Standard bases

Some vector spaces have a basis so closely associated with the structure of the vectors that they are called standard bases.
The standard basis for \mathbb{R}^{n} is the set $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$. For example, for \mathbb{R}^{3} this basis is

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

If we put these in a matrix, it is already in echelon form and clearly satisfies the tests for spanning and independence.

Standard bases

Some vector spaces have a basis so closely associated with the structure of the vectors that they are called standard bases.
The standard basis for \mathbb{R}^{n} is the set $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$. For example, for \mathbb{R}^{3} this basis is

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

If we put these in a matrix, it is already in echelon form and clearly satisfies the tests for spanning and independence.
The standard basis for \mathcal{P}_{n} is $\left\{1, x, \ldots, x^{n-1}\right\}$.

Standard bases

Some vector spaces have a basis so closely associated with the structure of the vectors that they are called standard bases.
The standard basis for \mathbb{R}^{n} is the set $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$. For example, for \mathbb{R}^{3} this basis is

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

If we put these in a matrix, it is already in echelon form and clearly satisfies the tests for spanning and independence.
The standard basis for \mathcal{P}_{n} is $\left\{1, x, \ldots, x^{n-1}\right\}$. In fact, the definition of a polynomial is that it is a linear combination of powers of x.

The standard basis for $\mathbb{R}^{n \times k}$ consists of all $\left\{E_{i j}: 1 \leq i \leq n, 1 \leq j \leq k\right\}$, where $E_{i j}$ is the matrix with a 1 in position $i j$ and zeros everywhere else.

The standard basis for $\mathbb{R}^{n \times k}$ consists of all $\left\{E_{i j}: 1 \leq i \leq n, 1 \leq j \leq k\right\}$, where $E_{i j}$ is the matrix with a 1 in position $i j$ and zeros everywhere else. This is spanning because

$$
A=\sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq k}} a_{i j} E_{i j}
$$

where $a_{i j}$ are the entries of A.

The standard basis for $\mathbb{R}^{n \times k}$ consists of all $\left\{E_{i j}: 1 \leq i \leq n, 1 \leq j \leq k\right\}$, where $E_{i j}$ is the matrix with a 1 in position $i j$ and zeros everywhere else. This is spanning because

$$
A=\sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq k}} a_{i j} E_{i j}
$$

where $a_{i j}$ are the entries of A. This gives the zero matrix only when all the coeficients are 0 , so this is independent.

Theorem

If a set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ in a vector space V is spanning, then any set of vector with more than n elements must be dependent.

The standard basis for $\mathbb{R}^{n \times k}$ consists of all $\left\{E_{i j}: 1 \leq i \leq n, 1 \leq j \leq k\right\}$, where $E_{i j}$ is the matrix with a 1 in position $i j$ and zeros everywhere else. This is spanning because

$$
A=\sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq k}} a_{i j} E_{i j}
$$

where $a_{i j}$ are the entries of A. This gives the zero matrix only when all the coeficients are 0 , so this is independent.

Theorem

If a set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ in a vector space V is spanning, then any set of vector with more than n elements must be dependent. If a set of vectors $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m}\right\}$ is independent, then any set of vectors with fewer than m elements cannot be spanning.

The standard basis for $\mathbb{R}^{n \times k}$ consists of all $\left\{E_{i j}: 1 \leq i \leq n, 1 \leq j \leq k\right\}$, where $E_{i j}$ is the matrix with a 1 in position $i j$ and zeros everywhere else. This is spanning because

$$
A=\sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq k}} a_{i j} E_{i j}
$$

where $a_{i j}$ are the entries of A. This gives the zero matrix only when all the coeficients are 0 , so this is independent.

Theorem

If a set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ in a vector space V is spanning, then any set of vector with more than n elements must be dependent. If a set of vectors $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m}\right\}$ is independent, then any set of vectors with fewer than m elements cannot be spanning.

Let's see why the first statement is true. Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$ be a set in V with $k>n$.

