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We will use the notation R to represent the set of all scalars (real
numbers).

The notation Rn×k represents all matrices with height n, and
width k. If I write Rn, that’s shorthand for Rn×1 or R1×n depending on
the context.

One interpretation of vectors is given in high school physics: A vector is a
quantity that has both magnitude and direction. Examples are velocity
and force. But the simplest example is displacement.

A displacement is simply a change in position. It can be represented in one
of two ways:

1. Specify a distance and a direction.

2. Specify 3 numbers: how far east/west, how far north/south, how far
up/down.

The second way splits the displacement into components and produces a
corresponding element of R3. This is the reason we use the term “vector”
for column matrices and row matrices.

There is a third way.
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3. Draw a picture:

d

d

d

(0, 0)

Three representations of the same displacement.

We can perform certain operations on displacements. We can, for
example, reverse them: if d is a displacement then −d is the displacement
the same distance in the opposite direction. We can also scale them: If d
is a displacement and α ≥ 0 is a scalar then αd is the displacement in the
same direction with α times the distance. We can combine these and
multiply by any scalar: if α ≤ 0, αd = |α|(−d).
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In terms of the arrows, αd is represented by an arrow obtained by scaling
the arrow d and either keeping its direction (α ≥ 0) or reversing it (α ≤ 0)

In terms of column vectors, scaling a displacement simply scales the three
components. That is, αd is just the usual product of a scalar times a
matrix.

We can also ‘add’ displacements, which means to perform the first
displacement and then, starting in the new position, perform the second.
The ‘sum’ is the displacement of the final position from the first position.

In terms of arrows:

x

y

x+ y
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In terms of elements of R3, we simply add the corresponding column
vectors.

Thus, we have 3 ways to deal with displacements: physical, geometric and
algebraic.

For example, to add two displacements we can simply lay out the two
displacements and perform physical measurements. Or we can produce an
accurate drawing and construct the 3rd side of the triangle. Or we can
convert each displacement to a triple of numbers and add the two column
vectors.

There is nothing special about displacement vectors. We can do the same
with velocity, acceleration, force, etc.

Given all these different things: physical quantities, arrows, column
matrices, what makes it reasonable to call them all vectors?

• There are well-define ways to convert from one to to another.

• They all satisfy a common set of properties.
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Vector spaces

As we describe what makes up a vector space, keep these three examples
in mind:

(1) the set of all possible displacements, (2) the set of all
possible arrows, (3) R2 or R3.

In all cases we have a procedure for determining αx and x+ y

A set V is called a vector space if it has the operations of addition: x+ y
and scalar multiplication: αx, satisfying the following:

A1. x+ y = y + x (all x,y in V )

A2. (x+ y) + z = x+ (y + z) (all x,y, z in V )

A3. There is an element 0 in V that satisfies 0+ x = x (all x in V )

A4. For all x in V , there is an element −x that satisfies −x+ x = 0.

A5. α(x+ y) = αx+ αy (all α in R and x,y in V )

A6. (α+ β)x = αx+ βx (all α, β in R and x in V )

A7. (αβ)x = α(βx) (all α, β in R and x in V )

A8. 1x = x (all x in V )

6 / 11
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We didn’t make this clear before, but in addition to the conditions A1–A8
the operations have to satisfy the following:

C1. If x is in V and α is in R then αx is in V .

C2. If x,y are in V then x+ y is in V .

We often create a set by imposing some conditions on a known vector
space. For example, V = {x = (a, b) ∈ R2 : a = −b}. Because all the
elements of V are in R2, and because A1, A2 and A5–A8 are satisfied in
R2, they must be satisfied in V .

So, to verify V is a vector space, one only has to check A3, A4, C1 and
C2. Here are two of those:

C1 If a = −b, is α(a, b) = (αa, αb) in V ?

C2 If a = −b and c = −d is (a+ c, b+ d) in V ?
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It can be proved (solely from the axioms) that 0x = 0 and (−1)x = −x,
it must be that A3 and A4 follow from C1 (provided V is a subset of a
known vector space).

Here is a subset of R2 that is not a vector space. W = {(a, b) : |a| = |b|}.
It satisfies C1 but not C2: If |a| = |b| then |αa| = |αb|. So, C1 is satisfied.
On the other hand, (1,−1) and (1, 1) both belong to W , but their sum,
(2, 0) does not.

Aside: To see why 0x = 0:
0x = 0x+ 0 = 0x+ (x+−x) = (0x+ 1x) +−x = (0 + 1)x+−x =
x+−x = 0.

To prove (−1)x = −x:
(−1)x = (−1)x+ x+−x = (−1+ 1)x+−x = 0x+−x = 0+−x = −x

While subtraction is not a required operation, we can define x− y to be
x+ (−y).

Hidden in the definitions is the means to solve problems like x+ a = b
(obtaining x = b− a) and like αx = b (x = 1

αb, provided α ̸= 0).
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There are two ways new vector spaces can arise: a potential candidate
occurs and/or is created, and someone verifies the 10 requirements.

Or, one is created from a known vector space by applying some process or
imposing some conditions.

The first has already been done for the following cases:

• Rn×k for all positive integers n and k (this includes Rn)

• For any set S, RS is the collection of all real-valued functions on S
(i.e. functions f such that f(x) ∈ R for all x ∈ S).

The verification of A1–A8 for Rn×k is essentially the properties contained
in section 1.4 (Matrix algebra). The zero element (called 0 here) is the
matrix of 0s that I called O back then. The negative of a matrix A is the
matrix −A in which every entry of A has been negated: −(aij) = (−aij).

Conditions C1 and C2 are part of the definition of scalar multiplication and
addition for matrices.
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For functions f and g on a set S we define f + g to be that function
which has values f(x) + g(x) for every x in S.

Similarly αf has values
αf(x). 0 is the function whose values are all 0 and −f has values −f(x).

The conditions C1 and C2 are automatic and A1–A8 follow because they
are true for ordinary numbers (and we just have to add comments like “for
every x ∈ S” after each equation). For example, since f(x) and g(x) are
numbers for every x in S, we have f(x) + g(x) = g(x) + f(x) for every x
in S. Thus f + g = g + f . This gives A1.

We can get new vector spaces by taking a known one (say Rn or RS) and
imposing conditions. Then we only have to verify conditions C1 and C2.

For example, let Pn be the collection of all polynomials of degree less than
n. Then Pn is a subset of the collection of all functions on S = R. To
show that Pn is a vector space, we only have to show
C1: If α ∈ R and p ∈ Pn then αp ∈ Pn.
C2: If p and q are in Pn then p+ q ∈ Pn.
These are both sort of obvious.
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The set of all solutions of a homogeneous n× k system is a vector space.

It is a subset of Rk, so we only have to show C1 and C2. Now the system
can be written Ax = 0, so we only have to be able to answer ‘yes’ to:
C1: If Ax = 0 and α ∈ R, is A(αx) = 0?
C2: If Ax = 0 and Ay = 0, is A(x+ y) = 0?
Both are true because A(αx) = α(Ax) = α0 = 0, and
A(x+ y) = Ax+Ay = 0+ 0 = 0.

The set {0}, in any vector space, is a vector space. To prove this we would
have to show that α0 = 0. This seems obvious, but since it is stated for
all vector spaces, and it is not one of the conditions, it needs a proof:

α0 = α0+ α0− α0 = α(0+ 0)− α0 = α0− α0 = 0
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