Subspaces

D. H. Luecking

16 Feb 2024

A subset W of a vector space V is called a *subspace* of V if it is a vector space *using the same operations* of addition and scalar multiplication.

$$W = \{(a, 1) : a \in \mathbb{R}\}$$
 with

with (a, 1) + (b, 1) = (a + b, 1) and $\alpha(a, 1) = (\alpha a, 1)$.

$$W = \{(a, 1) : a \in \mathbb{R}\}$$
 with

with (a, 1) + (b, 1) = (a + b, 1) and $\alpha(a, 1) = (\alpha a, 1)$.

Since any subspace S of V is part of the known vector space V and uses the same operations, we've seen that we only need to check the closure conditions.

$$W = \{(a, 1) : a \in \mathbb{R}\}$$
 with

with (a,1)+(b,1)=(a+b,1) and $\alpha(a,1)=(\alpha a,1).$

Since any subspace S of V is part of the known vector space V and uses the same operations, we've seen that we only need to check the closure conditions. If both are valid for all vectors in S and all scalars in \mathbb{R} , then S is a subspace.

$$W = \{(a, 1) : a \in \mathbb{R}\}$$
 with

with (a,1)+(b,1)=(a+b,1) and $\alpha(a,1)=(\alpha a,1).$

Since any subspace S of V is part of the known vector space V and uses the same operations, we've seen that we only need to check the closure conditions. If both are valid for all vectors in S and all scalars in \mathbb{R} , then S is a subspace.

We'll concentrate on the known vector spaces $\mathbb{R}^{n \times k}$ and \mathcal{P}_n and show how to determine whether a given subset is a subspace.

Often a subset of a vector space is described by conditions on the elements of V and the subset consists of those elements that satisfy the conditions.

Often a subset of a vector space is described by conditions on the elements of V and the subset consists of those elements that satisfy the conditions. Example:

$$W_1 = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \in \mathbb{R}^2 : x_1 + x_2 \ge 0 \right\}$$

Often a subset of a vector space is described by conditions on the elements of V and the subset consists of those elements that satisfy the conditions. Example:

$$W_1 = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \in \mathbb{R}^2 : x_1 + x_2 \ge 0 \right\}$$

bspace of \mathbb{R}^2 because C1 fails: $\mathbf{x} = \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$ is in W_1 but

This is not a subspace of \mathbb{R}^2 because C1 fails: $\mathbf{x} = \begin{bmatrix} 1\\1 \end{bmatrix}$ is in W_1 but

$$-2\mathbf{x} = \begin{pmatrix} -2\\ -2 \end{pmatrix}$$
 is not in W_1 .

Often a subset of a vector space is described by conditions on the elements of V and the subset consists of those elements that satisfy the conditions. Example:

$$W_1 = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \in \mathbb{R}^2 : x_1 + x_2 \ge 0 \right\}$$

This is not a subspace of \mathbb{R}^2 because C1 fails: $\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is in W_1 but

$$-2\mathbf{x} = \begin{pmatrix} -2\\ -2 \end{pmatrix}$$
 is not in W_1 .

Note: W_1 does satisfy C2, but that alone isn't good enough.

$$W_2 = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \in \mathbb{R}^2 : x_1 + x_2 = 0 \right\}$$

$$W_2 = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \in \mathbb{R}^2 : x_1 + x_2 = 0 \right\}$$

This is a subspace of \mathbb{R}^2 .

$$W_2 = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \in \mathbb{R}^2 : x_1 + x_2 = 0 \right\}$$

This is a subspace of \mathbb{R}^2 . In fact, it is the set of solutions of the homogeneous system $\begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = 0$.

$$W_2 = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \in \mathbb{R}^2 : x_1 + x_2 = 0 \right\}$$

This is a subspace of \mathbb{R}^2 . In fact, it is the set of solutions of the homogeneous system $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{x} = 0$.

Here's another example in \mathcal{P}_3 :

$$W_3 = \{a + bx + cx^2 : a = b + c\}$$

$$W_2 = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \in \mathbb{R}^2 : x_1 + x_2 = 0 \right\}$$

This is a subspace of \mathbb{R}^2 . In fact, it is the set of solutions of the homogeneous system $\begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = 0$.