Since the set of \mathbf{v}_{i} is spanning, there are linear combinations that produce each \mathbf{u}_{j} :

$$
\mathbf{u}_{j}=\sum_{i=1}^{n} a_{i j} \mathbf{v}_{i}
$$

Since the set of \mathbf{v}_{i} is spanning, there are linear combinations that produce each \mathbf{u}_{j} :

$$
\mathbf{u}_{j}=\sum_{i=1}^{n} a_{i j} \mathbf{v}_{i}
$$

If we now take a linear combination $\sum_{j=1}^{k} \alpha_{j} \mathbf{u}_{j}$ and equate this to $\mathbf{0}$ we get

$$
\mathbf{0}=\sum_{j=1}^{k} \sum_{i=1}^{n} a_{i j} \alpha_{j} \mathbf{v}_{i}=\sum_{i=1}^{n}\left(\sum_{j=1}^{k} a_{i j} \alpha_{j}\right) \mathbf{v}_{i}
$$

Since the set of \mathbf{v}_{i} is spanning, there are linear combinations that produce each \mathbf{u}_{j} :

$$
\mathbf{u}_{j}=\sum_{i=1}^{n} a_{i j} \mathbf{v}_{i}
$$

If we now take a linear combination $\sum_{j=1}^{k} \alpha_{j} \mathbf{u}_{j}$ and equate this to $\mathbf{0}$ we get

$$
\mathbf{0}=\sum_{j=1}^{k} \sum_{i=1}^{n} a_{i j} \alpha_{j} \mathbf{v}_{i}=\sum_{i=1}^{n}\left(\sum_{j=1}^{k} a_{i j} \alpha_{j}\right) \mathbf{v}_{i}
$$

If we can make each term in parentheses equal to zero for some nontrivial set of α_{j}, then we will have shown that the set of \mathbf{u}_{j} is dependent.

Since the set of \mathbf{v}_{i} is spanning, there are linear combinations that produce each \mathbf{u}_{j} :

$$
\mathbf{u}_{j}=\sum_{i=1}^{n} a_{i j} \mathbf{v}_{i}
$$

If we now take a linear combination $\sum_{j=1}^{k} \alpha_{j} \mathbf{u}_{j}$ and equate this to $\mathbf{0}$ we get

$$
\mathbf{0}=\sum_{j=1}^{k} \sum_{i=1}^{n} a_{i j} \alpha_{j} \mathbf{v}_{i}=\sum_{i=1}^{n}\left(\sum_{j=1}^{k} a_{i j} \alpha_{j}\right) \mathbf{v}_{i}
$$

If we can make each term in parentheses equal to zero for some nontrivial set of α_{j}, then we will have shown that the set of \mathbf{u}_{j} is dependent. But this amounts to a system of equations

$$
\sum_{j=1}^{k} a_{i j} \alpha_{j}=0, \quad 1 \leq i \leq n
$$

Since the set of \mathbf{v}_{i} is spanning, there are linear combinations that produce each \mathbf{u}_{j} :

$$
\mathbf{u}_{j}=\sum_{i=1}^{n} a_{i j} \mathbf{v}_{i}
$$

If we now take a linear combination $\sum_{j=1}^{k} \alpha_{j} \mathbf{u}_{j}$ and equate this to $\mathbf{0}$ we get

$$
\mathbf{0}=\sum_{j=1}^{k} \sum_{i=1}^{n} a_{i j} \alpha_{j} \mathbf{v}_{i}=\sum_{i=1}^{n}\left(\sum_{j=1}^{k} a_{i j} \alpha_{j}\right) \mathbf{v}_{i}
$$

If we can make each term in parentheses equal to zero for some nontrivial set of α_{j}, then we will have shown that the set of \mathbf{u}_{j} is dependent. But this amounts to a system of equations

$$
\sum_{j=1}^{k} a_{i j} \alpha_{j}=0, \quad 1 \leq i \leq n
$$

But this system has more variables $\left(\alpha_{j}, 1 \leq j \leq k\right)$ than equations, so it has non trivial solutions.

Theorem

Every vector space has a basis. Any two bases for a vector space have the same number of elements.

Theorem

Every vector space has a basis. Any two bases for a vector space have the same number of elements.

Note: A basis can be infinite. The above says that if this is the case, then every basis is infinite.

Theorem

Every vector space has a basis. Any two bases for a vector space have the same number of elements.

Note: A basis can be infinite. The above says that if this is the case, then every basis is infinite. The set \mathcal{P} of all polynomials of all degrees is a vector space. The infinite set $\left\{1, x, x^{2}, x^{3}, \ldots\right\}$ is a basis for \mathcal{P}.

Theorem

Every vector space has a basis. Any two bases for a vector space have the same number of elements.

