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Theorem

A square matrix A is invertible if and only if det(A) ̸= 0.

EROs have only three possible effects: (1) the determinant changes sign,
(2) the determinant is multiplied by a nonzero number, or (3) the
determinant is unchanged.

This tells us that it has determinant equal to 0 if and only if the reduced
echelon form has determinant equal to zero. This happens only when the
reduced echelon form does not have a diagonal of ones i.e., only when the
matrix is not row-equivalent to the identity.

We can easily find the determinant of an elementary matrix without any
computations.
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1. If E is obtained from I by exchanging two rows then
det(E) = −det(I) = −1.

2. If E is obtained from I by multiplying a row of I by α, then
det(E) = α det(I) = α.

3. If E is obtained from I by adding a multiple of one row of I to
another, then det(E) = det(I) = 1.

This, together with the ERO properties, gives us:

Theorem

For two square matrices A and B, det(AB) = det(A) det(B).

If A is not invertible, then neither is AB and therefore both det(AB) and
det(A) det(B) are zero.

If E is an elementary matrix, then det(EB) = det(E) det(B). We can
repeat this to get (for example)

det(E1E2B) = det(E1) det(E2B) = det(E1) det(E2) det(B).
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And keep repeating it to get

det(E1E2 · · ·EkB) = det(E1) det(E2) · · · det(Ek) det(B).

If A is invertible then A = E1E2 · · ·Ek for some elementary matrices Ei.
Applying our previous formula with B = I we get

det(A) = det(E1) det(E2) · · · det(Ek) det(I)

substituting this in

det(E1E2 · · ·EkB) = det(E1) det(E2) · · · det(Ek) det(B).

We get
det(AB) = det(A) det(B)

Corollary

If A is invertible, then det(A−1) =
1

det(A)
.

4 / 1



And keep repeating it to get

det(E1E2 · · ·EkB) = det(E1) det(E2) · · · det(Ek) det(B).

If A is invertible then A = E1E2 · · ·Ek for some elementary matrices Ei.

Applying our previous formula with B = I we get

det(A) = det(E1) det(E2) · · · det(Ek) det(I)

substituting this in

det(E1E2 · · ·EkB) = det(E1) det(E2) · · · det(Ek) det(B).

We get
det(AB) = det(A) det(B)

Corollary

If A is invertible, then det(A−1) =
1

det(A)
.

4 / 1



And keep repeating it to get

det(E1E2 · · ·EkB) = det(E1) det(E2) · · · det(Ek) det(B).

If A is invertible then A = E1E2 · · ·Ek for some elementary matrices Ei.
Applying our previous formula with B = I we get

det(A) = det(E1) det(E2) · · · det(Ek) det(I)

substituting this in

det(E1E2 · · ·EkB) = det(E1) det(E2) · · · det(Ek) det(B).

We get
det(AB) = det(A) det(B)

Corollary

If A is invertible, then det(A−1) =
1

det(A)
.

4 / 1



And keep repeating it to get

det(E1E2 · · ·EkB) = det(E1) det(E2) · · · det(Ek) det(B).

If A is invertible then A = E1E2 · · ·Ek for some elementary matrices Ei.
Applying our previous formula with B = I we get

det(A) = det(E1) det(E2) · · · det(Ek) det(I)

substituting this in

det(E1E2 · · ·EkB) = det(E1) det(E2) · · · det(Ek) det(B).

We get
det(AB) = det(A) det(B)

Corollary

If A is invertible, then det(A−1) =
1

det(A)
.

4 / 1



And keep repeating it to get

det(E1E2 · · ·EkB) = det(E1) det(E2) · · · det(Ek) det(B).

If A is invertible then A = E1E2 · · ·Ek for some elementary matrices Ei.
Applying our previous formula with B = I we get

det(A) = det(E1) det(E2) · · · det(Ek) det(I)

substituting this in

det(E1E2 · · ·EkB) = det(E1) det(E2) · · · det(Ek) det(B).