Here's another example in \mathcal{P}_3 :

$$W_3 = \{a + bx + cx^2 : a = b + c\}$$

This is a subspace of \mathcal{P}_3 .

$$W_2 = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \in \mathbb{R}^2 : x_1 + x_2 = 0 \right\}$$

This is a subspace of \mathbb{R}^2 . In fact, it is the set of solutions of the homogeneous system $\begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = 0$.

Here's another example in \mathcal{P}_3 :

$$W_3 = \{a + bx + cx^2 : a = b + c\}$$

This is a subspace of \mathcal{P}_3 . Let's check: C1: If $p(x) = a + bx + cx^2$ satisfies a = b + c,

$$W_2 = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \in \mathbb{R}^2 : x_1 + x_2 = 0 \right\}$$

This is a subspace of \mathbb{R}^2 . In fact, it is the set of solutions of the homogeneous system $\begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = 0$.

Here's another example in \mathcal{P}_3 :

$$W_3 = \{a + bx + cx^2 : a = b + c\}$$

C1: If
$$p(x) = a + bx + cx^2$$
 satisfies $a = b + c$, does
 $\alpha p(x) = \alpha a + \alpha bx + \alpha cx^2$ satisfy $\alpha a = \alpha b + \alpha c$?

$$W_2 = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \in \mathbb{R}^2 : x_1 + x_2 = 0 \right\}$$

This is a subspace of \mathbb{R}^2 . In fact, it is the set of solutions of the homogeneous system $\begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = 0$.

Here's another example in \mathcal{P}_3 :

$$W_3 = \{a + bx + cx^2 : a = b + c\}$$

C1: If
$$p(x) = a + bx + cx^2$$
 satisfies $a = b + c$, does
 $\alpha p(x) = \alpha a + \alpha bx + \alpha cx^2$ satisfy $\alpha a = \alpha b + \alpha c$?
C2: If $p_1(x) = a_1 + b_1x + c_1x^2$ satisfies $a_1 = b_1 + c_1$ and

$$p_2(x) = a_2 + b_2 x + c_2 x^2$$
 satisfies $a_2 = b_2 + c_2$,

$$W_2 = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \in \mathbb{R}^2 : x_1 + x_2 = 0 \right\}$$

This is a subspace of \mathbb{R}^2 . In fact, it is the set of solutions of the homogeneous system $\begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = 0$.

Here's another example in \mathcal{P}_3 :

$$W_3 = \{a + bx + cx^2 : a = b + c\}$$

C1: If
$$p(x) = a + bx + cx^2$$
 satisfies $a = b + c$, does
 $\alpha p(x) = \alpha a + \alpha bx + \alpha cx^2$ satisfy $\alpha a = \alpha b + \alpha c$?

C2: If
$$p_1(x) = a_1 + b_1x + c_1x^2$$
 satisfies $a_1 = b_1 + c_1$ and $p_2(x) = a_2 + b_2x + c_2x^2$ satisfies $a_2 = b_2 + c_2$, does $p_1(x) + p_2(x) = (a_1 + a_2) + (b_1 + b_2)x + (c_1 + c_2)x^2$

$$W_2 = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \in \mathbb{R}^2 : x_1 + x_2 = 0 \right\}$$

This is a subspace of \mathbb{R}^2 . In fact, it is the set of solutions of the homogeneous system $\begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = 0$.

Here's another example in \mathcal{P}_3 :

$$W_3 = \{a + bx + cx^2 : a = b + c\}$$

C1: If
$$p(x) = a + bx + cx^2$$
 satisfies $a = b + c$, does
 $\alpha p(x) = \alpha a + \alpha bx + \alpha cx^2$ satisfy $\alpha a = \alpha b + \alpha c$?
C2: If $p_1(x) = a_1 + b_1 x + c_1 x^2$ satisfies $a_1 = b_1 + c_1$ and
 $p_2(x) = a_2 + b_2 x + c_2 x^2$ satisfies $a_2 = b_2 + c_2$, does
 $p_1(x) + p_2(x) = (a_1 + a_2) + (b_1 + b_2)x + (c_1 + c_2)x^2$ satisfy
 $(a_1 + a_2) = (b_1 + b_2) + (c_1 + c_2)$?

