Cramer's Rule

D. H. Luecking

Cramer's Rule

Recall that an $n \times n$ system can be represented as $A \mathbf{x}=\mathbf{b}$ where A is and $n \times n$ matrix, \mathbf{x} is the column vector of variables $x_{1}, x_{2}, \ldots, x_{n}$ and \mathbf{b} is the column vector of the right-hand sides of the equation.

Cramer's Rule

Recall that an $n \times n$ system can be represented as $A \mathbf{x}=\mathbf{b}$ where A is and $n \times n$ matrix, \mathbf{x} is the column vector of variables $x_{1}, x_{2}, \ldots, x_{n}$ and \mathbf{b} is the column vector of the right-hand sides of the equation.
If A is an invertible matrix we can multiply $A \mathbf{x}=\mathbf{b}$ on both sides by the inverse of A. This gives:

$$
\mathbf{x}=A^{-1} \mathbf{b}=\left(\frac{1}{\operatorname{det}(A)} \operatorname{adj} A\right) \mathbf{b}
$$

Cramer's Rule

Recall that an $n \times n$ system can be represented as $A \mathbf{x}=\mathbf{b}$ where A is and $n \times n$ matrix, \mathbf{x} is the column vector of variables $x_{1}, x_{2}, \ldots, x_{n}$ and \mathbf{b} is the column vector of the right-hand sides of the equation.
If A is an invertible matrix we can multiply $A \mathbf{x}=\mathbf{b}$ on both sides by the inverse of A. This gives:

$$
\mathbf{x}=A^{-1} \mathbf{b}=\left(\frac{1}{\operatorname{det}(A)} \operatorname{adj} A\right) \mathbf{b}
$$

If we compare the j th position on both sides we get

$$
x_{j}=\frac{1}{\operatorname{det} A}\left(b_{1} A_{1 j}+b_{2} A_{2 j}+\cdots+b_{n} A_{n j}\right)
$$

Cramer's Rule

Recall that an $n \times n$ system can be represented as $A \mathbf{x}=\mathbf{b}$ where A is and $n \times n$ matrix, \mathbf{x} is the column vector of variables $x_{1}, x_{2}, \ldots, x_{n}$ and \mathbf{b} is the column vector of the right-hand sides of the equation.
If A is an invertible matrix we can multiply $A \mathbf{x}=\mathbf{b}$ on both sides by the inverse of A. This gives:

$$
\mathbf{x}=A^{-1} \mathbf{b}=\left(\frac{1}{\operatorname{det}(A)} \operatorname{adj} A\right) \mathbf{b}
$$

If we compare the j th position on both sides we get

$$
x_{j}=\frac{1}{\operatorname{det} A}\left(b_{1} A_{1 j}+b_{2} A_{2 j}+\cdots+b_{n} A_{n j}\right)
$$

The expression in parentheses looks like a determinant.

Cramer's Rule

Recall that an $n \times n$ system can be represented as $A \mathbf{x}=\mathbf{b}$ where A is and $n \times n$ matrix, \mathbf{x} is the column vector of variables $x_{1}, x_{2}, \ldots, x_{n}$ and \mathbf{b} is the column vector of the right-hand sides of the equation.
If A is an invertible matrix we can multiply $A \mathbf{x}=\mathbf{b}$ on both sides by the inverse of A. This gives:

$$
\mathbf{x}=A^{-1} \mathbf{b}=\left(\frac{1}{\operatorname{det}(A)} \operatorname{adj} A\right) \mathbf{b}
$$

If we compare the j th position on both sides we get

$$
x_{j}=\frac{1}{\operatorname{det} A}\left(b_{1} A_{1 j}+b_{2} A_{2 j}+\cdots+b_{n} A_{n j}\right)
$$

The expression in parentheses looks like a determinant. In fact, it is exactly the determinant of the matrix obtained from A by replacing its j th column with \mathbf{b}.

Theorem

Let A be an invertible $n \times n$ matrix and \mathbf{b} any $n \times 1$ column vector. Let B_{j} be the matrix obtained from A by replacing its j th column with \mathbf{b}. Then the solution of $A \mathbf{x}=\mathbf{b}$ is given by

$$
x_{j}=\frac{\operatorname{det}\left(B_{j}\right)}{\operatorname{det}(A)}, \quad j=1,2, \ldots, n .
$$

Theorem

Let A be an invertible $n \times n$ matrix and \mathbf{b} any $n \times 1$ column vector. Let B_{j} be the matrix obtained from A by replacing its j th column with \mathbf{b}. Then the solution of $A \mathbf{x}=\mathbf{b}$ is given by

$$
x_{j}=\frac{\operatorname{det}\left(B_{j}\right)}{\operatorname{det}(A)}, \quad j=1,2, \ldots, n
$$

Example: for the following system

$$
\begin{array}{r}
x_{1}+2 x_{2}+x_{3}=2 \\
2 x_{1}+2 x_{2}+x_{3}=0 \\
x_{1}+2 x_{2}+3 x_{3}=0
\end{array}
$$

Theorem

Let A be an invertible $n \times n$ matrix and \mathbf{b} any $n \times 1$ column vector. Let B_{j} be the matrix obtained from A by replacing its j th column with \mathbf{b}. Then the solution of $A \mathbf{x}=\mathbf{b}$ is given by

$$
x_{j}=\frac{\operatorname{det}\left(B_{j}\right)}{\operatorname{det}(A)}, \quad j=1,2, \ldots, n
$$

Example: for the following system

$$
\begin{array}{r}
x_{1}+2 x_{2}+x_{3}=2 \\
2 x_{1}+2 x_{2}+x_{3}=0 \\
x_{1}+2 x_{2}+3 x_{3}=0
\end{array}
$$

We compute

$$
\operatorname{det}(A)=\left|\begin{array}{lll}
1 & 2 & 1 \\
2 & 2 & 1 \\
1 & 2 & 3
\end{array}\right|=-4, \quad \operatorname{det}\left(B_{1}\right)=\left|\begin{array}{ccc}
2 & 2 & 1 \\
0 & 2 & 1 \\
0 & 2 & 3
\end{array}\right|=8
$$

Continuing:

$$
\operatorname{det}\left(B_{2}\right)=\left|\begin{array}{ccc}
1 & 2 & 1 \\
2 & 0 & 1 \\
1 & 0 & 3
\end{array}\right|=-10, \quad \operatorname{det}\left(B_{3}\right)=\left|\begin{array}{ccc}
1 & 2 & 2 \\
2 & 2 & 0 \\
1 & 2 & 0
\end{array}\right|=4
$$

Therefore

$$
x_{1}=\frac{8}{-4}=-2, \quad x_{2}=\frac{-10}{-4}=5 / 2, \quad x_{3}=\frac{4}{-4}=-1 .
$$

