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Spanning and independent

Definition

If a set of vectors in a vector space V is both spanning and independent,
we say it is a basis for V .

If a set of vectors {v1,v2, . . . ,vn} is spanning, that means any vector w
can be written as

w = α1v1 + α2v2 + · · ·+ αnvn

If the set is also independent, then there is only one choice of coefficients
that will produce w. To see why, suppose we also had

w = β1v1 + β2v2 + · · ·+ βnvn

Then, after subtraction, we would have

0 = (α1 − β1)v1 + (α2 − β2)v2 + · · ·+ (αn − βn)vn

Because {v1,v2, . . . ,vn} is independent, this can only happen if

α1 − β1 = 0, α2 − β2 = 0, . . . , αn − βn = 0
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Recall the example of the population of women in a town.

We had a

matrix A =

 0.7 0.2
0.3 0.8

 that determined the transition between married

and single in the following way: If there are 8000 married women and 2000
single women, then after one year 0.7 0.2

0.3 0.8

 8000
2000

 =

 6000
4000


indicating there are then 6000 married and 4000 single.

Consider the following set in R2:

v1 =

 1
−1

 , v2 =

 2
3


It is routine to verify that this is a basis for R2: 1 2

−1 3

 R2+R1−−−−→
 1 2

0 5

 (1/5)R2−−−−−→
 1 2

0 1


So the set is both independent and spanning.
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Relative to A, this basis is special: Av1 = (1/2)v1 and Av2 = v2.

This
means if we can write a vector w as αv1 + βv2 we can compute easily:

Aw = (1/2)αv1 + βv2, A2w = (1/2)2αv1 + βv2,

. . . , Anw = (1/2)nαv1 + βv2

If we do this with our population vector: 8000
2000

 = 4000

 1
−1

+ 2000

 2
3


So, we get 0.7 0.2

0.3 0.8

n 8000
2000

 = (1/2)n4000

 1
−1

+ 2000

 2
3


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Standard bases

Some vector spaces have a basis so closely associated with the structure of
the vectors that they are called standard bases.

The standard basis for Rn is the set {e1, e2, . . . , en}. For example, for R3

this basis is 
1
0
0

 ,


0
1
0

 ,


0
0
1


If we put these in a matrix, it is already in echelon form and clearly
satisfies the tests for spanning and independence.

The standard basis for Pn is {1, x, . . . , xn−1}. In fact, the definition of a
polynomial is that it is a linear combination of powers of x.
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The standard basis for Rn×k consists of all {Eij : 1 ≤ i ≤ n, 1 ≤ j ≤ k},
where Eij is the matrix with a 1 in position ij and zeros everywhere else.

This is spanning because

A =
∑

1≤i≤n
1≤j≤k

aijEij

where aij are the entries of A. This gives the zero matrix only when all
the coeficients are 0, so this is independent.

Theorem

If a set of vectors {v1,v2, . . . ,vn} in a vector space V is spanning, then
any set of vector with more than n elements must be dependent.
If a set of vectors {w1,w2, . . . ,wm} is independent, then any set of
vectors with fewer than m elements cannot be spanning.

Let’s see why the first statement is true. Let {u1,u2, . . . ,uk} be a set in
V with k > n.
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Since the set of vi is spanning, there are linear combinations that produce
each uj :

uj =

n∑
i=1

aijvi

If we now take a linear combination
∑k

j=1 αjuj and equate this to 0 we
get

0 =
k∑

j=1

n∑
i=1

aijαjvi =
n∑

i=1

 k∑
j=1

aijαj

vi

If we can make each term in parentheses equal to zero for some nontrivial
set of αj , then we will have shown that the set of uj is dependent. But
this amounts to a system of equations

k∑
j=1

aijαj = 0, 1 ≤ i ≤ n

But this system has more variables (αj , 1 ≤ j ≤ k) than equations, so it
has non trivial solutions.
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Theorem

Every vector space has a basis. Any two bases for a vector space have the
same number of elements.