$$W_4 = \left\{ \left(\begin{array}{c} a \\ b \\ c \end{array} \right) : a = b + c \right\}$$

is a subspace of \mathbb{R}^3 .

$$W_4 = \left\{ \left(\begin{array}{c} a \\ b \\ c \end{array} \right) : a = b + c \right\}$$

is a subspace of \mathbb{R}^3 . Here, however we can invoke the fact that the equation is the same as a - b - c = 0 and so W_4 is the set of solutions of the homogeneous system $\begin{pmatrix} 1 & -1 & -1 \end{pmatrix} \mathbf{x} = 0$

$$W_4 = \left\{ \left(\begin{array}{c} a \\ b \\ c \end{array} \right) : a = b + c \right\}$$

is a subspace of \mathbb{R}^3 . Here, however we can invoke the fact that the equation is the same as a - b - c = 0 and so W_4 is the set of solutions of the homogeneous system $\begin{pmatrix} 1 & -1 & -1 \end{pmatrix} \mathbf{x} = 0$

As a general rule, if the vectors of V have well defined components (e.g., the entries of a matrix, the coefficients of a polynomial), then any subset defined by conditions that are homogeneous linear equations in those components is a subspace.

$$W_4 = \left\{ \left(\begin{array}{c} a \\ b \\ c \end{array} \right) : a = b + c \right\}$$

is a subspace of \mathbb{R}^3 . Here, however we can invoke the fact that the equation is the same as a - b - c = 0 and so W_4 is the set of solutions of the homogeneous system $\begin{pmatrix} 1 & -1 & -1 \end{pmatrix} \mathbf{x} = 0$

As a general rule, if the vectors of V have well defined components (e.g., the entries of a matrix, the coefficients of a polynomial), then any subset defined by conditions that are homogeneous linear equations in those components is a subspace.

Here's a couple of examples in $\mathbb{R}^{n \times n}$:

$$W_5 = \{A \in \mathbb{R}^{n \times n} : A^T = A\}$$
 and $W_6 = \{A \in \mathbb{R}^{n \times n} : A^T = -A\}$

$$W_4 = \left\{ \left(\begin{array}{c} a \\ b \\ c \end{array} \right) : a = b + c \right\}$$

is a subspace of \mathbb{R}^3 . Here, however we can invoke the fact that the equation is the same as a - b - c = 0 and so W_4 is the set of solutions of the homogeneous system $\begin{pmatrix} 1 & -1 & -1 \end{pmatrix} \mathbf{x} = 0$

As a general rule, if the vectors of V have well defined components (e.g., the entries of a matrix, the coefficients of a polynomial), then any subset defined by conditions that are homogeneous linear equations in those components is a subspace.

Here's a couple of examples in $\mathbb{R}^{n \times n}$:

$$W_5 = \{A \in \mathbb{R}^{n \times n} : A^T = A\}$$
 and $W_6 = \{A \in \mathbb{R}^{n \times n} : A^T = -A\}$

 W_5 is described by $\{(a_{ij}) \in \mathbb{R}^{n \times n} : a_{ij} - a_{ji} = 0, \text{ all } 1 \le i, j \le n\}.$

$$W_4 = \left\{ \left(\begin{array}{c} a \\ b \\ c \end{array} \right) : a = b + c \right\}$$

is a subspace of \mathbb{R}^3 . Here, however we can invoke the fact that the equation is the same as a - b - c = 0 and so W_4 is the set of solutions of the homogeneous system $\begin{pmatrix} 1 & -1 & -1 \end{pmatrix} \mathbf{x} = 0$

As a general rule, if the vectors of V have well defined components (e.g., the entries of a matrix, the coefficients of a polynomial), then any subset defined by conditions that are homogeneous linear equations in those components is a subspace.

Here's a couple of examples in $\mathbb{R}^{n \times n}$:

$$W_5 = \{A \in \mathbb{R}^{n \times n} : A^T = A\}$$
 and $W_6 = \{A \in \mathbb{R}^{n \times n} : A^T = -A\}$

 W_5 is described by $\{(a_{ij}) \in \mathbb{R}^{n \times n} : a_{ij} - a_{ji} = 0, \text{ all } 1 \le i, j \le n\}$. These condition are homogeneous linear equations in the entries a_{ij} .