Note: A basis can be infinite. The above says that if this is the case, then every basis is infinite. The set \mathcal{P} of all polynomials of all degrees is a vector space. The infinite set $\left\{1, x, x^{2}, x^{3}, \ldots\right\}$ is a basis for \mathcal{P}.
Why do bases have to be the same size?

Theorem

Every vector space has a basis. Any two bases for a vector space have the same number of elements.

Note: A basis can be infinite. The above says that if this is the case, then every basis is infinite. The set \mathcal{P} of all polynomials of all degrees is a vector space. The infinite set $\left\{1, x, x^{2}, x^{3}, \ldots\right\}$ is a basis for \mathcal{P}. Why do bases have to be the same size? If a $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for V, suppose $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{k}\right\}$ is another basis.

Theorem

Every vector space has a basis. Any two bases for a vector space have the same number of elements.

Note: A basis can be infinite. The above says that if this is the case, then every basis is infinite. The set \mathcal{P} of all polynomials of all degrees is a vector space. The infinite set $\left\{1, x, x^{2}, x^{3}, \ldots\right\}$ is a basis for \mathcal{P}. Why do bases have to be the same size? If a $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for V, suppose $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{k}\right\}$ is another basis. Since the first set is spanning, no larger set can be independent.

Theorem

Every vector space has a basis. Any two bases for a vector space have the same number of elements.

Note: A basis can be infinite. The above says that if this is the case, then every basis is infinite. The set \mathcal{P} of all polynomials of all degrees is a vector space. The infinite set $\left\{1, x, x^{2}, x^{3}, \ldots\right\}$ is a basis for \mathcal{P}. Why do bases have to be the same size? If a $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for V, suppose $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{k}\right\}$ is another basis. Since the first set is spanning, no larger set can be independent. But the second set is independent, so it can't be larger.

Theorem

Every vector space has a basis. Any two bases for a vector space have the same number of elements.

Note: A basis can be infinite. The above says that if this is the case, then every basis is infinite. The set \mathcal{P} of all polynomials of all degrees is a vector space. The infinite set $\left\{1, x, x^{2}, x^{3}, \ldots\right\}$ is a basis for \mathcal{P}. Why do bases have to be the same size? If a $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for V, suppose $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{k}\right\}$ is another basis. Since the first set is spanning, no larger set can be independent. But the second set is independent, so it can't be larger. Thus $k \leq n$.

Theorem

Every vector space has a basis. Any two bases for a vector space have the same number of elements.

Note: A basis can be infinite. The above says that if this is the case, then every basis is infinite. The set \mathcal{P} of all polynomials of all degrees is a vector space. The infinite set $\left\{1, x, x^{2}, x^{3}, \ldots\right\}$ is a basis for \mathcal{P}. Why do bases have to be the same size? If a $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for V, suppose $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{k}\right\}$ is another basis. Since the first set is spanning, no larger set can be independent. But the second set is independent, so it can't be larger. Thus $k \leq n$.
The same argument, starting with the second set, shows that $n \leq k$.

Theorem

Every vector space has a basis. Any two bases for a vector space have the same number of elements.

Note: A basis can be infinite. The above says that if this is the case, then every basis is infinite. The set \mathcal{P} of all polynomials of all degrees is a vector space. The infinite set $\left\{1, x, x^{2}, x^{3}, \ldots\right\}$ is a basis for \mathcal{P}.
Why do bases have to be the same size? If a $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for V, suppose $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{k}\right\}$ is another basis. Since the first set is spanning, no larger set can be independent. But the second set is independent, so it can't be larger. Thus $k \leq n$.
The same argument, starting with the second set, shows that $n \leq k$.

Definition

The dimension of a vector space is the number of elements in any basis.

Not suprisingly, the dimension of \mathbb{R}^{n} is $n:\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ is a basis.

Not suprisingly, the dimension of \mathbb{R}^{n} is $n:\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ is a basis.
The dimension of \mathcal{P}_{n} is n : $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ is a basis.

Not suprisingly, the dimension of \mathbb{R}^{n} is $n:\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ is a basis.
The dimension of \mathcal{P}_{n} is n : $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ is a basis.
The dimension of $\mathbb{R}^{n \times k}$ is $n k$: $\left\{E_{i j}: 1 \leq i \leq n, 1 \leq j \leq k\right\}$ is a basis.