Note: A basis can be infinite. The above says that if this is the case, then
every basis is infinite. The set P of all polynomials of all degrees is a
vector space. The infinite set {1, x, x2, x3, . . . } is a basis for P.

Why do bases have to be the same size? If a {v1,v2, . . . ,vn} is a basis
for V , suppose {w1,w2, . . . ,wk} is another basis. Since the first set is
spanning, no larger set can be independent. But the second set is
independent, so it can’t be larger. Thus k ≤ n.

The same argument, starting with the second set, shows that n ≤ k.

Definition

The dimension of a vector space is the number of elements in any basis.
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Not suprisingly, the dimension of Rn is n: {e1, e2, . . . , en} is a basis.

The dimension of Pn is n: {1, x, x2, . . . , xn−1} is a basis.

The dimension of Rn×k is nk: {Eij : 1 ≤ i ≤ n, 1 ≤ j ≤ k} is a basis.

The set of upper triangular, 2× 2 matrices has dimension 3. A basis is

E11 =

 1 0
0 0

 , E12 =

 0 1
0 0

 , E22 =

 0 0
0 1


Theorem

If the dimension of V is n then any set in V with more than n elements is
dependent, and any set with fewer than n elements is not spanning. Any
set with n elements either is both independent and spanning or is neither
independent nor spanning.

The last part is proved like this: If a set is independent , but not spanning,
we could get a larger independent set by adding any vector not in the
span, this is impossible by the first part.
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If a set is spanning, but not independent, we could get a smaller spanning
set by taking away a vector that is a linear combination of the others.

This, too, is impossible by the first part.

These last two arguments can be extended to obtain the following:

Theorem

Suppose V is a vector space with dimension n

1. Any independent subset with fewer than n vectors can be extended
(i.e., vectors can be added to it) to form a basis.

2. Any spanning set with more than n vectors can be trimmed down to
a basis.

To see the first, let {v1,v2, . . . ,vk} be independent and k < n. Since it
cannot be spanning, pick any vector w that is not in Span(v1,v2, . . . ,vk).
I claim {v1,v2, . . . ,vk,w} is independent. For suppose

α1v1 + α2v2 + · · ·+ αkvk + αk+1w = 0
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(i.e., vectors can be added to it) to form a basis.

2. Any spanning set with more than n vectors can be trimmed down to
a basis.

To see the first, let {v1,v2, . . . ,vk} be independent and k < n. Since it
cannot be spanning, pick any vector w that is not in Span(v1,v2, . . . ,vk).
I claim {v1,v2, . . . ,vk,w} is independent. For suppose

α1v1 + α2v2 + · · ·+ αkvk + αk+1w = 0
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If αk+1 ̸= 0 then we could solve for w.

That is impossible, since w is not
in the span of the rest. Therefore, αk+1 = 0 and we get.

α1v1 + α2v2 + · · ·+ αkvk = 0

This means all αj = 0 because {v1,v2, . . . ,vk} is independent.

If this extended set spans V we are done. If it does not, we can repeat the
process. This is guaranteed to stop when we get to a set with n vectors,
because an independent set of that size is guaranteed to be spanning.

Problem: Given a set that spans, but is not independent, how do we
efficiently remove vectors to get a basis?

Example:

v1 =


1
1
2

 , v2 =


1
0

−1

 , v3 =


2
1
1

 , v4 =


0
1
1


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Put these columns in a matrix and reduce to echelon form:
1 1 2 0
1 0 1 1
2 −1 1 1

 5 EROs−−−−→


1 1 2 0
0 1 1 −1
0 0 0 1



This tells us that the original set of vectors in spanning (no row of zeros)
but is not independent.

But it also tells us that if we take a linear combination and equate it to 0:

α1v1 + α2v2 + α3v3 + α4v4 = 0

that the variable α3 is free and can be set equal to 1. Thus v3 is a linear
combination of {v1,v2,v4}. If we remove it, that simply removes column
3 from the calculations, and that shows that this smaller set is
independent.

In general, if you keep the vectors corresponding to columns with leading
1s, (and discard the rest) you get an independent set with the same span.
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