Definition

If A is an $n \times k$ matrix then the set of vectors $\mathbf{x} \in \mathbb{R}^k$ that satisfy $A\mathbf{x} = \mathbf{0}$ is called the *null space of* A and we denote it by $\mathcal{N}(A)$

Definition

If A is an $n \times k$ matrix then the set of vectors $\mathbf{x} \in \mathbb{R}^k$ that satisfy $A\mathbf{x} = \mathbf{0}$ is called the *null space of* A and we denote it by $\mathcal{N}(A)$

That is, $\mathcal{N}(A) = \{ \mathbf{x} \in \mathbb{R}^k : A\mathbf{x} = \mathbf{0} \}.$

Definition

If A is an $n \times k$ matrix then the set of vectors $\mathbf{x} \in \mathbb{R}^k$ that satisfy $A\mathbf{x} = \mathbf{0}$ is called the *null space of* A and we denote it by $\mathcal{N}(A)$

That is, $\mathcal{N}(A) = \{\mathbf{x} \in \mathbb{R}^k : A\mathbf{x} = \mathbf{0}\}$. Note that by definition $\mathcal{N}(A)$ is just the set of solutions of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$ and so it is a subspace of \mathbb{R}^k .

Definition

If A is an $n \times k$ matrix then the set of vectors $\mathbf{x} \in \mathbb{R}^k$ that satisfy $A\mathbf{x} = \mathbf{0}$ is called the *null space of* A and we denote it by $\mathcal{N}(A)$

That is, $\mathcal{N}(A) = \{\mathbf{x} \in \mathbb{R}^k : A\mathbf{x} = \mathbf{0}\}$. Note that by definition $\mathcal{N}(A)$ is just the set of solutions of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$ and so it is a subspace of \mathbb{R}^k .

Finding the null space of a matrix is the same as solving a system of equations with 0 on the right side of every one:

Definition

If A is an $n \times k$ matrix then the set of vectors $\mathbf{x} \in \mathbb{R}^k$ that satisfy $A\mathbf{x} = \mathbf{0}$ is called the *null space of* A and we denote it by $\mathcal{N}(A)$

That is, $\mathcal{N}(A) = \{\mathbf{x} \in \mathbb{R}^k : A\mathbf{x} = \mathbf{0}\}$. Note that by definition $\mathcal{N}(A)$ is just the set of solutions of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$ and so it is a subspace of \mathbb{R}^k .

Finding the null space of a matrix is the same as solving a system of equations with 0 on the right side of every one:

Example: Find the null space of
$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 1 & 3 & 5 & 4 \\ 2 & 5 & 8 & 4 \end{pmatrix}$$

Solution: A is the system matrix of $A\mathbf{x} = \mathbf{0}$ so we solve that system with an augmented matrix: add a column of 0s to A:

$$\begin{pmatrix} 1 & 2 & 3 & 0 & | & 0 \\ 1 & 3 & 5 & 4 & | & 0 \\ 2 & 5 & 8 & 4 & | & 0 \end{pmatrix} \xrightarrow{4 \text{ ERO's}} \begin{pmatrix} 1 & 0 & -1 & -8 & | & 0 \\ 0 & 1 & 2 & 4 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$$

Solution: A is the system matrix of $A\mathbf{x} = \mathbf{0}$ so we solve that system with an augmented matrix: add a column of 0s to A:

That gives

$$\begin{aligned}
 x_1 &= x_3 + 8x_4 \\
 x_2 &= -2x_3 - 4x_4
 \end{aligned}$$

and so

$$\mathcal{N}(A) = \left\{ \left(\begin{array}{c} \alpha + 8\beta \\ -2\alpha - 4\beta \\ \alpha \\ \beta \end{array} \right) : \alpha, \beta \in \mathbb{R} \right\}$$

Another way to create subspaces is to build them from component parts.

Another way to create subspaces is to build them from component parts. If you want a subspace that contains certain vectors, you can build a subset that contains them and is guaranteed to be a subspace.