Not suprisingly, the dimension of \mathbb{R}^{n} is $n:\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ is a basis. The dimension of \mathcal{P}_{n} is n : $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ is a basis. The dimension of $\mathbb{R}^{n \times k}$ is $n k$: $\left\{E_{i j}: 1 \leq i \leq n, 1 \leq j \leq k\right\}$ is a basis. The set of upper triangular, 2×2 matrices has dimension 3 . A basis is

$$
E_{11}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), E_{12}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), E_{22}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Not suprisingly, the dimension of \mathbb{R}^{n} is $n:\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ is a basis. The dimension of \mathcal{P}_{n} is n : $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ is a basis. The dimension of $\mathbb{R}^{n \times k}$ is $n k$: $\left\{E_{i j}: 1 \leq i \leq n, 1 \leq j \leq k\right\}$ is a basis. The set of upper triangular, 2×2 matrices has dimension 3 . A basis is

$$
E_{11}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), E_{12}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), E_{22}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Theorem

If the dimension of V is n then any set in V with more than n elements is dependent, and any set with fewer than n elements is not spanning.

Not suprisingly, the dimension of \mathbb{R}^{n} is $n:\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ is a basis. The dimension of \mathcal{P}_{n} is n : $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ is a basis. The dimension of $\mathbb{R}^{n \times k}$ is $n k$: $\left\{E_{i j}: 1 \leq i \leq n, 1 \leq j \leq k\right\}$ is a basis. The set of upper triangular, 2×2 matrices has dimension 3 . A basis is

$$
E_{11}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), E_{12}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), E_{22}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Theorem

If the dimension of V is n then any set in V with more than n elements is dependent, and any set with fewer than n elements is not spanning. Any set with n elements either is both independent and spanning or is neither independent nor spanning.

Not suprisingly, the dimension of \mathbb{R}^{n} is $n:\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ is a basis. The dimension of \mathcal{P}_{n} is n : $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ is a basis.
The dimension of $\mathbb{R}^{n \times k}$ is $n k$: $\left\{E_{i j}: 1 \leq i \leq n, 1 \leq j \leq k\right\}$ is a basis. The set of upper triangular, 2×2 matrices has dimension 3 . A basis is

$$
E_{11}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), E_{12}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), E_{22}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Theorem

If the dimension of V is n then any set in V with more than n elements is dependent, and any set with fewer than n elements is not spanning. Any set with n elements either is both independent and spanning or is neither independent nor spanning.

The last part is proved like this: If a set is independent, but not spanning, we could get a larger independent set by adding any vector not in the span,

Not suprisingly, the dimension of \mathbb{R}^{n} is $n:\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ is a basis. The dimension of \mathcal{P}_{n} is n : $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ is a basis.
The dimension of $\mathbb{R}^{n \times k}$ is $n k$: $\left\{E_{i j}: 1 \leq i \leq n, 1 \leq j \leq k\right\}$ is a basis. The set of upper triangular, 2×2 matrices has dimension 3 . A basis is

$$
E_{11}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), E_{12}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), E_{22}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Theorem

If the dimension of V is n then any set in V with more than n elements is dependent, and any set with fewer than n elements is not spanning. Any set with n elements either is both independent and spanning or is neither independent nor spanning.

The last part is proved like this: If a set is independent, but not spanning, we could get a larger independent set by adding any vector not in the span, this is impossible by the first part.

If a set is spanning, but not independent, we could get a smaller spanning set by taking away a vector that is a linear combination of the others.

If a set is spanning, but not independent, we could get a smaller spanning set by taking away a vector that is a linear combination of the others. This, too, is impossible by the first part.

If a set is spanning, but not independent, we could get a smaller spanning set by taking away a vector that is a linear combination of the others.
This, too, is impossible by the first part.
These last two arguments can be extended to obtain the following:
Theorem
Suppose V is a vector space with dimension n

If a set is spanning, but not independent, we could get a smaller spanning set by taking away a vector that is a linear combination of the others.
This, too, is impossible by the first part.
These last two arguments can be extended to obtain the following:

Theorem

Suppose V is a vector space with dimension n

1. Any independent subset with fewer than n vectors can be extended (i.e., vectors can be added to it) to form a basis.

If a set is spanning, but not independent, we could get a smaller spanning set by taking away a vector that is a linear combination of the others.
This, too, is impossible by the first part.
These last two arguments can be extended to obtain the following:

Theorem

Suppose V is a vector space with dimension n

1. Any independent subset with fewer than n vectors can be extended (i.e., vectors can be added to it) to form a basis.
2. Any spanning set with more than n vectors can be trimmed down to a basis.

