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System of linear equations (aka “system”):

Example:


3x2 − 3x3 + 3x4 = 0

x1 + 2x2 + x4 = 1

3x1 + 6x2 + 5x4 = −3

Augmented matrix:

Example:


0 3 −3 3 0
1 2 0 1 1
3 6 0 5 −3


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Gauss-Jordan reduction:
0 3 −3 3 0
1 2 0 1 1
3 6 0 5 −3

 R1↔R2−−−−−→


1 2 0 1 1
0 3 −3 3 0
3 6 0 5 −3



R3−3R1−−−−−→


1 2 0 1 1
0 3 −3 3 0
0 0 0 2 −6

 (1/3)R2−−−−−→
(1/2)R3


1 2 0 1 1
0 1 −1 1 0
0 0 0 1 −3


We now know there is at least one solution: because there is no row with
all zeros left of the bar and nonzero to the right. The leading variables are
x1, x2 and x4. Since we have a free variable x3, there are infinitely many
solutions.
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Echelon form and reduced echelon form:
1 2 0 1 1
0 1 −1 1 0
0 0 0 1 −3

 R2−R3−−−−→
R1−R3


1 2 0 0 4
0 1 −1 0 3
0 0 0 1 −3



R1−2R2−−−−−→


1 0 2 0 −2
0 1 −1 0 3
0 0 0 1 −3

 yields−−−→


x1 + 2x3 = −2

x2 − x3 = 3

x4 = −3

Number of solutions: This system has at least one solution because the
echelon form does not have a row of zeros in the system part with a
nonzero number in the augmented part.

It has infinitely many solutions because the free variable x3 can be given
any value.
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Solutions:

x1 = −2− 2x3

x2 = 3 + x3

x4 = −3

 and so,−−−−→


x3 = α

x1 = −2− 2α

x2 = 3 + α

x4 = −3

Whence the solutions are

(−2− 2α, 3 + α, α,−3) or


−2− 2α
3 + α
α
−3


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Arithmetic with matrices.

Scalar multiplication: if A = (aij) then αA = (αaij).

Example: 2

 1 3 −2
0 −1 5

 =

 2 6 −4
0 −2 10


Addition: If A = (aij)n×k and B = (bij)n×k then A+B = (aij + bij)n×k.

Example:

 2 4
1 3

+

 5 −2
0 −3

 =

 7 2
1 0


Matrix multiplication: If A = (aij)n×m and B = (bjk)m×p then AB = C

where (cik)n×p =
(∑m

j=1 aijbjk

)
n×p

.
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Alternatively:

If A =


a⃗1
a⃗2
...

a⃗n

 and B =
 b1 b2 · · · bp


then AB = C where (cik)n×p = (a⃗ibk)n×p.

Example:

 1 3 −2
0 −1 −1




2 6
0 −2
1 3

 =

 0 −6
−1 −1


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The transpose of A is written AT . It is the matrix whose ij-entry is aji.

Example:

If A =

 1 −1 2
3 3 −4

 then AT =


1 3

−1 3
2 −4


We can always multiply A and AT in either order:

AAT =

 6 −6
−6 34

 and ATA =


10 8 −10
8 10 −14

−10 −14 20


For square A we can add (and subtract) A and AT : If A =

 3 4
−1 2


then A+AT =

 6 3
3 4

 and A−AT =

 0 5
−5 0

.
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Elementary matrices: Apply one ERO to the identity to get an elementary
matrix.

Examples:
0 0 1
0 1 0
1 0 0




1 0 0
0 1 0
0 0 3




1 0 0
0 1 0
0 4 1


The EROs used to create these are R1 ↔ R3, 3R3 and R3 + 4R2.

Any elementary matrix is invertible and its inverse is elementary.
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Example: A is the matrix on the left below.
1 2 1 1 0 0
2 5 2 0 1 0
0 0 1 0 0 1

 R2−2R1−−−−−→


1 2 1 1 0 0
0 1 0 −2 1 0
0 0 1 0 0 1



R1−R3−−−−→
1 2 0 1 0 −1
0 1 0 −2 1 0
0 0 1 0 0 1

 R1−2R2−−−−−→


1 0 0 5 −2 −1
0 1 0 −2 1 0
0 0 1 0 0 1


so

A−1 =


5 −2 −1

−2 1 0
0 0 1


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Partitioned matrices:

I will ask you to be able to handle one of 4 cases where the matrices in
question are partitioned into at most two parts:

1. A
 B1 B2

 =
 AB1 AB2


Example:


1 2
3 4
0 −1


 2 5 1

1 0 −1

 =


4 5 −1

10 15 −1
−1 0 1


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2.

 A1

A2

B =

 A1B

A2B



Example:


1 2
3 4

0 −1


 2

2

 =


6

14

−2


3.

 A1 A2

 B1

B2

 = A1B1 +A2B2. Example:

 1 2
3 4

 2 3

−1 3

 =

 2 3
6 9

+

 −2 6
−4 12

 =

 0 9
2 21

 .
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Finally,

4.

 A1

A2

 B1 B2

 =

 A1B1 A1B2

A2B1 A2B2



Example:


1 2

−1 3

0 5


 1 4

3 2

 =


7 8
8 2

15 10


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Determinants:

1× 1: If A =
 a11

 then det(A) = a11.

2× 2: If A =

 a11 a12
a21 a22

 then det(A) = a11a22 − a12a21.

In general, if A is n× n pick any row of A (say row number i) and
multiply each element in that row by the cofactor of its position:

det(A) = ai1Ai1 + ai2Ai2 + · · ·+ ainAin

Alternatively, do this for any column of A:

det(A) = a1jA1j + a2jA2j + · · ·+ anjAnj
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Examples: ∣∣∣∣ 2 −3
5 −2

∣∣∣∣ = −4− (−15) = 11

∣∣∣∣∣∣
2 −3 1
5 −2 2
0 2 0

∣∣∣∣∣∣ = −2

∣∣∣∣ 2 1
5 2

∣∣∣∣ = −2(4− 5) = 2.

∣∣∣∣∣∣
0 2 −3
0 5 −2
3 5 9

∣∣∣∣∣∣ = 3

∣∣∣∣ 2 −3
5 −2

∣∣∣∣ = −3(11) = −33.
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Special cases:

Triangular matrices: ∣∣∣∣∣∣
2 7 19
0 3 21
0 0 4

∣∣∣∣∣∣ = (2)(3)(4) = 24.

“Block tringular”:∣∣∣∣∣∣∣∣∣∣
1 3 19 3 5
2 7 14 −1 4
0 0 1 0 3
0 0 4 2 5
0 0 2 0 3

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣ 1 3
2 7

∣∣∣∣
∣∣∣∣∣∣
1 0 3
4 2 5
2 0 3

∣∣∣∣∣∣ = (7− 6)(2)(3− 6) = −6
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EROs: ∣∣∣∣∣∣∣∣
0 2 4 5
1 3 5 6
2 6 12 −2
1 3 0 3

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
1 3 5 6
0 2 4 5
2 6 12 −2
1 3 0 3

∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣
1 3 5 6
0 2 4 5
0 0 2 −14
0 0 −5 −3

∣∣∣∣∣∣∣∣ = −2

∣∣∣∣∣∣∣∣
1 3 5 6
0 2 4 5
0 0 1 −7
0 0 −5 −3

∣∣∣∣∣∣∣∣
= −2

∣∣∣∣∣∣∣∣
1 3 5 6
0 2 4 5
0 0 1 −7
0 0 0 −38

∣∣∣∣∣∣∣∣ = (−2)(−76) = 152.
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