Another way to create subspaces is to build them from component parts. If you want a subspace that contains certain vectors, you can build a subset that contains them and is guaranteed to be a subspace.

For example, suppose we want to create a subspace of \mathbb{R}^3 that contains

the two vectors
$$\mathbf{a} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}$

Such a subspace would have to contain $\alpha \mathbf{a}$ for every α in \mathbb{R} as well as $\beta \mathbf{b}$ for every β in \mathbb{R} , as well as every sum of such vectors.

Another way to create subspaces is to build them from component parts. If you want a subspace that contains certain vectors, you can build a subset that contains them and is guaranteed to be a subspace.

For example, suppose we want to create a subspace of \mathbb{R}^3 that contains

the two vectors
$$\mathbf{a} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}$

Such a subspace would have to contain αa for every α in \mathbb{R} as well as βb for every β in \mathbb{R} , as well as every sum of such vectors. If we let W be the set of all these sums:

$$W = \{ \alpha \mathbf{a} + \beta \mathbf{b} : \alpha, \beta \in \mathbb{R} \}$$

then W is a subspace of \mathbb{R}^3 .

If we note that

$$\alpha \mathbf{a} + \beta \mathbf{b} = \left(\begin{array}{c} 2\alpha + 3\beta \\ -\alpha + 4\beta \\ \alpha \end{array}\right)$$

If we note that

$$\alpha \mathbf{a} + \beta \mathbf{b} = \left(\begin{array}{c} 2\alpha + 3\beta \\ -\alpha + 4\beta \\ \alpha \end{array}\right)$$

then we could also describe \boldsymbol{W} by

$$W = \left\{ \left(\begin{array}{c} 2\alpha + 3\beta \\ -\alpha + 4\beta \\ \alpha \end{array} \right) : \alpha, \beta \in \mathbb{R} \right\}$$

If we note that

$$\alpha \mathbf{a} + \beta \mathbf{b} = \left(\begin{array}{c} 2\alpha + 3\beta \\ -\alpha + 4\beta \\ \alpha \end{array}\right)$$

then we could also describe \boldsymbol{W} by

$$W = \left\{ \left(\begin{array}{c} 2\alpha + 3\beta \\ -\alpha + 4\beta \\ \alpha \end{array} \right) : \alpha, \beta \in \mathbb{R} \right\}$$

Definition

If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are vectors in a vector space V, a sum of the form

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n$$

where $\alpha_1, \alpha_2, \ldots, \alpha_n$ are scalars, is called a *linear combination of* $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$. The set of all such linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ is called the *span of* $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$.

The span of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ is denoted $\operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n)$.

Sometimes it will be convenient to write $B = {\mathbf{v}_1, \cdots, \mathbf{v}_n}$ and use $\operatorname{Span}(B)$ as a shorthand.

Sometimes it will be convenient to write $B = {\mathbf{v}_1, \cdots, \mathbf{v}_n}$ and use $\operatorname{Span}(B)$ as a shorthand. The number of vectors in the set B can be anything, even zero. By convention, if B is the empty set we let $\operatorname{Span}(B) = {\mathbf{0}}.$

Sometimes it will be convenient to write $B = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ and use $\operatorname{Span}(B)$ as a shorthand. The number of vectors in the set B can be anything, even zero. By convention, if B is the empty set we let $\operatorname{Span}(B) = {\mathbf{0}}.$

The previous example, where we wanted a subspace of \mathbb{R}^3 that contained

$$\mathbf{a} = \begin{pmatrix} 2\\ -1\\ 1 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 3\\ 4\\ 0 \end{pmatrix}$$

was

$$W = \operatorname{Span}(\mathbf{a}, \mathbf{b}) = \operatorname{Span}\left(\left(\begin{array}{c}2\\-1\\1\end{array}\right), \left(\begin{array}{c}3\\4\\0\end{array}\right)\right)$$

Also, the null space we calculated earlier consisted of all vectors of the form

$$\begin{pmatrix} \alpha + 8\beta \\ -2\alpha - 4\beta \\ \alpha \\ \beta \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 8 \\ -4 \\ 0 \\ 1 \end{pmatrix}$$

This shows that $\mathcal{N}(A)$ is the span of the two column vectors above.