If a set is spanning, but not independent, we could get a smaller spanning set by taking away a vector that is a linear combination of the others.
This, too, is impossible by the first part.
These last two arguments can be extended to obtain the following:

Theorem

Suppose V is a vector space with dimension n

1. Any independent subset with fewer than n vectors can be extended (i.e., vectors can be added to it) to form a basis.
2. Any spanning set with more than n vectors can be trimmed down to a basis.

To see the first, let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ be independent and $k<n$.

If a set is spanning, but not independent, we could get a smaller spanning set by taking away a vector that is a linear combination of the others.
This, too, is impossible by the first part.
These last two arguments can be extended to obtain the following:

Theorem

Suppose V is a vector space with dimension n

1. Any independent subset with fewer than n vectors can be extended (i.e., vectors can be added to it) to form a basis.
2. Any spanning set with more than n vectors can be trimmed down to a basis.

To see the first, let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ be independent and $k<n$. Since it cannot be spanning, pick any vector \mathbf{w} that is not in $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right)$.

If a set is spanning, but not independent, we could get a smaller spanning set by taking away a vector that is a linear combination of the others.
This, too, is impossible by the first part.
These last two arguments can be extended to obtain the following:

Theorem

Suppose V is a vector space with dimension n

1. Any independent subset with fewer than n vectors can be extended (i.e., vectors can be added to it) to form a basis.
2. Any spanning set with more than n vectors can be trimmed down to a basis.

To see the first, let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ be independent and $k<n$. Since it cannot be spanning, pick any vector \mathbf{w} that is not in $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right)$. I claim $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}, \mathbf{w}\right\}$ is independent. For suppose

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{k} \mathbf{v}_{k}+\alpha_{k+1} \mathbf{w}=\mathbf{0}
$$

If $\alpha_{k+1} \neq 0$ then we could solve for \mathbf{w}.

If $\alpha_{k+1} \neq 0$ then we could solve for \mathbf{w}. That is impossible, since \mathbf{w} is not in the span of the rest.

If $\alpha_{k+1} \neq 0$ then we could solve for \mathbf{w}. That is impossible, since \mathbf{w} is not in the span of the rest. Therefore, $\alpha_{k+1}=0$ and we get.

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{k} \mathbf{v}_{k}=\mathbf{0}
$$

If $\alpha_{k+1} \neq 0$ then we could solve for \mathbf{w}. That is impossible, since \mathbf{w} is not in the span of the rest. Therefore, $\alpha_{k+1}=0$ and we get.

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{k} \mathbf{v}_{k}=\mathbf{0}
$$

This means all $\alpha_{j}=0$ because $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is independent.

If $\alpha_{k+1} \neq 0$ then we could solve for \mathbf{w}. That is impossible, since \mathbf{w} is not in the span of the rest. Therefore, $\alpha_{k+1}=0$ and we get.

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{k} \mathbf{v}_{k}=\mathbf{0}
$$

This means all $\alpha_{j}=0$ because $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is independent. If this extended set spans V we are done.

If $\alpha_{k+1} \neq 0$ then we could solve for \mathbf{w}. That is impossible, since \mathbf{w} is not in the span of the rest. Therefore, $\alpha_{k+1}=0$ and we get.

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{k} \mathbf{v}_{k}=\mathbf{0}
$$

This means all $\alpha_{j}=0$ because $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is independent. If this extended set spans V we are done. If it does not, we can repeat the process.

If $\alpha_{k+1} \neq 0$ then we could solve for \mathbf{w}. That is impossible, since \mathbf{w} is not in the span of the rest. Therefore, $\alpha_{k+1}=0$ and we get.

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{k} \mathbf{v}_{k}=\mathbf{0}
$$

This means all $\alpha_{j}=0$ because $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is independent. If this extended set spans V we are done. If it does not, we can repeat the process. This is guaranteed to stop when we get to a set with n vectors, because an independent set of that size is guaranteed to be spanning.

If $\alpha_{k+1} \neq 0$ then we could solve for \mathbf{w}. That is impossible, since \mathbf{w} is not in the span of the rest. Therefore, $\alpha_{k+1}=0$ and we get.

