More Determinants

D. H. Luecking
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Theorem
A square matrix A is invertible if and only if det(A) # 0.

EROs have only three possible effects: (1) the determinant changes sign,
(2) the determinant is multiplied by a nonzero number, or (3) the
determinant is unchanged.

This tells us that it has determinant equal to 0 if and only if the reduced

echelon form has determinant equal to zero. This happens only when the
reduced echelon form does not have a diagonal of ones i.e., only when the
matrix is not row-equivalent to the identity.

We can easily find the determinant of an elementary matrix without any
computations.
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det(E) = —det(I) = —1.
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det(E) = —det(I) = —1.

2. If E is obtained from I by multiplying a row of I by «, then
det(F) = adet(]) = a.

3. If E is obtained from I by adding a multiple of one row of I to
another, then det(E) = det([) = 1.

This, together with the ERO properties, gives us:

Theorem
For two square matrices A and B, det(AB) = det(A) det(B).

If A is not invertible, then neither is AB and therefore both det(AB) and
det(A) det(B) are zero.

If E is an elementary matrix, then det(EB) = det(FE) det(B). We can
repeat this to get (for example)

det(E1 E2B) = det(E) det(E2B) = det(E7) det(Es) det(B).
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Corollary
1
.. . 1\
If A is invertible, then det(A~—") = det(A)’

4/1
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by A;;. We denote the adjoint of A by adj A.
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Definition
The adjoint of a square matrix A is the matrix whose 7j-entries are given
by A;;. We denote the adjoint of A by adj A.

[ a b d -b
Example: ad] [ e d ] = [ e 4 ]
Theorem

AadjA =det(A)I = (adj A)A.

Note that the ij-entry of Aadj A is
ai1Aj1 + apAje + -+ ainljy

If i = j, this is a formula for the determinant. So, this product has det(A)
along the main diagonal.

If i # j then that expression is the determinant of the matrix whose jth
row has been set equal to its ith row. But such a determinant is 0. So,

the product A adj A has zeros everywhere off the main diagonal.
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As a consequence, we have a formula for the inverse of a matrix:

A—l

- dj A
det(A) ™

For 2 x 2 matrices:

a b d —b - ad —bc —ab-+ ab -
[c d] [—c a ]_[cd—cd —bc—i—ad]_(ad_bc)l
and
d b
—1 —
a b _ ad — bc ad — be
c d __c a
ad —bc ad—be
Example:

(53] 50 1) = as )
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Example (3 x 3): A =

NN O =
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1 3 2
Example (3 x3): A= 0 1 -1
2 -2 3
First compute the cofactors:
A1=3-2=1,A15=—(0—-(-2))=-2, A;3=0—-2=—-2.
Apg =—(9—(—4)) =—-13, Ay =3—-4=—1, Agg = —(—2-6) =8.
Az1 =—-3—-2=-5A39=—(-1-0)=1,A33=1-0=1.
Then det(A) =0+ 149 + (—1)1423 =—-1—-8=-9.
And so,
1 1 —-13 -5
At=—2| 2 -1 1
) —2 8 1
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Some examples of computing determinants.

N O =N
B DO Ot
Y = W
0N = W

S O~ N

S O N Ot

DD =W N

Cco DN Ot
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Some examples of computing determinants.

2 5 -1 3 2
1 2 3 4 1
A= 04 1 2]’ B= 0
2 4 6 8 0

det(A) = 0 because row 4 is a multiple of row 2.

S O N Ot

DD =W N

Cco DN Ot
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Some examples of computing determinants.

2 5 -1 3 2 5
1 2 3 4 1 2
A= 0 4 1 2|7 B= 00
2 4 6 8 00
det(A) = 0 because row 4 is a multiple of row 2.
2 5 1 2
det(B)—’1 9 "6 g =(4-5)(8—-12)=4

DD =W N

Cco DN Ot
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Then

5
-8
1

detC =33
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Some more examples:

0 5 0 4 1 5 3 7

3 -8 0 4 1 6 -2 4

C= —2 3 1 D= 2 10 1 3

0 1 0 -1 1 5 0

Then
0 5 4 5 4
detC =33 -8 4 |=3(3)(-1) = —9(—5—4) =81

0 1 -1 L

After 3 EROs the determinant of matrix D is the same as

15 3 71
01 -5 -3 1 5] -5 -11

00 —r 11 _’0 1" ! _7'_(1—0)(35+11)_46
00 1 -7
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