We get
det(AB) = det(A) det(B)

Corollary

If A is invertible, then det(A−1) =
1

det(A)
.

4 / 1



And keep repeating it to get

det(E1E2 · · ·EkB) = det(E1) det(E2) · · · det(Ek) det(B).

If A is invertible then A = E1E2 · · ·Ek for some elementary matrices Ei.
Applying our previous formula with B = I we get

det(A) = det(E1) det(E2) · · · det(Ek) det(I)

substituting this in

det(E1E2 · · ·EkB) = det(E1) det(E2) · · · det(Ek) det(B).

We get
det(AB) = det(A) det(B)

Corollary

If A is invertible, then det(A−1) =
1

det(A)
.

4 / 1



Definition

The adjoint of a square matrix A is the matrix whose ij-entries are given
by Aji. We denote the adjoint of A by adjA.

Example: adj

 a b
c d

 =

 d −b
−c a


Theorem

A adjA = det(A)I = (adjA)A.

Note that the ij-entry of A adjA is

ai1Aj1 + ai2Aj2 + · · ·+ ainAjn

If i = j, this is a formula for the determinant. So, this product has det(A)
along the main diagonal.

If i ̸= j then that expression is the determinant of the matrix whose jth
row has been set equal to its ith row. But such a determinant is 0. So,
the product A adjA has zeros everywhere off the main diagonal.
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As a consequence, we have a formula for the inverse of a matrix:

A−1 =
1

det(A)
adjA

For 2× 2 matrices: a b
c d

 d −b
−c a

 =

 ad− bc −ab+ ab
cd− cd −bc+ ad

 = (ad− bc)I

and  a b
c d

−1

=


d

ad− bc
− b

ad− bc

− c

ad− bc

a

ad− bc


Example: 1 2

3 4

−1

=
1

−2

 4 −2
−3 1

 =

 −2 1
3/2 −1/2


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ad− bc

− c

ad− bc

a

ad− bc


Example: 1 2

3 4

−1

=
1

−2

 4 −2
−3 1

 =

 −2 1
3/2 −1/2


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Example (3× 3): A =


1 3 2
0 1 −1
2 −2 3



First compute the cofactors:
A11 = 3− 2 = 1, A12 = −(0− (−2)) = −2, A13 = 0− 2 = −2.
A21 = −(9− (−4)) = −13, A22 = 3− 4 = −1, A23 = −(−2− 6) = 8.
A31 = −3− 2 = −5, A32 = −(−1− 0) = 1, A33 = 1− 0 = 1.
Then det(A) = 0 + 1A22 + (−1)A23 = −1− 8 = −9.

And so,

A−1 = −1

9
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Some examples of computing determinants.

A =


2 5 −1 3
1 2 3 4
0 4 1 2
2 4 6 8

 , B =


2 5 2 −3
1 2 3 5
0 0 1 2
0 0 6 8



det(A) = 0 because row 4 is a multiple of row 2.

det(B) =

∣∣∣∣ 2 5
1 2

∣∣∣∣ · ∣∣∣∣ 1 2
6 8

∣∣∣∣ = (4− 5)(8− 12) = 4

8 / 1
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Some more examples:

C =


0 5 0 4
3 −8 0 4

−2 5 3 1
0 1 0 −1

 D =


1 5 3 7
1 6 −2 4
2 10 1 3
1 5 4 0



Then

detC = 3

∣∣∣∣∣∣
0 5 4
3 −8 4
0 1 −1

∣∣∣∣∣∣ = 3(3)(−1)

∣∣∣∣ 5 4
1 −1

∣∣∣∣ = −9(−5− 4) = 81

After 3 EROs the determinant of matrix D is the same as∣∣∣∣∣∣∣∣
1 5 3 7
0 1 −5 −3
0 0 −5 −11
0 0 1 −7

∣∣∣∣∣∣∣∣ =
∣∣∣∣ 1 5
0 1

∣∣∣∣ · ∣∣∣∣ −5 −11
1 −7

∣∣∣∣ = (1− 0)(35 + 11) = 46
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