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{k} \mathbf{v}_{k}=\mathbf{0}
$$

This means all $\alpha_{j}=0$ because $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is independent. If this extended set spans V we are done. If it does not, we can repeat the process. This is guaranteed to stop when we get to a set with n vectors, because an independent set of that size is guaranteed to be spanning. Problem: Given a set that spans, but is not independent, how do we efficiently remove vectors to get a basis?

If $\alpha_{k+1} \neq 0$ then we could solve for \mathbf{w}. That is impossible, since \mathbf{w} is not in the span of the rest. Therefore, $\alpha_{k+1}=0$ and we get.

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{k} \mathbf{v}_{k}=\mathbf{0}
$$

This means all $\alpha_{j}=0$ because $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is independent.
If this extended set spans V we are done. If it does not, we can repeat the process. This is guaranteed to stop when we get to a set with n vectors, because an independent set of that size is guaranteed to be spanning. Problem: Given a set that spans, but is not independent, how do we efficiently remove vectors to get a basis?
Example:

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right), \quad \mathbf{v}_{4}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

Put these columns in a matrix and reduce to echelon form:

$$
\left(\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
1 & 0 & 1 & 1 \\
2 & -1 & 1 & 1
\end{array}\right) \xrightarrow{5 \mathrm{ERO}}\left(\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
0 & 1 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Put these columns in a matrix and reduce to echelon form:

$$
\left(\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
1 & 0 & 1 & 1 \\
2 & -1 & 1 & 1
\end{array}\right) \xrightarrow{5 \mathrm{ERO}}\left(\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
0 & 1 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

This tells us that the original set of vectors in spanning (no row of zeros) but is not independent.

Put these columns in a matrix and reduce to echelon form:

$$
\left(\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
1 & 0 & 1 & 1 \\
2 & -1 & 1 & 1
\end{array}\right) \xrightarrow{5 \mathrm{EROs}}\left(\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
0 & 1 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

This tells us that the original set of vectors in spanning (no row of zeros) but is not independent.
But it also tells us that if we take a linear combination and equate it to $\mathbf{0}$:

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}+\alpha_{4} \mathbf{v}_{4}=\mathbf{0}
$$

that the variable α_{3} is free and can be set equal to 1 .

Put these columns in a matrix and reduce to echelon form:

$$
\left(\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
1 & 0 & 1 & 1 \\
2 & -1 & 1 & 1
\end{array}\right) \xrightarrow{5 \mathrm{ERO}}\left(\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
0 & 1 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

This tells us that the original set of vectors in spanning (no row of zeros) but is not independent.
But it also tells us that if we take a linear combination and equate it to $\mathbf{0}$:

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}+\alpha_{4} \mathbf{v}_{4}=\mathbf{0}
$$

that the variable α_{3} is free and can be set equal to 1 . Thus \mathbf{v}_{3} is a linear combination of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$.

Put these columns in a matrix and reduce to echelon form:

$$
\left(\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
1 & 0 & 1 & 1 \\
2 & -1 & 1 & 1
\end{array}\right) \xrightarrow{5 \mathrm{ERO}}\left(\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
0 & 1 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

This tells us that the original set of vectors in spanning (no row of zeros) but is not independent.
But it also tells us that if we take a linear combination and equate it to $\mathbf{0}$:

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}+\alpha_{4} \mathbf{v}_{4}=\mathbf{0}
$$

that the variable α_{3} is free and can be set equal to 1 . Thus \mathbf{v}_{3} is a linear combination of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$. If we remove it, that simply removes column 3 from the calculations, and that shows that this smaller set is independent.

Put these columns in a matrix and reduce to echelon form:

$$
\left(\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
1 & 0 & 1 & 1 \\
2 & -1 & 1 & 1
\end{array}\right) \xrightarrow{5 \mathrm{ERO}}\left(\begin{array}{rrrr}
1 & 1 & 2 & 0 \\
0 & 1 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

This tells us that the original set of vectors in spanning (no row of zeros) but is not independent.
But it also tells us that if we take a linear combination and equate it to $\mathbf{0}$:

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}+\alpha_{4} \mathbf{v}_{4}=\mathbf{0}
$$

that the variable α_{3} is free and can be set equal to 1 . Thus \mathbf{v}_{3} is a linear combination of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$. If we remove it, that simply removes column 3 from the calculations, and that shows that this smaller set is independent.
In general, if you keep the vectors corresponding to columns with leading 1 s , (and discard the rest) you get an independent set with the same span.

